| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_DYNAMIC_SPARSEMATRIX_H |
| #define EIGEN_DYNAMIC_SPARSEMATRIX_H |
| |
| namespace Eigen { |
| |
| /** \deprecated use a SparseMatrix in an uncompressed mode |
| * |
| * \class DynamicSparseMatrix |
| * |
| * \brief A sparse matrix class designed for matrix assembly purpose |
| * |
| * \param _Scalar the scalar type, i.e. the type of the coefficients |
| * |
| * Unlike SparseMatrix, this class provides a much higher degree of flexibility. In particular, it allows |
| * random read/write accesses in log(rho*outer_size) where \c rho is the probability that a coefficient is |
| * nonzero and outer_size is the number of columns if the matrix is column-major and the number of rows |
| * otherwise. |
| * |
| * Internally, the data are stored as a std::vector of compressed vector. The performances of random writes might |
| * decrease as the number of nonzeros per inner-vector increase. In practice, we observed very good performance |
| * till about 100 nonzeros/vector, and the performance remains relatively good till 500 nonzeros/vectors. |
| * |
| * \see SparseMatrix |
| */ |
| |
| namespace internal { |
| template<typename _Scalar, int _Options, typename _StorageIndex> |
| struct traits<DynamicSparseMatrix<_Scalar, _Options, _StorageIndex> > |
| { |
| typedef _Scalar Scalar; |
| typedef _StorageIndex StorageIndex; |
| typedef Sparse StorageKind; |
| typedef MatrixXpr XprKind; |
| enum { |
| RowsAtCompileTime = Dynamic, |
| ColsAtCompileTime = Dynamic, |
| MaxRowsAtCompileTime = Dynamic, |
| MaxColsAtCompileTime = Dynamic, |
| Flags = _Options | NestByRefBit | LvalueBit, |
| CoeffReadCost = NumTraits<Scalar>::ReadCost, |
| SupportedAccessPatterns = OuterRandomAccessPattern |
| }; |
| }; |
| } |
| |
| template<typename _Scalar, int _Options, typename _StorageIndex> |
| class DynamicSparseMatrix |
| : public SparseMatrixBase<DynamicSparseMatrix<_Scalar, _Options, _StorageIndex> > |
| { |
| typedef SparseMatrixBase<DynamicSparseMatrix> Base; |
| using Base::convert_index; |
| public: |
| EIGEN_SPARSE_PUBLIC_INTERFACE(DynamicSparseMatrix) |
| // FIXME: why are these operator already alvailable ??? |
| // EIGEN_SPARSE_INHERIT_ASSIGNMENT_OPERATOR(DynamicSparseMatrix, +=) |
| // EIGEN_SPARSE_INHERIT_ASSIGNMENT_OPERATOR(DynamicSparseMatrix, -=) |
| typedef MappedSparseMatrix<Scalar,Flags> Map; |
| using Base::IsRowMajor; |
| using Base::operator=; |
| enum { |
| Options = _Options |
| }; |
| |
| protected: |
| |
| typedef DynamicSparseMatrix<Scalar,(Flags&~RowMajorBit)|(IsRowMajor?RowMajorBit:0), StorageIndex> TransposedSparseMatrix; |
| |
| Index m_innerSize; |
| std::vector<internal::CompressedStorage<Scalar,StorageIndex> > m_data; |
| |
| public: |
| |
| inline Index rows() const { return IsRowMajor ? outerSize() : m_innerSize; } |
| inline Index cols() const { return IsRowMajor ? m_innerSize : outerSize(); } |
| inline Index innerSize() const { return m_innerSize; } |
| inline Index outerSize() const { return convert_index(m_data.size()); } |
| inline Index innerNonZeros(Index j) const { return m_data[j].size(); } |
| |
| std::vector<internal::CompressedStorage<Scalar,StorageIndex> >& _data() { return m_data; } |
| const std::vector<internal::CompressedStorage<Scalar,StorageIndex> >& _data() const { return m_data; } |
| |
| /** \returns the coefficient value at given position \a row, \a col |
