blob: 3cf5cb4803422268254da4d0674952b9601f670b [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2018 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_CONFIGURE_VECTORIZATION_H
#define EIGEN_CONFIGURE_VECTORIZATION_H
//------------------------------------------------------------------------------------------
// Static and dynamic alignment control
//
// The main purpose of this section is to define EIGEN_MAX_ALIGN_BYTES and EIGEN_MAX_STATIC_ALIGN_BYTES
// as the maximal boundary in bytes on which dynamically and statically allocated data may be alignment respectively.
// The values of EIGEN_MAX_ALIGN_BYTES and EIGEN_MAX_STATIC_ALIGN_BYTES can be specified by the user. If not,
// a default value is automatically computed based on architecture, compiler, and OS.
//
// This section also defines macros EIGEN_ALIGN_TO_BOUNDARY(N) and the shortcuts EIGEN_ALIGN{8,16,32,_MAX}
// to be used to declare statically aligned buffers.
//------------------------------------------------------------------------------------------
/* EIGEN_ALIGN_TO_BOUNDARY(n) forces data to be n-byte aligned. This is used to satisfy SIMD requirements.
* However, we do that EVEN if vectorization (EIGEN_VECTORIZE) is disabled,
* so that vectorization doesn't affect binary compatibility.
*
* If we made alignment depend on whether or not EIGEN_VECTORIZE is defined, it would be impossible to link
* vectorized and non-vectorized code.
*
* FIXME: this code can be cleaned up once we switch to proper C++11 only.
*/
#if (defined EIGEN_CUDACC)
#define EIGEN_ALIGN_TO_BOUNDARY(n) __align__(n)
#define EIGEN_ALIGNOF(x) __alignof(x)
#elif EIGEN_HAS_ALIGNAS
#define EIGEN_ALIGN_TO_BOUNDARY(n) alignas(n)
#define EIGEN_ALIGNOF(x) alignof(x)
#elif EIGEN_COMP_GNUC || EIGEN_COMP_PGI || EIGEN_COMP_IBM || EIGEN_COMP_ARM
#define EIGEN_ALIGN_TO_BOUNDARY(n) __attribute__((aligned(n)))
#define EIGEN_ALIGNOF(x) __alignof(x)
#elif EIGEN_COMP_MSVC
#define EIGEN_ALIGN_TO_BOUNDARY(n) __declspec(align(n))
#define EIGEN_ALIGNOF(x) __alignof(x)
#elif EIGEN_COMP_SUNCC
// FIXME not sure about this one:
#define EIGEN_ALIGN_TO_BOUNDARY(n) __attribute__((aligned(n)))
#define EIGEN_ALIGNOF(x) __alignof(x)
#else
#error Please tell me what is the equivalent of alignas(n) and alignof(x) for your compiler
#endif
// If the user explicitly disable vectorization, then we also disable alignment
#if defined(EIGEN_DONT_VECTORIZE)
#if defined(EIGEN_GPUCC)
// GPU code is always vectorized and requires memory alignment for
// statically allocated buffers.
#define EIGEN_IDEAL_MAX_ALIGN_BYTES 16
#else
#define EIGEN_IDEAL_MAX_ALIGN_BYTES 0
#endif
#elif defined(__AVX512F__)
// 64 bytes static alignment is preferred only if really required
#define EIGEN_IDEAL_MAX_ALIGN_BYTES 64
#elif defined(__AVX__)
// 32 bytes static alignment is preferred only if really required
#define EIGEN_IDEAL_MAX_ALIGN_BYTES 32
#else
#define EIGEN_IDEAL_MAX_ALIGN_BYTES 16
#endif
// EIGEN_MIN_ALIGN_BYTES defines the minimal value for which the notion of explicit alignment makes sense
#define EIGEN_MIN_ALIGN_BYTES 16
// Defined the boundary (in bytes) on which the data needs to be aligned. Note
// that unless EIGEN_ALIGN is defined and not equal to 0, the data may not be
// aligned at all regardless of the value of this #define.
#if (defined(EIGEN_DONT_ALIGN_STATICALLY) || defined(EIGEN_DONT_ALIGN)) && defined(EIGEN_MAX_STATIC_ALIGN_BYTES) && EIGEN_MAX_STATIC_ALIGN_BYTES>0
#error EIGEN_MAX_STATIC_ALIGN_BYTES and EIGEN_DONT_ALIGN[_STATICALLY] are both defined with EIGEN_MAX_STATIC_ALIGN_BYTES!=0. Use EIGEN_MAX_STATIC_ALIGN_BYTES=0 as a synonym of EIGEN_DONT_ALIGN_STATICALLY.
