| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2015 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_LEAST_SQUARE_CONJUGATE_GRADIENT_H |
| #define EIGEN_LEAST_SQUARE_CONJUGATE_GRADIENT_H |
| |
| namespace Eigen { |
| |
| namespace internal { |
| |
| /** \internal Low-level conjugate gradient algorithm for least-square problems |
| * \param mat The matrix A |
| * \param rhs The right hand side vector b |
| * \param x On input and initial solution, on output the computed solution. |
| * \param precond A preconditioner being able to efficiently solve for an |
| * approximation of A'Ax=b (regardless of b) |
| * \param iters On input the max number of iteration, on output the number of performed iterations. |
| * \param tol_error On input the tolerance error, on output an estimation of the relative error. |
| */ |
| template<typename MatrixType, typename Rhs, typename Dest, typename Preconditioner> |
| EIGEN_DONT_INLINE |
| void least_square_conjugate_gradient(const MatrixType& mat, const Rhs& rhs, Dest& x, |
| const Preconditioner& precond, Index& iters, |
| typename Dest::RealScalar& tol_error) |
| { |
| using std::sqrt; |
| using std::abs; |
| typedef typename Dest::RealScalar RealScalar; |
| typedef typename Dest::Scalar Scalar; |
| typedef Matrix<Scalar,Dynamic,1> VectorType; |
| |
| RealScalar tol = tol_error; |
| Index maxIters = iters; |
| |
| Index m = mat.rows(), n = mat.cols(); |
| |
| VectorType residual = rhs - mat * x; |
| VectorType normal_residual = mat.adjoint() * residual; |
| |
| RealScalar rhsNorm2 = (mat.adjoint()*rhs).squaredNorm(); |
| if(rhsNorm2 == 0) |
| { |
| x.setZero(); |
| iters = 0; |
| tol_error = 0; |
| return; |
| } |
| RealScalar threshold = tol*tol*rhsNorm2; |
| RealScalar residualNorm2 = normal_residual.squaredNorm(); |
| if (residualNorm2 < threshold) |
| { |
| iters = 0; |
| tol_error = sqrt(residualNorm2 / rhsNorm2); |
| return; |
| } |
| |
| VectorType p(n); |
| p = precond.solve(normal_residual); // initial search direction |
| |
| VectorType z(n), tmp(m); |
| RealScalar absNew = numext::real(normal_residual.dot(p)); // the square of the absolute value of r scaled by invM |
| Index i = 0; |
| while(i < maxIters) |
| { |
| tmp.noalias() = mat * p; |
| |
| Scalar alpha = absNew / tmp.squaredNorm(); // the amount we travel on dir |
| x += alpha * p; // update solution |
| residual -= alpha * tmp; // update residual |
| normal_residual = mat.adjoint() * residual; // update residual of the normal equation |
| |
| residualNorm2 = normal_residual.squaredNorm(); |
| if(residualNorm2 < threshold) |
| break; |
| |
| z = precond.solve(normal_residual); // approximately solve for "A'A z = normal_residual" |
| |
| RealScalar absOld = absNew; |
| absNew = numext::real(normal_residual.dot(z)); // update the absolute value of r |
| RealScalar beta = absNew / absOld; // calculate the Gram-Schmidt value used to create the new search direction |
| p = z + beta * p; // update search direction |
| i++; |
| } |
| tol_error = sqrt(residualNorm2 / rhsNorm2); |
| iters = i; |
| } |
| |
| } |
| |
| template< typename _MatrixType, |
| typename _Preconditioner = LeastSquareDiagonalPreconditioner<typename _MatrixType::Scalar> > |
| class LeastSquaresConjugateGradient; |
| |
| namespace internal { |
| |
| template< typename _MatrixType, typename _Preconditioner> |
| struct traits<LeastSquaresConjugateGradient<_MatrixType,_Preconditioner> > |
| { |
| typedef _MatrixType MatrixType; |
| typedef _Preconditioner Preconditioner; |
| }; |
| |
| } |
| |
| /** \ingroup IterativeLinearSolvers_Module |