| * This operation involes a log(rho*outer_size) binary search. |
| */ |
| inline Scalar coeff(Index row, Index col) const |
| { |
| const Index outer = IsRowMajor ? row : col; |
| const Index inner = IsRowMajor ? col : row; |
| return m_data[outer].at(inner); |
| } |
| |
| /** \returns a reference to the coefficient value at given position \a row, \a col |
| * This operation involes a log(rho*outer_size) binary search. If the coefficient does not |
| * exist yet, then a sorted insertion into a sequential buffer is performed. |
| */ |
| inline Scalar& coeffRef(Index row, Index col) |
| { |
| const Index outer = IsRowMajor ? row : col; |
| const Index inner = IsRowMajor ? col : row; |
| return m_data[outer].atWithInsertion(inner); |
| } |
| |
| class InnerIterator; |
| class ReverseInnerIterator; |
| |
| void setZero() |
| { |
| for (Index j=0; j<outerSize(); ++j) |
| m_data[j].clear(); |
| } |
| |
| /** \returns the number of non zero coefficients */ |
| Index nonZeros() const |
| { |
| Index res = 0; |
| for (Index j=0; j<outerSize(); ++j) |
| res += m_data[j].size(); |
| return res; |
| } |
| |
| |
| |
| void reserve(Index reserveSize = 1000) |
| { |
| if (outerSize()>0) |
| { |
| Index reserveSizePerVector = (std::max)(reserveSize/outerSize(),Index(4)); |
| for (Index j=0; j<outerSize(); ++j) |
| { |
| m_data[j].reserve(reserveSizePerVector); |
| } |
| } |
| } |
| |
| /** Does nothing: provided for compatibility with SparseMatrix */ |
| inline void startVec(Index /*outer*/) {} |
| |
| /** \returns a reference to the non zero coefficient at position \a row, \a col assuming that: |
| * - the nonzero does not already exist |
| * - the new coefficient is the last one of the given inner vector. |
| * |
| * \sa insert, insertBackByOuterInner */ |
| inline Scalar& insertBack(Index row, Index col) |
| { |
| return insertBackByOuterInner(IsRowMajor?row:col, IsRowMajor?col:row); |
| } |
| |
| /** \sa insertBack */ |
| inline Scalar& insertBackByOuterInner(Index outer, Index inner) |
| { |
| eigen_assert(outer<Index(m_data.size()) && inner<m_innerSize && "out of range"); |
| eigen_assert(((m_data[outer].size()==0) || (m_data[outer].index(m_data[outer].size()-1)<inner)) |
| && "wrong sorted insertion"); |
| m_data[outer].append(0, inner); |
| return m_data[outer].value(m_data[outer].size()-1); |
| } |
| |
| inline Scalar& insert(Index row, Index col) |
| { |
| const Index outer = IsRowMajor ? row : col; |
| const Index inner = IsRowMajor ? col : row; |
| |
| Index startId = 0; |
| Index id = static_cast<Index>(m_data[outer].size()) - 1; |
| m_data[outer].resize(id+2,1); |
| |
| while ( (id >= startId) && (m_data[outer].index(id) > inner) ) |
| { |
| m_data[outer].index(id+1) = m_data[outer].index(id); |
| m_data[outer].value(id+1) = m_data[outer].value(id); |
| --id; |
| } |
| m_data[outer].index(id+1) = inner; |
| m_data[outer].value(id+1) = 0; |
| return m_data[outer].value(id+1); |
| } |
| |
| /** Does nothing: provided for compatibility with SparseMatrix */ |
| inline void finalize() {} |
| |
| /** Suppress all nonzeros which are smaller than \a reference under the tolerance \a epsilon */ |
| void prune(Scalar reference, RealScalar epsilon = NumTraits<RealScalar>::dummy_precision()) |
| { |
| for (Index j=0; j<outerSize(); ++j) |
| m_data[j].prune(reference,epsilon); |
| } |
| |
| /** Resize the matrix without preserving the data (the matrix is set to zero) |