#endif
// EIGEN_DONT_ALIGN_STATICALLY and EIGEN_DONT_ALIGN are deprecated
// They imply EIGEN_MAX_STATIC_ALIGN_BYTES=0
#if defined(EIGEN_DONT_ALIGN_STATICALLY) || defined(EIGEN_DONT_ALIGN)
#ifdef EIGEN_MAX_STATIC_ALIGN_BYTES
#undef EIGEN_MAX_STATIC_ALIGN_BYTES
#endif
#define EIGEN_MAX_STATIC_ALIGN_BYTES 0
#endif
#ifndef EIGEN_MAX_STATIC_ALIGN_BYTES
// Try to automatically guess what is the best default value for EIGEN_MAX_STATIC_ALIGN_BYTES
// 16 byte alignment is only useful for vectorization. Since it affects the ABI, we need to enable
// 16 byte alignment on all platforms where vectorization might be enabled. In theory we could always
// enable alignment, but it can be a cause of problems on some platforms, so we just disable it in
// certain common platform (compiler+architecture combinations) to avoid these problems.
// Only static alignment is really problematic (relies on nonstandard compiler extensions),
// try to keep heap alignment even when we have to disable static alignment.
#if EIGEN_COMP_GNUC && !(EIGEN_ARCH_i386_OR_x86_64 || EIGEN_ARCH_ARM_OR_ARM64 || EIGEN_ARCH_PPC || EIGEN_ARCH_IA64 || EIGEN_ARCH_MIPS)
#define EIGEN_GCC_AND_ARCH_DOESNT_WANT_STACK_ALIGNMENT 1
#elif EIGEN_ARCH_ARM_OR_ARM64 && EIGEN_COMP_GNUC_STRICT && EIGEN_GNUC_AT_MOST(4, 6)
// Old versions of GCC on ARM, at least 4.4, were once seen to have buggy static alignment support.
// Not sure which version fixed it, hopefully it doesn't affect 4.7, which is still somewhat in use.
// 4.8 and newer seem definitely unaffected.
#define EIGEN_GCC_AND_ARCH_DOESNT_WANT_STACK_ALIGNMENT 1
#else
#define EIGEN_GCC_AND_ARCH_DOESNT_WANT_STACK_ALIGNMENT 0
#endif
// static alignment is completely disabled with GCC 3, Sun Studio, and QCC/QNX
#if !EIGEN_GCC_AND_ARCH_DOESNT_WANT_STACK_ALIGNMENT \
&& !EIGEN_GCC3_OR_OLDER \
&& !EIGEN_COMP_SUNCC \
&& !EIGEN_OS_QNX
#define EIGEN_ARCH_WANTS_STACK_ALIGNMENT 1
#else
#define EIGEN_ARCH_WANTS_STACK_ALIGNMENT 0
#endif
#if EIGEN_ARCH_WANTS_STACK_ALIGNMENT
#define EIGEN_MAX_STATIC_ALIGN_BYTES EIGEN_IDEAL_MAX_ALIGN_BYTES
#else
#define EIGEN_MAX_STATIC_ALIGN_BYTES 0
#endif
#endif
// If EIGEN_MAX_ALIGN_BYTES is defined, then it is considered as an upper bound for EIGEN_MAX_STATIC_ALIGN_BYTES
#if defined(EIGEN_MAX_ALIGN_BYTES) && EIGEN_MAX_ALIGN_BYTES<EIGEN_MAX_STATIC_ALIGN_BYTES
#undef EIGEN_MAX_STATIC_ALIGN_BYTES
#define EIGEN_MAX_STATIC_ALIGN_BYTES EIGEN_MAX_ALIGN_BYTES
#endif
#if EIGEN_MAX_STATIC_ALIGN_BYTES==0 && !defined(EIGEN_DISABLE_UNALIGNED_ARRAY_ASSERT)
#define EIGEN_DISABLE_UNALIGNED_ARRAY_ASSERT
#endif
// At this stage, EIGEN_MAX_STATIC_ALIGN_BYTES>0 is the true test whether we want to align arrays on the stack or not.
