| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2009 Gael Guennebaud <g.gael@free.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #include "main.h" |
| #include <unsupported/Eigen/AutoDiff> |
| |
| template<typename Scalar> |
| EIGEN_DONT_INLINE Scalar foo(const Scalar& x, const Scalar& y) |
| { |
| using namespace std; |
| // return x+std::sin(y); |
| EIGEN_ASM_COMMENT("mybegin"); |
| // pow(float, int) promotes to pow(double, double) |
| return x*2 - 1 + static_cast<Scalar>(pow(1+x,2)) + 2*sqrt(y*y+0) - 4 * sin(0+x) + 2 * cos(y+0) - exp(Scalar(-0.5)*x*x+0); |
| //return x+2*y*x;//x*2 -std::pow(x,2);//(2*y/x);// - y*2; |
| EIGEN_ASM_COMMENT("myend"); |
| } |
| |
| template<typename Vector> |
| EIGEN_DONT_INLINE typename Vector::Scalar foo(const Vector& p) |
| { |
| typedef typename Vector::Scalar Scalar; |
| return (p-Vector(Scalar(-1),Scalar(1.))).norm() + (p.array() * p.array()).sum() + p.dot(p); |
| } |
| |
| template<typename Scalar_, int NX=Dynamic, int NY=Dynamic> |
| struct TestFunc1 |
| { |
| typedef Scalar_ Scalar; |
| enum { |
| InputsAtCompileTime = NX, |
| ValuesAtCompileTime = NY |
| }; |
| typedef Matrix<Scalar,InputsAtCompileTime,1> InputType; |
| typedef Matrix<Scalar,ValuesAtCompileTime,1> ValueType; |
| typedef Matrix<Scalar,ValuesAtCompileTime,InputsAtCompileTime> JacobianType; |
| |
| int m_inputs, m_values; |
| |
| TestFunc1() : m_inputs(InputsAtCompileTime), m_values(ValuesAtCompileTime) {} |
| TestFunc1(int inputs_, int values_) : m_inputs(inputs_), m_values(values_) {} |
| |
| int inputs() const { return m_inputs; } |
| int values() const { return m_values; } |
| |
| template<typename T> |
| void operator() (const Matrix<T,InputsAtCompileTime,1>& x, Matrix<T,ValuesAtCompileTime,1>* _v) const |
| { |
| Matrix<T,ValuesAtCompileTime,1>& v = *_v; |
| |
| v[0] = 2 * x[0] * x[0] + x[0] * x[1]; |
| v[1] = 3 * x[1] * x[0] + 0.5 * x[1] * x[1]; |
| if(inputs()>2) |
| { |
| v[0] += 0.5 * x[2]; |
| v[1] += x[2]; |
| } |
| if(values()>2) |
| { |
| v[2] = 3 * x[1] * x[0] * x[0]; |
| } |
| if (inputs()>2 && values()>2) |
| v[2] *= x[2]; |
| } |
| |
| void operator() (const InputType& x, ValueType* v, JacobianType* _j) const |
| { |
| (*this)(x, v); |
| |
| if(_j) |
| { |
| JacobianType& j = *_j; |
| |
| j(0,0) = 4 * x[0] + x[1]; |
| j(1,0) = 3 * x[1]; |
| |
| j(0,1) = x[0]; |
| j(1,1) = 3 * x[0] + 2 * 0.5 * x[1]; |
| |
| if (inputs()>2) |
| { |
| j(0,2) = 0.5; |
| j(1,2) = 1; |
| } |
| if(values()>2) |
| { |
| j(2,0) = 3 * x[1] * 2 * x[0]; |
| j(2,1) = 3 * x[0] * x[0]; |
| } |
| if (inputs()>2 && values()>2) |
| { |
| j(2,0) *= x[2]; |
| j(2,1) *= x[2]; |
| |
| j(2,2) = 3 * x[1] * x[0] * x[0]; |
| j(2,2) = 3 * x[1] * x[0] * x[0]; |
| } |
| } |
| } |
| }; |
| |
| |
| /* Test functor for the C++11 features. */ |
| template <typename Scalar> |