| */ |
| void resize(Index rows, Index cols) |
| { |
| const Index outerSize = IsRowMajor ? rows : cols; |
| m_innerSize = convert_index(IsRowMajor ? cols : rows); |
| setZero(); |
| if (Index(m_data.size()) != outerSize) |
| { |
| m_data.resize(outerSize); |
| } |
| } |
| |
| void resizeAndKeepData(Index rows, Index cols) |
| { |
| const Index outerSize = IsRowMajor ? rows : cols; |
| const Index innerSize = IsRowMajor ? cols : rows; |
| if (m_innerSize>innerSize) |
| { |
| // remove all coefficients with innerCoord>=innerSize |
| // TODO |
| //std::cerr << "not implemented yet\n"; |
| exit(2); |
| } |
| if (m_data.size() != outerSize) |
| { |
| m_data.resize(outerSize); |
| } |
| } |
| |
| /** The class DynamicSparseMatrix is deprecated */ |
| EIGEN_DEPRECATED inline DynamicSparseMatrix() |
| : m_innerSize(0), m_data(0) |
| { |
| #ifdef EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN |
| EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN |
| #endif |
| eigen_assert(innerSize()==0 && outerSize()==0); |
| } |
| |
| /** The class DynamicSparseMatrix is deprecated */ |
| EIGEN_DEPRECATED inline DynamicSparseMatrix(Index rows, Index cols) |
| : m_innerSize(0) |
| { |
| #ifdef EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN |
| EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN |
| #endif |
| resize(rows, cols); |
| } |
| |
| /** The class DynamicSparseMatrix is deprecated */ |
| template<typename OtherDerived> |
| EIGEN_DEPRECATED explicit inline DynamicSparseMatrix(const SparseMatrixBase<OtherDerived>& other) |
| : m_innerSize(0) |
| { |
| #ifdef EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN |
| EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN |
| #endif |
| Base::operator=(other.derived()); |
| } |
| |
| inline DynamicSparseMatrix(const DynamicSparseMatrix& other) |
| : Base(), m_innerSize(0) |
| { |
| #ifdef EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN |
| EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN |
| #endif |
| *this = other.derived(); |
| } |
| |
| inline void swap(DynamicSparseMatrix& other) |
| { |
| //EIGEN_DBG_SPARSE(std::cout << "SparseMatrix:: swap\n"); |
| std::swap(m_innerSize, other.m_innerSize); |
| //std::swap(m_outerSize, other.m_outerSize); |
| m_data.swap(other.m_data); |
| } |
| |
| inline DynamicSparseMatrix& operator=(const DynamicSparseMatrix& other) |
| { |
| if (other.isRValue()) |
| { |
| swap(other.const_cast_derived()); |
| } |
| else |
| { |
| resize(other.rows(), other.cols()); |
| m_data = other.m_data; |
| } |
| return *this; |
| } |
| |
| /** Destructor */ |
| inline ~DynamicSparseMatrix() {} |
| |
| public: |
| |
| /** \deprecated |
| * Set the matrix to zero and reserve the memory for \a reserveSize nonzero coefficients. */ |
| EIGEN_DEPRECATED void startFill(Index reserveSize = 1000) |
| { |
| setZero(); |
| reserve(reserveSize); |
| } |
| |
| /** \deprecated use insert() |
| * inserts a nonzero coefficient at given coordinates \a row, \a col and returns its reference assuming that: |
| * 1 - the coefficient does not exist yet |
| * 2 - this the coefficient with greater inner coordinate for the given outer coordinate. |
| * In other words, assuming \c *this is column-major, then there must not exists any nonzero coefficient of coordinates |
| * \c i \c x \a col such that \c i >= \a row. Otherwise the matrix is invalid. |
| * |
