| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #include "product.h" |
| #include <Eigen/LU> |
| |
| template<typename T> |
| void test_aliasing() |
| { |
| int rows = internal::random<int>(1,12); |
| int cols = internal::random<int>(1,12); |
| typedef Matrix<T,Dynamic,Dynamic> MatrixType; |
| typedef Matrix<T,Dynamic,1> VectorType; |
| VectorType x(cols); x.setRandom(); |
| VectorType z(x); |
| VectorType y(rows); y.setZero(); |
| MatrixType A(rows,cols); A.setRandom(); |
| // CwiseBinaryOp |
| VERIFY_IS_APPROX(x = y + A*x, A*z); // OK because "y + A*x" is marked as "assume-aliasing" |
| x = z; |
| // CwiseUnaryOp |
| VERIFY_IS_APPROX(x = T(1.)*(A*x), A*z); // OK because 1*(A*x) is replaced by (1*A*x) which is a Product<> expression |
| x = z; |
| // VERIFY_IS_APPROX(x = y-A*x, -A*z); // Not OK in 3.3 because x is resized before A*x gets evaluated |
| x = z; |
| } |
| |
| template<int> |
| void product_large_regressions() |
| { |
| { |
| // test a specific issue in DiagonalProduct |
| int N = 1000000; |
| VectorXf v = VectorXf::Ones(N); |
| MatrixXf m = MatrixXf::Ones(N,3); |
| m = (v+v).asDiagonal() * m; |
| VERIFY_IS_APPROX(m, MatrixXf::Constant(N,3,2)); |
| } |
| |
| { |
| // test deferred resizing in Matrix::operator= |
| MatrixXf a = MatrixXf::Random(10,4), b = MatrixXf::Random(4,10), c = a; |
| VERIFY_IS_APPROX((a = a * b), (c * b).eval()); |
| } |
| |
| { |
| // check the functions to setup blocking sizes compile and do not segfault |
| // FIXME check they do what they are supposed to do !! |
| std::ptrdiff_t l1 = internal::random<int>(10000,20000); |
| std::ptrdiff_t l2 = internal::random<int>(100000,200000); |
| std::ptrdiff_t l3 = internal::random<int>(1000000,2000000); |
| setCpuCacheSizes(l1,l2,l3); |
| VERIFY(l1==l1CacheSize()); |
| VERIFY(l2==l2CacheSize()); |
| std::ptrdiff_t k1 = internal::random<int>(10,100)*16; |
| std::ptrdiff_t m1 = internal::random<int>(10,100)*16; |
| std::ptrdiff_t n1 = internal::random<int>(10,100)*16; |
| // only makes sure it compiles fine |
| internal::computeProductBlockingSizes<float,float,std::ptrdiff_t>(k1,m1,n1,1); |
| } |
| |
| { |
| // test regression in row-vector by matrix (bad Map type) |
| MatrixXf mat1(10,32); mat1.setRandom(); |
| MatrixXf mat2(32,32); mat2.setRandom(); |
| MatrixXf r1 = mat1.row(2)*mat2.transpose(); |
| VERIFY_IS_APPROX(r1, (mat1.row(2)*mat2.transpose()).eval()); |
| |
| MatrixXf r2 = mat1.row(2)*mat2; |
| VERIFY_IS_APPROX(r2, (mat1.row(2)*mat2).eval()); |
| } |
| |
| { |
| Eigen::MatrixXd A(10,10), B, C; |
| A.setRandom(); |
| C = A; |
| for(int k=0; k<79; ++k) |
| C = C * A; |
| B.noalias() = (((A*A)*(A*A))*((A*A)*(A*A))*((A*A)*(A*A))*((A*A)*(A*A))*((A*A)*(A*A)) * ((A*A)*(A*A))*((A*A)*(A*A))*((A*A)*(A*A))*((A*A)*(A*A))*((A*A)*(A*A))) |
| * (((A*A)*(A*A))*((A*A)*(A*A))*((A*A)*(A*A))*((A*A)*(A*A))*((A*A)*(A*A)) * ((A*A)*(A*A))*((A*A)*(A*A))*((A*A)*(A*A))*((A*A)*(A*A))*((A*A)*(A*A))); |
| VERIFY_IS_APPROX(B,C); |
| } |
| } |
| |
| template<int> |
| void bug_1622() { |
| typedef Matrix<double, 2, -1, 0, 2, -1> Mat2X; |
| Mat2X x(2,2); x.setRandom(); |
| MatrixXd y(2,2); y.setRandom(); |
| const Mat2X K1 = x * y.inverse(); |
| const Matrix2d K2 = x * y.inverse(); |
| VERIFY_IS_APPROX(K1,K2); |
| } |
| |
| EIGEN_DECLARE_TEST(product_large) |
| { |
| for(int i = 0; i < g_repeat; i++) { |
| CALL_SUBTEST_1( product(MatrixXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); |
| CALL_SUBTEST_2( product(MatrixXd(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); |
| CALL_SUBTEST_2( product(MatrixXd(internal::random<int>(1,10), internal::random<int>(1,10))) ); |
| |
| CALL_SUBTEST_3( product(MatrixXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); |
| CALL_SUBTEST_4( product(MatrixXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2), internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2))) ); |
| CALL_SUBTEST_5( product(Matrix<float,Dynamic,Dynamic,RowMajor>(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); |
| |
| CALL_SUBTEST_1( test_aliasing<float>() ); |
| |
| CALL_SUBTEST_6( bug_1622<1>() ); |
| } |
| |
| CALL_SUBTEST_6( product_large_regressions<0>() ); |
| |
| // Regression test for bug 714: |
| #if defined EIGEN_HAS_OPENMP |
| omp_set_dynamic(1); |
| for(int i = 0; i < g_repeat; i++) { |
| CALL_SUBTEST_6( product(Matrix<float,Dynamic,Dynamic>(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); |
| } |
| #endif |
| } |