| struct integratorFunctor |
| { |
| typedef Matrix<Scalar, 2, 1> InputType; |
| typedef Matrix<Scalar, 2, 1> ValueType; |
| |
| /* |
| * Implementation starts here. |
| */ |
| integratorFunctor(const Scalar gain) : _gain(gain) {} |
| integratorFunctor(const integratorFunctor& f) : _gain(f._gain) {} |
| const Scalar _gain; |
| |
| template <typename T1, typename T2> |
| void operator() (const T1 &input, T2 *output, const Scalar dt) const |
| { |
| T2 &o = *output; |
| |
| /* Integrator to test the AD. */ |
| o[0] = input[0] + input[1] * dt * _gain; |
| o[1] = input[1] * _gain; |
| } |
| |
| /* Only needed for the test */ |
| template <typename T1, typename T2, typename T3> |
| void operator() (const T1 &input, T2 *output, T3 *jacobian, const Scalar dt) const |
| { |
| T2 &o = *output; |
| |
| /* Integrator to test the AD. */ |
| o[0] = input[0] + input[1] * dt * _gain; |
| o[1] = input[1] * _gain; |
| |
| if (jacobian) |
| { |
| T3 &j = *jacobian; |
| |
| j(0, 0) = 1; |
| j(0, 1) = dt * _gain; |
| j(1, 0) = 0; |
| j(1, 1) = _gain; |
| } |
| } |
| |
| }; |
| |
| template<typename Func> void forward_jacobian_cpp11(const Func& f) |
| { |
| typedef typename Func::ValueType::Scalar Scalar; |
| typedef typename Func::ValueType ValueType; |
| typedef typename Func::InputType InputType; |
| typedef typename AutoDiffJacobian<Func>::JacobianType JacobianType; |
| |
| InputType x = InputType::Random(InputType::RowsAtCompileTime); |
| ValueType y, yref; |
| JacobianType j, jref; |
| |
| const Scalar dt = internal::random<double>(); |
| |
| jref.setZero(); |
| yref.setZero(); |
| f(x, &yref, &jref, dt); |
| |
| //std::cerr << "y, yref, jref: " << "\n"; |
| //std::cerr << y.transpose() << "\n\n"; |
| //std::cerr << yref << "\n\n"; |
| //std::cerr << jref << "\n\n"; |
| |
| AutoDiffJacobian<Func> autoj(f); |
| autoj(x, &y, &j, dt); |
| |
| //std::cerr << "y j (via autodiff): " << "\n"; |
| //std::cerr << y.transpose() << "\n\n"; |
| //std::cerr << j << "\n\n"; |
| |
| VERIFY_IS_APPROX(y, yref); |
| VERIFY_IS_APPROX(j, jref); |
| } |
| |
| template<typename Func> void forward_jacobian(const Func& f) |
| { |
| typename Func::InputType x = Func::InputType::Random(f.inputs()); |
| typename Func::ValueType y(f.values()), yref(f.values()); |
| typename Func::JacobianType j(f.values(),f.inputs()), jref(f.values(),f.inputs()); |
| |
| jref.setZero(); |
| yref.setZero(); |
| f(x,&yref,&jref); |
| // std::cerr << y.transpose() << "\n\n";; |
| // std::cerr << j << "\n\n";; |
| |
| j.setZero(); |
| y.setZero(); |
| AutoDiffJacobian<Func> autoj(f); |
| autoj(x, &y, &j); |
| // std::cerr << y.transpose() << "\n\n";; |
| // std::cerr << j << "\n\n";; |
| |
| VERIFY_IS_APPROX(y, yref); |
| VERIFY_IS_APPROX(j, jref); |
| } |
| |
| // TODO also check actual derivatives! |
| template <int> |
