| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008-2012 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #include "main.h" |
| #include <Eigen/Geometry> |
| #include <Eigen/LU> |
| #include <Eigen/SVD> |
| |
| |
| template<typename Scalar> |
| void verify_euler(const Matrix<Scalar,3,1>& ea, int i, int j, int k) |
| { |
| typedef Matrix<Scalar,3,3> Matrix3; |
| typedef Matrix<Scalar,3,1> Vector3; |
| typedef AngleAxis<Scalar> AngleAxisx; |
| using std::abs; |
| Matrix3 m(AngleAxisx(ea[0], Vector3::Unit(i)) * AngleAxisx(ea[1], Vector3::Unit(j)) * AngleAxisx(ea[2], Vector3::Unit(k))); |
| Vector3 eabis = m.eulerAngles(i, j, k); |
| Matrix3 mbis(AngleAxisx(eabis[0], Vector3::Unit(i)) * AngleAxisx(eabis[1], Vector3::Unit(j)) * AngleAxisx(eabis[2], Vector3::Unit(k))); |
| VERIFY_IS_APPROX(m, mbis); |
| /* If I==K, and ea[1]==0, then there no unique solution. */ |
| /* The remark apply in the case where I!=K, and |ea[1]| is close to pi/2. */ |
| if( (i!=k || ea[1]!=0) && (i==k || !internal::isApprox(abs(ea[1]),Scalar(EIGEN_PI/2),test_precision<Scalar>())) ) |
| VERIFY((ea-eabis).norm() <= test_precision<Scalar>()); |
| |
| // approx_or_less_than does not work for 0 |
| VERIFY(0 < eabis[0] || test_isMuchSmallerThan(eabis[0], Scalar(1))); |
| VERIFY_IS_APPROX_OR_LESS_THAN(eabis[0], Scalar(EIGEN_PI)); |
| VERIFY_IS_APPROX_OR_LESS_THAN(-Scalar(EIGEN_PI), eabis[1]); |
| VERIFY_IS_APPROX_OR_LESS_THAN(eabis[1], Scalar(EIGEN_PI)); |
| VERIFY_IS_APPROX_OR_LESS_THAN(-Scalar(EIGEN_PI), eabis[2]); |
| VERIFY_IS_APPROX_OR_LESS_THAN(eabis[2], Scalar(EIGEN_PI)); |
| } |
| |
| template<typename Scalar> void check_all_var(const Matrix<Scalar,3,1>& ea) |
| { |
| verify_euler(ea, 0,1,2); |
| verify_euler(ea, 0,1,0); |
| verify_euler(ea, 0,2,1); |
| verify_euler(ea, 0,2,0); |
| |
| verify_euler(ea, 1,2,0); |
| verify_euler(ea, 1,2,1); |
| verify_euler(ea, 1,0,2); |
| verify_euler(ea, 1,0,1); |
| |
| verify_euler(ea, 2,0,1); |
| verify_euler(ea, 2,0,2); |
| verify_euler(ea, 2,1,0); |
| verify_euler(ea, 2,1,2); |
| } |
| |
| template<typename Scalar> void eulerangles() |
| { |
| typedef Matrix<Scalar,3,3> Matrix3; |
| typedef Matrix<Scalar,3,1> Vector3; |
| typedef Array<Scalar,3,1> Array3; |
| typedef Quaternion<Scalar> Quaternionx; |
| typedef AngleAxis<Scalar> AngleAxisx; |
| |
| Scalar a = internal::random<Scalar>(-Scalar(EIGEN_PI), Scalar(EIGEN_PI)); |
| Quaternionx q1; |
| q1 = AngleAxisx(a, Vector3::Random().normalized()); |
| Matrix3 m; |
| m = q1; |
| |
| Vector3 ea = m.eulerAngles(0,1,2); |
| check_all_var(ea); |
| ea = m.eulerAngles(0,1,0); |
| check_all_var(ea); |
| |
| // Check with purely random Quaternion: |
| q1.coeffs() = Quaternionx::Coefficients::Random().normalized(); |
| m = q1; |
| ea = m.eulerAngles(0,1,2); |
| check_all_var(ea); |
| ea = m.eulerAngles(0,1,0); |
| check_all_var(ea); |
| |
| // Check with random angles in range [0:pi]x[-pi:pi]x[-pi:pi]. |
| ea = (Array3::Random() + Array3(1,0,0))*Scalar(EIGEN_PI)*Array3(0.5,1,1); |
| check_all_var(ea); |
| |
| ea[2] = ea[0] = internal::random<Scalar>(0,Scalar(EIGEN_PI)); |
| check_all_var(ea); |
| |
| ea[0] = ea[1] = internal::random<Scalar>(0,Scalar(EIGEN_PI)); |
| check_all_var(ea); |
| |
| ea[1] = 0; |
| check_all_var(ea); |
| |
| ea.head(2).setZero(); |
| check_all_var(ea); |
| |
| ea.setZero(); |
| check_all_var(ea); |
| } |
| |
| EIGEN_DECLARE_TEST(geo_eulerangles) |
| { |
| for(int i = 0; i < g_repeat; i++) { |
| CALL_SUBTEST_1( eulerangles<float>() ); |
| CALL_SUBTEST_2( eulerangles<double>() ); |
| } |
| } |