| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // Copyright (C) 2008 Daniel Gomez Ferro <dgomezferro@gmail.com> |
| // Copyright (C) 2013 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_SPARSE_TEST_INCLUDED_FROM_SPARSE_EXTRA |
| static long g_realloc_count = 0; |
| #define EIGEN_SPARSE_COMPRESSED_STORAGE_REALLOCATE_PLUGIN g_realloc_count++; |
| |
| static long g_dense_op_sparse_count = 0; |
| #define EIGEN_SPARSE_ASSIGNMENT_FROM_DENSE_OP_SPARSE_PLUGIN g_dense_op_sparse_count++; |
| #define EIGEN_SPARSE_ASSIGNMENT_FROM_SPARSE_ADD_DENSE_PLUGIN g_dense_op_sparse_count+=10; |
| #define EIGEN_SPARSE_ASSIGNMENT_FROM_SPARSE_SUB_DENSE_PLUGIN g_dense_op_sparse_count+=20; |
| #endif |
| |
| #include "sparse.h" |
| |
| template<typename SparseMatrixType> void sparse_basic(const SparseMatrixType& ref) |
| { |
| typedef typename SparseMatrixType::StorageIndex StorageIndex; |
| typedef Matrix<StorageIndex,2,1> Vector2; |
| |
| const Index rows = ref.rows(); |
| const Index cols = ref.cols(); |
| //const Index inner = ref.innerSize(); |
| //const Index outer = ref.outerSize(); |
| |
| typedef typename SparseMatrixType::Scalar Scalar; |
| typedef typename SparseMatrixType::RealScalar RealScalar; |
| enum { Flags = SparseMatrixType::Flags }; |
| |
| double density = (std::max)(8./(rows*cols), 0.01); |
| typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix; |
| typedef Matrix<Scalar,Dynamic,1> DenseVector; |
| Scalar eps = 1e-6; |
| |
| Scalar s1 = internal::random<Scalar>(); |
| { |
| SparseMatrixType m(rows, cols); |
| DenseMatrix refMat = DenseMatrix::Zero(rows, cols); |
| DenseVector vec1 = DenseVector::Random(rows); |
| |
| std::vector<Vector2> zeroCoords; |
| std::vector<Vector2> nonzeroCoords; |
| initSparse<Scalar>(density, refMat, m, 0, &zeroCoords, &nonzeroCoords); |
| |
| // test coeff and coeffRef |
| for (std::size_t i=0; i<zeroCoords.size(); ++i) |
| { |
| VERIFY_IS_MUCH_SMALLER_THAN( m.coeff(zeroCoords[i].x(),zeroCoords[i].y()), eps ); |
| if(internal::is_same<SparseMatrixType,SparseMatrix<Scalar,Flags> >::value) |
| VERIFY_RAISES_ASSERT( m.coeffRef(zeroCoords[i].x(),zeroCoords[i].y()) = 5 ); |
| } |
| VERIFY_IS_APPROX(m, refMat); |
| |
| if(!nonzeroCoords.empty()) { |
| m.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5); |
| refMat.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5); |
| } |
| |
| VERIFY_IS_APPROX(m, refMat); |
| |
| // test assertion |
| VERIFY_RAISES_ASSERT( m.coeffRef(-1,1) = 0 ); |
| VERIFY_RAISES_ASSERT( m.coeffRef(0,m.cols()) = 0 ); |
| } |
| |
| // test insert (inner random) |
| { |
| DenseMatrix m1(rows,cols); |
| m1.setZero(); |
| SparseMatrixType m2(rows,cols); |
| bool call_reserve = internal::random<int>()%2; |
| Index nnz = internal::random<int>(1,int(rows)/2); |
| if(call_reserve) |
| { |
| if(internal::random<int>()%2) |
| m2.reserve(VectorXi::Constant(m2.outerSize(), int(nnz))); |
| else |
| m2.reserve(m2.outerSize() * nnz); |
| } |
| g_realloc_count = 0; |
| for (Index j=0; j<cols; ++j) |
| { |
| for (Index k=0; k<nnz; ++k) |
| { |
| Index i = internal::random<Index>(0,rows-1); |
| if (m1.coeff(i,j)==Scalar(0)) |
| m2.insert(i,j) = m1(i,j) = internal::random<Scalar>(); |
| } |
| } |
| |
| if(call_reserve && !SparseMatrixType::IsRowMajor) |
| { |
| VERIFY(g_realloc_count==0); |
| } |
| |
| m2.finalize(); |
| VERIFY_IS_APPROX(m2,m1); |
| } |
| |
| // test insert (fully random) |
| { |
| DenseMatrix m1(rows,cols); |
| m1.setZero(); |
| SparseMatrixType m2(rows,cols); |
| if(internal::random<int>()%2) |
| m2.reserve(VectorXi::Constant(m2.outerSize(), 2)); |
| for (int k=0; k<rows*cols; ++k) |
| { |