| * \brief A conjugate gradient solver for sparse (or dense) least-square problems |
| * |
| * This class allows to solve for A x = b linear problems using an iterative conjugate gradient algorithm. |
| * The matrix A can be non symmetric and rectangular, but the matrix A' A should be positive-definite to guaranty stability. |
| * Otherwise, the SparseLU or SparseQR classes might be preferable. |
| * The matrix A and the vectors x and b can be either dense or sparse. |
| * |
| * \tparam _MatrixType the type of the matrix A, can be a dense or a sparse matrix. |
| * \tparam _Preconditioner the type of the preconditioner. Default is LeastSquareDiagonalPreconditioner |
| * |
| * \implsparsesolverconcept |
| * |
| * The maximal number of iterations and tolerance value can be controlled via the setMaxIterations() |
| * and setTolerance() methods. The defaults are the size of the problem for the maximal number of iterations |
| * and NumTraits<Scalar>::epsilon() for the tolerance. |
| * |
| * This class can be used as the direct solver classes. Here is a typical usage example: |
| \code |
| int m=1000000, n = 10000; |
| VectorXd x(n), b(m); |
| SparseMatrix<double> A(m,n); |
| // fill A and b |
| LeastSquaresConjugateGradient<SparseMatrix<double> > lscg; |
| lscg.compute(A); |
| x = lscg.solve(b); |
| std::cout << "#iterations: " << lscg.iterations() << std::endl; |
| std::cout << "estimated error: " << lscg.error() << std::endl; |
| // update b, and solve again |
| x = lscg.solve(b); |
| \endcode |
| * |
| * By default the iterations start with x=0 as an initial guess of the solution. |
| * One can control the start using the solveWithGuess() method. |
| * |
| * \sa class ConjugateGradient, SparseLU, SparseQR |
| */ |
| template< typename _MatrixType, typename _Preconditioner> |
| class LeastSquaresConjugateGradient : public IterativeSolverBase<LeastSquaresConjugateGradient<_MatrixType,_Preconditioner> > |
| { |
| typedef IterativeSolverBase<LeastSquaresConjugateGradient> Base; |
| using Base::matrix; |
| using Base::m_error; |
| using Base::m_iterations; |
| using Base::m_info; |
| using Base::m_isInitialized; |
| public: |
| typedef _MatrixType MatrixType; |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename MatrixType::RealScalar RealScalar; |
| typedef _Preconditioner Preconditioner; |
| |
| public: |
| |
| /** Default constructor. */ |
| LeastSquaresConjugateGradient() : Base() {} |
| |
| /** Initialize the solver with matrix \a A for further \c Ax=b solving. |
| * |
| * This constructor is a shortcut for the default constructor followed |
| * by a call to compute(). |
| * |
| * \warning this class stores a reference to the matrix A as well as some |
| * precomputed values that depend on it. Therefore, if \a A is changed |
| * this class becomes invalid. Call compute() to update it with the new |
| * matrix A, or modify a copy of A. |
| */ |
| template<typename MatrixDerived> |
| explicit LeastSquaresConjugateGradient(const EigenBase<MatrixDerived>& A) : Base(A.derived()) {} |
| |
| ~LeastSquaresConjugateGradient() {} |
| |
| /** \internal */ |
| template<typename Rhs,typename Dest> |
| void _solve_vector_with_guess_impl(const Rhs& b, Dest& x) const |
| { |
| m_iterations = Base::maxIterations(); |
| m_error = Base::m_tolerance; |
| |
| internal::least_square_conjugate_gradient(matrix(), b, x, Base::m_preconditioner, m_iterations, m_error); |
| m_info = m_error <= Base::m_tolerance ? Success : NoConvergence; |
| } |
| |
| }; |
| |
| } // end namespace Eigen |
| |
| #endif // EIGEN_LEAST_SQUARE_CONJUGATE_GRADIENT_H |