| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #include "main.h" |
| #include <Eigen/Geometry> |
| #include <Eigen/LU> |
| #include <Eigen/QR> |
| |
| template<typename HyperplaneType> void hyperplane(const HyperplaneType& _plane) |
| { |
| /* this test covers the following files: |
| Hyperplane.h |
| */ |
| using std::abs; |
| const Index dim = _plane.dim(); |
| enum { Options = HyperplaneType::Options }; |
| typedef typename HyperplaneType::Scalar Scalar; |
| typedef typename HyperplaneType::RealScalar RealScalar; |
| typedef Matrix<Scalar, HyperplaneType::AmbientDimAtCompileTime, 1> VectorType; |
| typedef Matrix<Scalar, HyperplaneType::AmbientDimAtCompileTime, |
| HyperplaneType::AmbientDimAtCompileTime> MatrixType; |
| |
| VectorType p0 = VectorType::Random(dim); |
| VectorType p1 = VectorType::Random(dim); |
| |
| VectorType n0 = VectorType::Random(dim).normalized(); |
| VectorType n1 = VectorType::Random(dim).normalized(); |
| |
| HyperplaneType pl0(n0, p0); |
| HyperplaneType pl1(n1, p1); |
| HyperplaneType pl2 = pl1; |
| |
| Scalar s0 = internal::random<Scalar>(); |
| Scalar s1 = internal::random<Scalar>(); |
| |
| VERIFY_IS_APPROX( n1.dot(n1), Scalar(1) ); |
| |
| VERIFY_IS_MUCH_SMALLER_THAN( pl0.absDistance(p0), Scalar(1) ); |
| if(numext::abs2(s0)>RealScalar(1e-6)) |
| VERIFY_IS_APPROX( pl1.signedDistance(p1 + n1 * s0), s0); |
| else |
| VERIFY_IS_MUCH_SMALLER_THAN( abs(pl1.signedDistance(p1 + n1 * s0) - s0), Scalar(1) ); |
| VERIFY_IS_MUCH_SMALLER_THAN( pl1.signedDistance(pl1.projection(p0)), Scalar(1) ); |
| VERIFY_IS_MUCH_SMALLER_THAN( pl1.absDistance(p1 + pl1.normal().unitOrthogonal() * s1), Scalar(1) ); |
| |
| // transform |
| if (!NumTraits<Scalar>::IsComplex) |
| { |
| MatrixType rot = MatrixType::Random(dim,dim).householderQr().householderQ(); |
| DiagonalMatrix<Scalar,HyperplaneType::AmbientDimAtCompileTime> scaling(VectorType::Random()); |
| Translation<Scalar,HyperplaneType::AmbientDimAtCompileTime> translation(VectorType::Random()); |
| |
| while(scaling.diagonal().cwiseAbs().minCoeff()<RealScalar(1e-4)) scaling.diagonal() = VectorType::Random(); |
| |
| pl2 = pl1; |
| VERIFY_IS_MUCH_SMALLER_THAN( pl2.transform(rot).absDistance(rot * p1), Scalar(1) ); |
| pl2 = pl1; |
| VERIFY_IS_MUCH_SMALLER_THAN( pl2.transform(rot,Isometry).absDistance(rot * p1), Scalar(1) ); |
| pl2 = pl1; |
| VERIFY_IS_MUCH_SMALLER_THAN( pl2.transform(rot*scaling).absDistance((rot*scaling) * p1), Scalar(1) ); |
| VERIFY_IS_APPROX( pl2.normal().norm(), RealScalar(1) ); |
| pl2 = pl1; |
| VERIFY_IS_MUCH_SMALLER_THAN( pl2.transform(rot*scaling*translation) |
| .absDistance((rot*scaling*translation) * p1), Scalar(1) ); |
| VERIFY_IS_APPROX( pl2.normal().norm(), RealScalar(1) ); |
| pl2 = pl1; |
| VERIFY_IS_MUCH_SMALLER_THAN( pl2.transform(rot*translation,Isometry) |
| .absDistance((rot*translation) * p1), Scalar(1) ); |
| VERIFY_IS_APPROX( pl2.normal().norm(), RealScalar(1) ); |
| } |
| |
| // casting |
| const int Dim = HyperplaneType::AmbientDimAtCompileTime; |
| typedef typename GetDifferentType<Scalar>::type OtherScalar; |
| Hyperplane<OtherScalar,Dim,Options> hp1f = pl1.template cast<OtherScalar>(); |
| VERIFY_IS_APPROX(hp1f.template cast<Scalar>(),pl1); |
| Hyperplane<Scalar,Dim,Options> hp1d = pl1.template cast<Scalar>(); |
| VERIFY_IS_APPROX(hp1d.template cast<Scalar>(),pl1); |
| } |
| |
| template<typename Scalar> void lines() |
| { |
| using std::abs; |
| typedef Hyperplane<Scalar, 2> HLine; |
| typedef ParametrizedLine<Scalar, 2> PLine; |
| typedef Matrix<Scalar,2,1> Vector; |
| typedef Matrix<Scalar,3,1> CoeffsType; |
| |
| for(int i = 0; i < 10; i++) |
| { |
| Vector center = Vector::Random(); |
| Vector u = Vector::Random(); |