| void test_autodiff_scalar() |
| { |
| Vector2f p = Vector2f::Random(); |
| typedef AutoDiffScalar<Vector2f> AD; |
| AD ax(p.x(),Vector2f::UnitX()); |
| AD ay(p.y(),Vector2f::UnitY()); |
| AD res = foo<AD>(ax,ay); |
| VERIFY_IS_APPROX(res.value(), foo(p.x(),p.y())); |
| } |
| |
| |
| // TODO also check actual derivatives! |
| template <int> |
| void test_autodiff_vector() |
| { |
| Vector2f p = Vector2f::Random(); |
| typedef AutoDiffScalar<Vector2f> AD; |
| typedef Matrix<AD,2,1> VectorAD; |
| VectorAD ap = p.cast<AD>(); |
| ap.x().derivatives() = Vector2f::UnitX(); |
| ap.y().derivatives() = Vector2f::UnitY(); |
| |
| AD res = foo<VectorAD>(ap); |
| VERIFY_IS_APPROX(res.value(), foo(p)); |
| } |
| |
| template <int> |
| void test_autodiff_jacobian() |
| { |
| CALL_SUBTEST(( forward_jacobian(TestFunc1<double,2,2>()) )); |
| CALL_SUBTEST(( forward_jacobian(TestFunc1<double,2,3>()) )); |
| CALL_SUBTEST(( forward_jacobian(TestFunc1<double,3,2>()) )); |
| CALL_SUBTEST(( forward_jacobian(TestFunc1<double,3,3>()) )); |
| CALL_SUBTEST(( forward_jacobian(TestFunc1<double>(3,3)) )); |
| CALL_SUBTEST(( forward_jacobian_cpp11(integratorFunctor<double>(10)) )); |
| } |
| |
| |
| template <int> |
| void test_autodiff_hessian() |
| { |
| typedef AutoDiffScalar<VectorXd> AD; |
| typedef Matrix<AD,Eigen::Dynamic,1> VectorAD; |
| typedef AutoDiffScalar<VectorAD> ADD; |
| typedef Matrix<ADD,Eigen::Dynamic,1> VectorADD; |
| VectorADD x(2); |
| double s1 = internal::random<double>(), s2 = internal::random<double>(), s3 = internal::random<double>(), s4 = internal::random<double>(); |
| x(0).value()=s1; |
| x(1).value()=s2; |
| |
| //set unit vectors for the derivative directions (partial derivatives of the input vector) |
| x(0).derivatives().resize(2); |
| x(0).derivatives().setZero(); |
| x(0).derivatives()(0)= 1; |
| x(1).derivatives().resize(2); |
| x(1).derivatives().setZero(); |
| x(1).derivatives()(1)=1; |
| |
| //repeat partial derivatives for the inner AutoDiffScalar |
| x(0).value().derivatives() = VectorXd::Unit(2,0); |
| x(1).value().derivatives() = VectorXd::Unit(2,1); |
| |
| //set the hessian matrix to zero |
| for(int idx=0; idx<2; idx++) { |
| x(0).derivatives()(idx).derivatives() = VectorXd::Zero(2); |
| x(1).derivatives()(idx).derivatives() = VectorXd::Zero(2); |
| } |
| |
| ADD y = sin(AD(s3)*x(0) + AD(s4)*x(1)); |
| |
| VERIFY_IS_APPROX(y.value().derivatives()(0), y.derivatives()(0).value()); |
| VERIFY_IS_APPROX(y.value().derivatives()(1), y.derivatives()(1).value()); |
| VERIFY_IS_APPROX(y.value().derivatives()(0), s3*std::cos(s1*s3+s2*s4)); |
| VERIFY_IS_APPROX(y.value().derivatives()(1), s4*std::cos(s1*s3+s2*s4)); |
| VERIFY_IS_APPROX(y.derivatives()(0).derivatives(), -std::sin(s1*s3+s2*s4)*Vector2d(s3*s3,s4*s3)); |