// It takes into account both the user choice to explicitly enable/disable alignment (by setting EIGEN_MAX_STATIC_ALIGN_BYTES)
// and the architecture config (EIGEN_ARCH_WANTS_STACK_ALIGNMENT).
// Henceforth, only EIGEN_MAX_STATIC_ALIGN_BYTES should be used.
// Shortcuts to EIGEN_ALIGN_TO_BOUNDARY
#define EIGEN_ALIGN8 EIGEN_ALIGN_TO_BOUNDARY(8)
#define EIGEN_ALIGN16 EIGEN_ALIGN_TO_BOUNDARY(16)
#define EIGEN_ALIGN32 EIGEN_ALIGN_TO_BOUNDARY(32)
#define EIGEN_ALIGN64 EIGEN_ALIGN_TO_BOUNDARY(64)
#if EIGEN_MAX_STATIC_ALIGN_BYTES>0
#define EIGEN_ALIGN_MAX EIGEN_ALIGN_TO_BOUNDARY(EIGEN_MAX_STATIC_ALIGN_BYTES)
#else
#define EIGEN_ALIGN_MAX
#endif
// Dynamic alignment control
#if defined(EIGEN_DONT_ALIGN) && defined(EIGEN_MAX_ALIGN_BYTES) && EIGEN_MAX_ALIGN_BYTES>0
#error EIGEN_MAX_ALIGN_BYTES and EIGEN_DONT_ALIGN are both defined with EIGEN_MAX_ALIGN_BYTES!=0. Use EIGEN_MAX_ALIGN_BYTES=0 as a synonym of EIGEN_DONT_ALIGN.
#endif
#ifdef EIGEN_DONT_ALIGN
#ifdef EIGEN_MAX_ALIGN_BYTES
#undef EIGEN_MAX_ALIGN_BYTES
#endif
#define EIGEN_MAX_ALIGN_BYTES 0
#elif !defined(EIGEN_MAX_ALIGN_BYTES)
#define EIGEN_MAX_ALIGN_BYTES EIGEN_IDEAL_MAX_ALIGN_BYTES
#endif
#if EIGEN_IDEAL_MAX_ALIGN_BYTES > EIGEN_MAX_ALIGN_BYTES
#define EIGEN_DEFAULT_ALIGN_BYTES EIGEN_IDEAL_MAX_ALIGN_BYTES
#else
#define EIGEN_DEFAULT_ALIGN_BYTES EIGEN_MAX_ALIGN_BYTES
#endif
#ifndef EIGEN_UNALIGNED_VECTORIZE
#define EIGEN_UNALIGNED_VECTORIZE 1
#endif
//----------------------------------------------------------------------
// if alignment is disabled, then disable vectorization. Note: EIGEN_MAX_ALIGN_BYTES is the proper check, it takes into
// account both the user's will (EIGEN_MAX_ALIGN_BYTES,EIGEN_DONT_ALIGN) and our own platform checks
#if EIGEN_MAX_ALIGN_BYTES==0
#ifndef EIGEN_DONT_VECTORIZE
#define EIGEN_DONT_VECTORIZE
#endif
#endif
// The following (except #include <malloc.h> and _M_IX86_FP ??) can likely be
// removed as gcc 4.1 and msvc 2008 are not supported anyways.
#if EIGEN_COMP_MSVC
#include <malloc.h> // for _aligned_malloc -- need it regardless of whether vectorization is enabled
#if (EIGEN_COMP_MSVC >= 1500) // 2008 or later
// a user reported that in 64-bit mode, MSVC doesn't care to define _M_IX86_FP.
#if (defined(_M_IX86_FP) && (_M_IX86_FP >= 2)) || EIGEN_ARCH_x86_64
#define EIGEN_SSE2_ON_MSVC_2008_OR_LATER
#endif
#endif
#else
#if (defined __SSE2__) && ( (!EIGEN_COMP_GNUC) || EIGEN_COMP_ICC || EIGEN_GNUC_AT_LEAST(4,2) )
#define EIGEN_SSE2_ON_NON_MSVC_BUT_NOT_OLD_GCC
#endif
#endif
#if !(defined(EIGEN_DONT_VECTORIZE) || defined(EIGEN_GPUCC))
#if defined (EIGEN_SSE2_ON_NON_MSVC_BUT_NOT_OLD_GCC) || defined(EIGEN_SSE2_ON_MSVC_2008_OR_LATER)
// Defines symbols for compile-time detection of which instructions are
// used.