| * \see fillrand(), coeffRef() |
| */ |
| EIGEN_DEPRECATED Scalar& fill(Index row, Index col) |
| { |
| const Index outer = IsRowMajor ? row : col; |
| const Index inner = IsRowMajor ? col : row; |
| return insertBack(outer,inner); |
| } |
| |
| /** \deprecated use insert() |
| * Like fill() but with random inner coordinates. |
| * Compared to the generic coeffRef(), the unique limitation is that we assume |
| * the coefficient does not exist yet. |
| */ |
| EIGEN_DEPRECATED Scalar& fillrand(Index row, Index col) |
| { |
| return insert(row,col); |
| } |
| |
| /** \deprecated use finalize() |
| * Does nothing. Provided for compatibility with SparseMatrix. */ |
| EIGEN_DEPRECATED void endFill() {} |
| |
| # ifdef EIGEN_DYNAMICSPARSEMATRIX_PLUGIN |
| # include EIGEN_DYNAMICSPARSEMATRIX_PLUGIN |
| # endif |
| }; |
| |
| template<typename Scalar, int _Options, typename _StorageIndex> |
| class DynamicSparseMatrix<Scalar,_Options,_StorageIndex>::InnerIterator : public SparseVector<Scalar,_Options,_StorageIndex>::InnerIterator |
| { |
| typedef typename SparseVector<Scalar,_Options,_StorageIndex>::InnerIterator Base; |
| public: |
| InnerIterator(const DynamicSparseMatrix& mat, Index outer) |
| : Base(mat.m_data[outer]), m_outer(outer) |
| {} |
| |
| inline Index row() const { return IsRowMajor ? m_outer : Base::index(); } |
| inline Index col() const { return IsRowMajor ? Base::index() : m_outer; } |
| inline Index outer() const { return m_outer; } |
| |
| protected: |
| const Index m_outer; |
| }; |
| |
| template<typename Scalar, int _Options, typename _StorageIndex> |
| class DynamicSparseMatrix<Scalar,_Options,_StorageIndex>::ReverseInnerIterator : public SparseVector<Scalar,_Options,_StorageIndex>::ReverseInnerIterator |
| { |
| typedef typename SparseVector<Scalar,_Options,_StorageIndex>::ReverseInnerIterator Base; |
| public: |
| ReverseInnerIterator(const DynamicSparseMatrix& mat, Index outer) |
| : Base(mat.m_data[outer]), m_outer(outer) |
| {} |
| |
| inline Index row() const { return IsRowMajor ? m_outer : Base::index(); } |
| inline Index col() const { return IsRowMajor ? Base::index() : m_outer; } |
| inline Index outer() const { return m_outer; } |
| |
| protected: |
| const Index m_outer; |
| }; |
| |
| namespace internal { |
| |
| template<typename _Scalar, int _Options, typename _StorageIndex> |
| struct evaluator<DynamicSparseMatrix<_Scalar,_Options,_StorageIndex> > |
| : evaluator_base<DynamicSparseMatrix<_Scalar,_Options,_StorageIndex> > |
| { |
| typedef _Scalar Scalar; |
| typedef DynamicSparseMatrix<_Scalar,_Options,_StorageIndex> SparseMatrixType; |
| typedef typename SparseMatrixType::InnerIterator InnerIterator; |
| typedef typename SparseMatrixType::ReverseInnerIterator ReverseInnerIterator; |
| |
| enum { |
| CoeffReadCost = NumTraits<_Scalar>::ReadCost, |
| Flags = SparseMatrixType::Flags |
| }; |
| |
| evaluator() : m_matrix(0) {} |
| evaluator(const SparseMatrixType &mat) : m_matrix(&mat) {} |
| |
| operator SparseMatrixType&() { return m_matrix->const_cast_derived(); } |
| operator const SparseMatrixType&() const { return *m_matrix; } |
| |
| Scalar coeff(Index row, Index col) const { return m_matrix->coeff(row,col); } |
| |
| Index nonZerosEstimate() const { return m_matrix->nonZeros(); } |
| |
| const SparseMatrixType *m_matrix; |
| }; |
| |
| } |
| |
| } // end namespace Eigen |
| |
| #endif // EIGEN_DYNAMIC_SPARSEMATRIX_H |