| VERIFY_IS_APPROX(y.derivatives()(1).derivatives(), -std::sin(s1*s3+s2*s4)*Vector2d(s3*s4,s4*s4)); |
| |
| ADD z = x(0)*x(1); |
| VERIFY_IS_APPROX(z.derivatives()(0).derivatives(), Vector2d(0,1)); |
| VERIFY_IS_APPROX(z.derivatives()(1).derivatives(), Vector2d(1,0)); |
| } |
| |
| double bug_1222() { |
| typedef Eigen::AutoDiffScalar<Eigen::Vector3d> AD; |
| const double _cv1_3 = 1.0; |
| const AD chi_3 = 1.0; |
| // this line did not work, because operator+ returns ADS<DerType&>, which then cannot be converted to ADS<DerType> |
| const AD denom = chi_3 + _cv1_3; |
| return denom.value(); |
| } |
| |
| #ifdef EIGEN_TEST_PART_5 |
| |
| double bug_1223() { |
| using std::min; |
| typedef Eigen::AutoDiffScalar<Eigen::Vector3d> AD; |
| |
| const double _cv1_3 = 1.0; |
| const AD chi_3 = 1.0; |
| const AD denom = 1.0; |
| |
| // failed because implementation of min attempts to construct ADS<DerType&> via constructor AutoDiffScalar(const Real& value) |
| // without initializing m_derivatives (which is a reference in this case) |
| #define EIGEN_TEST_SPACE |
| const AD t = min EIGEN_TEST_SPACE (denom / chi_3, 1.0); |
| |
| const AD t2 = min EIGEN_TEST_SPACE (denom / (chi_3 * _cv1_3), 1.0); |
| |
| return t.value() + t2.value(); |
| } |
| |
| // regression test for some compilation issues with specializations of ScalarBinaryOpTraits |
| void bug_1260() { |
| Matrix4d A = Matrix4d::Ones(); |
| Vector4d v = Vector4d::Ones(); |
| A*v; |
| } |
| |
| // check a compilation issue with numext::max |
| double bug_1261() { |
| typedef AutoDiffScalar<Matrix2d> AD; |
| typedef Matrix<AD,2,1> VectorAD; |
| |
| VectorAD v(0.,0.); |
| const AD maxVal = v.maxCoeff(); |
| const AD minVal = v.minCoeff(); |
| return maxVal.value() + minVal.value(); |
| } |
| |
| double bug_1264() { |
| typedef AutoDiffScalar<Vector2d> AD; |
| const AD s = 0.; |
| const Matrix<AD, 3, 1> v1(0.,0.,0.); |
| const Matrix<AD, 3, 1> v2 = (s + 3.0) * v1; |
| return v2(0).value(); |
| } |
| |
| // check with expressions on constants |
| double bug_1281() { |
| int n = 2; |
| typedef AutoDiffScalar<VectorXd> AD; |
| const AD c = 1.; |
| AD x0(2,n,0); |
| AD y1 = (AD(c)+AD(c))*x0; |
| y1 = x0 * (AD(c)+AD(c)); |
| AD y2 = (-AD(c))+x0; |
| y2 = x0+(-AD(c)); |
| AD y3 = (AD(c)*(-AD(c))+AD(c))*x0; |
| y3 = x0 * (AD(c)*(-AD(c))+AD(c)); |
| return (y1+y2+y3).value(); |
| } |
| |
| #endif |
| |
| EIGEN_DECLARE_TEST(autodiff) |
| { |
| for(int i = 0; i < g_repeat; i++) { |
| CALL_SUBTEST_1( test_autodiff_scalar<1>() ); |
| CALL_SUBTEST_2( test_autodiff_vector<1>() ); |
| CALL_SUBTEST_3( test_autodiff_jacobian<1>() ); |
| CALL_SUBTEST_4( test_autodiff_hessian<1>() ); |
| } |
| |
| CALL_SUBTEST_5( bug_1222() ); |
| CALL_SUBTEST_5( bug_1223() ); |
| CALL_SUBTEST_5( bug_1260() ); |
| CALL_SUBTEST_5( bug_1261() ); |
| CALL_SUBTEST_5( bug_1281() ); |
| } |
| |