// EIGEN_VECTORIZE_YY is defined if and only if the instruction set YY is used
#define EIGEN_VECTORIZE
#define EIGEN_VECTORIZE_SSE
#define EIGEN_VECTORIZE_SSE2
// Detect sse3/ssse3/sse4:
// gcc and icc defines __SSE3__, ...
// there is no way to know about this on msvc. You can define EIGEN_VECTORIZE_SSE* if you
// want to force the use of those instructions with msvc.
#ifdef __SSE3__
#define EIGEN_VECTORIZE_SSE3
#endif
#ifdef __SSSE3__
#define EIGEN_VECTORIZE_SSSE3
#endif
#ifdef __SSE4_1__
#define EIGEN_VECTORIZE_SSE4_1
#endif
#ifdef __SSE4_2__
#define EIGEN_VECTORIZE_SSE4_2
#endif
#ifdef __AVX__
#define EIGEN_VECTORIZE_AVX
#define EIGEN_VECTORIZE_SSE3
#define EIGEN_VECTORIZE_SSSE3
#define EIGEN_VECTORIZE_SSE4_1
#define EIGEN_VECTORIZE_SSE4_2
#endif
#ifdef __AVX2__
#define EIGEN_VECTORIZE_AVX2
#define EIGEN_VECTORIZE_AVX
#define EIGEN_VECTORIZE_SSE3
#define EIGEN_VECTORIZE_SSSE3
#define EIGEN_VECTORIZE_SSE4_1
#define EIGEN_VECTORIZE_SSE4_2
#endif
#if defined(__FMA__) || (EIGEN_COMP_MSVC && defined(__AVX2__))
// MSVC does not expose a switch dedicated for FMA
// For MSVC, AVX2 => FMA
#define EIGEN_VECTORIZE_FMA
#endif
#if defined(__AVX512F__)
#ifndef EIGEN_VECTORIZE_FMA
#if EIGEN_COMP_GNUC
#error Please add -mfma to your compiler flags: compiling with -mavx512f alone without SSE/AVX FMA is not supported (bug 1638).
#else
#error Please enable FMA in your compiler flags (e.g. -mfma): compiling with AVX512 alone without SSE/AVX FMA is not supported (bug 1638).
#endif
#endif
#define EIGEN_VECTORIZE_AVX512
#define EIGEN_VECTORIZE_AVX2
#define EIGEN_VECTORIZE_AVX
#define EIGEN_VECTORIZE_FMA
#define EIGEN_VECTORIZE_SSE3
#define EIGEN_VECTORIZE_SSSE3
#define EIGEN_VECTORIZE_SSE4_1
#define EIGEN_VECTORIZE_SSE4_2
#ifdef __AVX512DQ__
#define EIGEN_VECTORIZE_AVX512DQ
#endif
#ifdef __AVX512ER__
#define EIGEN_VECTORIZE_AVX512ER
#endif
#endif
// include files
// This extern "C" works around a MINGW-w64 compilation issue
// https://sourceforge.net/tracker/index.php?func=detail&aid=3018394&group_id=202880&atid=983354
// In essence, intrin.h is included by windows.h and also declares intrinsics (just as emmintrin.h etc. below do).
// However, intrin.h uses an extern "C" declaration, and g++ thus complains of duplicate declarations
// with conflicting linkage. The linkage for intrinsics doesn't matter, but at that stage the compiler doesn't know;
// so, to avoid compile errors when windows.h is included after Eigen/Core, ensure intrinsics are extern "C" here too.
// notice that since these are C headers, the extern "C" is theoretically needed anyways.
extern "C" {
// In theory we should only include immintrin.h and not the other *mmintrin.h header files directly.