| Vector v = Vector::Random(); |
| Scalar a = internal::random<Scalar>(); |
| while (abs(a-1) < Scalar(1e-4)) a = internal::random<Scalar>(); |
| while (u.norm() < Scalar(1e-4)) u = Vector::Random(); |
| while (v.norm() < Scalar(1e-4)) v = Vector::Random(); |
| |
| HLine line_u = HLine::Through(center + u, center + a*u); |
| HLine line_v = HLine::Through(center + v, center + a*v); |
| |
| // the line equations should be normalized so that a^2+b^2=1 |
| VERIFY_IS_APPROX(line_u.normal().norm(), Scalar(1)); |
| VERIFY_IS_APPROX(line_v.normal().norm(), Scalar(1)); |
| |
| Vector result = line_u.intersection(line_v); |
| |
| // the lines should intersect at the point we called "center" |
| if(abs(a-1) > Scalar(1e-2) && abs(v.normalized().dot(u.normalized()))<Scalar(0.9)) |
| VERIFY_IS_APPROX(result, center); |
| |
| // check conversions between two types of lines |
| PLine pl(line_u); // gcc 3.3 will commit suicide if we don't name this variable |
| HLine line_u2(pl); |
| CoeffsType converted_coeffs = line_u2.coeffs(); |
| if(line_u2.normal().dot(line_u.normal())<Scalar(0)) |
| converted_coeffs = -line_u2.coeffs(); |
| VERIFY(line_u.coeffs().isApprox(converted_coeffs)); |
| } |
| } |
| |
| template<typename Scalar> void planes() |
| { |
| using std::abs; |
| typedef Hyperplane<Scalar, 3> Plane; |
| typedef Matrix<Scalar,3,1> Vector; |
| |
| for(int i = 0; i < 10; i++) |
| { |
| Vector v0 = Vector::Random(); |
| Vector v1(v0), v2(v0); |
| if(internal::random<double>(0,1)>0.25) |
| v1 += Vector::Random(); |
| if(internal::random<double>(0,1)>0.25) |
| v2 += v1 * std::pow(internal::random<Scalar>(0,1),internal::random<int>(1,16)); |
| if(internal::random<double>(0,1)>0.25) |
| v2 += Vector::Random() * std::pow(internal::random<Scalar>(0,1),internal::random<int>(1,16)); |
| |
| Plane p0 = Plane::Through(v0, v1, v2); |
| |
| VERIFY_IS_APPROX(p0.normal().norm(), Scalar(1)); |
| VERIFY_IS_MUCH_SMALLER_THAN(p0.absDistance(v0), Scalar(1)); |
| VERIFY_IS_MUCH_SMALLER_THAN(p0.absDistance(v1), Scalar(1)); |
| VERIFY_IS_MUCH_SMALLER_THAN(p0.absDistance(v2), Scalar(1)); |
| } |
| } |
| |
| template<typename Scalar> void hyperplane_alignment() |
| { |
| typedef Hyperplane<Scalar,3,AutoAlign> Plane3a; |
| typedef Hyperplane<Scalar,3,DontAlign> Plane3u; |
| |
| EIGEN_ALIGN_MAX Scalar array1[4]; |
| EIGEN_ALIGN_MAX Scalar array2[4]; |
| EIGEN_ALIGN_MAX Scalar array3[4+1]; |
| Scalar* array3u = array3+1; |
| |
| Plane3a *p1 = ::new(reinterpret_cast<void*>(array1)) Plane3a; |
| Plane3u *p2 = ::new(reinterpret_cast<void*>(array2)) Plane3u; |
| Plane3u *p3 = ::new(reinterpret_cast<void*>(array3u)) Plane3u; |
| |
| p1->coeffs().setRandom(); |
| *p2 = *p1; |
| *p3 = *p1; |
| |
| VERIFY_IS_APPROX(p1->coeffs(), p2->coeffs()); |
| VERIFY_IS_APPROX(p1->coeffs(), p3->coeffs()); |
| |
| #if defined(EIGEN_VECTORIZE) && EIGEN_MAX_STATIC_ALIGN_BYTES > 0 |
| if(internal::packet_traits<Scalar>::Vectorizable && internal::packet_traits<Scalar>::size<=4) |
| VERIFY_RAISES_ASSERT((::new(reinterpret_cast<void*>(array3u)) Plane3a)); |
| #endif |
| } |
| |
| |
| EIGEN_DECLARE_TEST(geo_hyperplane) |
| { |
| for(int i = 0; i < g_repeat; i++) { |
| CALL_SUBTEST_1( hyperplane(Hyperplane<float,2>()) ); |
| CALL_SUBTEST_2( hyperplane(Hyperplane<float,3>()) ); |
| CALL_SUBTEST_2( hyperplane(Hyperplane<float,3,DontAlign>()) ); |
| CALL_SUBTEST_2( hyperplane_alignment<float>() ); |
| CALL_SUBTEST_3( hyperplane(Hyperplane<double,4>()) ); |
| CALL_SUBTEST_4( hyperplane(Hyperplane<std::complex<double>,5>()) ); |
| CALL_SUBTEST_1( lines<float>() ); |
| CALL_SUBTEST_3( lines<double>() ); |
| CALL_SUBTEST_2( planes<float>() ); |
| CALL_SUBTEST_5( planes<double>() ); |
| } |
| } |