// Doing so triggers some issues with ICC. However old gcc versions seems to not have this file, thus:
#if EIGEN_COMP_ICC >= 1110
#include <immintrin.h>
#else
#include <mmintrin.h>
#include <emmintrin.h>
#include <xmmintrin.h>
#ifdef EIGEN_VECTORIZE_SSE3
#include <pmmintrin.h>
#endif
#ifdef EIGEN_VECTORIZE_SSSE3
#include <tmmintrin.h>
#endif
#ifdef EIGEN_VECTORIZE_SSE4_1
#include <smmintrin.h>
#endif
#ifdef EIGEN_VECTORIZE_SSE4_2
#include <nmmintrin.h>
#endif
#if defined(EIGEN_VECTORIZE_AVX) || defined(EIGEN_VECTORIZE_AVX512)
#include <immintrin.h>
#endif
#endif
} // end extern "C"
#elif defined __VSX__
#define EIGEN_VECTORIZE
#define EIGEN_VECTORIZE_VSX
#include <altivec.h>
// We need to #undef all these ugly tokens defined in <altivec.h>
// => use __vector instead of vector
#undef bool
#undef vector
#undef pixel
#elif defined __ALTIVEC__
#define EIGEN_VECTORIZE
#define EIGEN_VECTORIZE_ALTIVEC
#include <altivec.h>
// We need to #undef all these ugly tokens defined in <altivec.h>
// => use __vector instead of vector
#undef bool
#undef vector
#undef pixel
#elif (defined __ARM_NEON) || (defined __ARM_NEON__)
#define EIGEN_VECTORIZE
#define EIGEN_VECTORIZE_NEON
#include <arm_neon.h>
#elif (defined __s390x__ && defined __VEC__)
#define EIGEN_VECTORIZE
#define EIGEN_VECTORIZE_ZVECTOR
#include <vecintrin.h>
#elif defined __mips_msa
// Limit MSA optimizations to little-endian CPUs for now.
// TODO: Perhaps, eventually support MSA optimizations on big-endian CPUs?
#if defined(__BYTE_ORDER__) && (__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__)
#if defined(__LP64__)
#define EIGEN_MIPS_64
#else
#define EIGEN_MIPS_32
#endif
#define EIGEN_VECTORIZE
#define EIGEN_VECTORIZE_MSA
#include <msa.h>
#endif
#endif
#endif
#if defined(__F16C__) && (!defined(EIGEN_COMP_CLANG) || EIGEN_COMP_CLANG>=380)
// We can use the optimized fp16 to float and float to fp16 conversion routines
#define EIGEN_HAS_FP16_C
#if defined(EIGEN_COMP_CLANG)
// Workaround for clang: The FP16C intrinsics for clang are included by
// immintrin.h, as opposed to emmintrin.h as suggested by Intel:
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#othertechs=FP16C&expand=1711
#include <immintrin.h>
#endif
#endif
#if defined EIGEN_CUDACC
#define EIGEN_VECTORIZE_GPU
#include <vector_types.h>
#if EIGEN_CUDA_SDK_VER >= 70500
#define EIGEN_HAS_CUDA_FP16
#endif
#endif
#if defined(EIGEN_HAS_CUDA_FP16)
#include <cuda_runtime_api.h>
#include <cuda_fp16.h>
#endif
#if defined(EIGEN_HIPCC)
#define EIGEN_VECTORIZE_GPU
#include <hip/hip_vector_types.h>
#endif
#if defined(EIGEN_HIP_DEVICE_COMPILE)
#define EIGEN_HAS_HIP_FP16
#include <hip/hip_fp16.h>
#endif
/** \brief Namespace containing all symbols from the %Eigen library. */
namespace Eigen {
inline static const char *SimdInstructionSetsInUse(void) {
#if defined(EIGEN_VECTORIZE_AVX512)
return "AVX512, FMA, AVX2, AVX, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2";
#elif defined(EIGEN_VECTORIZE_AVX)
return "AVX SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2";
#elif defined(EIGEN_VECTORIZE_SSE4_2)
return "SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2";
#elif defined(EIGEN_VECTORIZE_SSE4_1)
return "SSE, SSE2, SSE3, SSSE3, SSE4.1";
#elif defined(EIGEN_VECTORIZE_SSSE3)
return "SSE, SSE2, SSE3, SSSE3";
#elif defined(EIGEN_VECTORIZE_SSE3)
return "SSE, SSE2, SSE3";
#elif defined(EIGEN_VECTORIZE_SSE2)
return "SSE, SSE2";
#elif defined(EIGEN_VECTORIZE_ALTIVEC)
return "AltiVec";
#elif defined(EIGEN_VECTORIZE_VSX)
return "VSX";
#elif defined(EIGEN_VECTORIZE_NEON)
return "ARM NEON";
#elif defined(EIGEN_VECTORIZE_ZVECTOR)
return "S390X ZVECTOR";
#elif defined(EIGEN_VECTORIZE_MSA)
return "MIPS MSA";
#else
return "None";
#endif
}
} // end namespace Eigen
#endif // EIGEN_CONFIGURE_VECTORIZATION_H