| Index i = internal::random<Index>(0,rows-1); |
| Index j = internal::random<Index>(0,cols-1); |
| if ((m1.coeff(i,j)==Scalar(0)) && (internal::random<int>()%2)) |
| m2.insert(i,j) = m1(i,j) = internal::random<Scalar>(); |
| else |
| { |
| Scalar v = internal::random<Scalar>(); |
| m2.coeffRef(i,j) += v; |
| m1(i,j) += v; |
| } |
| } |
| VERIFY_IS_APPROX(m2,m1); |
| } |
| |
| // test insert (un-compressed) |
| for(int mode=0;mode<4;++mode) |
| { |
| DenseMatrix m1(rows,cols); |
| m1.setZero(); |
| SparseMatrixType m2(rows,cols); |
| VectorXi r(VectorXi::Constant(m2.outerSize(), ((mode%2)==0) ? int(m2.innerSize()) : std::max<int>(1,int(m2.innerSize())/8))); |
| m2.reserve(r); |
| for (Index k=0; k<rows*cols; ++k) |
| { |
| Index i = internal::random<Index>(0,rows-1); |
| Index j = internal::random<Index>(0,cols-1); |
| if (m1.coeff(i,j)==Scalar(0)) |
| m2.insert(i,j) = m1(i,j) = internal::random<Scalar>(); |
| if(mode==3) |
| m2.reserve(r); |
| } |
| if(internal::random<int>()%2) |
| m2.makeCompressed(); |
| VERIFY_IS_APPROX(m2,m1); |
| } |
| |
| // test basic computations |
| { |
| DenseMatrix refM1 = DenseMatrix::Zero(rows, cols); |
| DenseMatrix refM2 = DenseMatrix::Zero(rows, cols); |
| DenseMatrix refM3 = DenseMatrix::Zero(rows, cols); |
| DenseMatrix refM4 = DenseMatrix::Zero(rows, cols); |
| SparseMatrixType m1(rows, cols); |
| SparseMatrixType m2(rows, cols); |
| SparseMatrixType m3(rows, cols); |
| SparseMatrixType m4(rows, cols); |
| initSparse<Scalar>(density, refM1, m1); |
| initSparse<Scalar>(density, refM2, m2); |
| initSparse<Scalar>(density, refM3, m3); |
| initSparse<Scalar>(density, refM4, m4); |
| |
| if(internal::random<bool>()) |
| m1.makeCompressed(); |
| |
| Index m1_nnz = m1.nonZeros(); |
| |
| VERIFY_IS_APPROX(m1*s1, refM1*s1); |
| VERIFY_IS_APPROX(m1+m2, refM1+refM2); |
| VERIFY_IS_APPROX(m1+m2+m3, refM1+refM2+refM3); |
| VERIFY_IS_APPROX(m3.cwiseProduct(m1+m2), refM3.cwiseProduct(refM1+refM2)); |
| VERIFY_IS_APPROX(m1*s1-m2, refM1*s1-refM2); |
| VERIFY_IS_APPROX(m4=m1/s1, refM1/s1); |
| VERIFY_IS_EQUAL(m4.nonZeros(), m1_nnz); |
| |
| if(SparseMatrixType::IsRowMajor) |
| VERIFY_IS_APPROX(m1.innerVector(0).dot(refM2.row(0)), refM1.row(0).dot(refM2.row(0))); |
| else |
| VERIFY_IS_APPROX(m1.innerVector(0).dot(refM2.col(0)), refM1.col(0).dot(refM2.col(0))); |
| |
| DenseVector rv = DenseVector::Random(m1.cols()); |
| DenseVector cv = DenseVector::Random(m1.rows()); |
| Index r = internal::random<Index>(0,m1.rows()-2); |
| Index c = internal::random<Index>(0,m1.cols()-1); |
| VERIFY_IS_APPROX(( m1.template block<1,Dynamic>(r,0,1,m1.cols()).dot(rv)) , refM1.row(r).dot(rv)); |
| VERIFY_IS_APPROX(m1.row(r).dot(rv), refM1.row(r).dot(rv)); |
| VERIFY_IS_APPROX(m1.col(c).dot(cv), refM1.col(c).dot(cv)); |
| |
| VERIFY_IS_APPROX(m1.conjugate(), refM1.conjugate()); |
| VERIFY_IS_APPROX(m1.real(), refM1.real()); |
| |
| refM4.setRandom(); |
| // sparse cwise* dense |
| VERIFY_IS_APPROX(m3.cwiseProduct(refM4), refM3.cwiseProduct(refM4)); |
| // dense cwise* sparse |
| VERIFY_IS_APPROX(refM4.cwiseProduct(m3), refM4.cwiseProduct(refM3)); |
| // VERIFY_IS_APPROX(m3.cwise()/refM4, refM3.cwise()/refM4); |
| |
| // mixed sparse-dense |
| VERIFY_IS_APPROX(refM4 + m3, refM4 + refM3); |
| VERIFY_IS_APPROX(m3 + refM4, refM3 + refM4); |
| VERIFY_IS_APPROX(refM4 - m3, refM4 - refM3); |
| VERIFY_IS_APPROX(m3 - refM4, refM3 - refM4); |
| VERIFY_IS_APPROX((RealScalar(0.5)*refM4 + RealScalar(0.5)*m3).eval(), RealScalar(0.5)*refM4 + RealScalar(0.5)*refM3); |
| VERIFY_IS_APPROX((RealScalar(0.5)*refM4 + m3*RealScalar(0.5)).eval(), RealScalar(0.5)*refM4 + RealScalar(0.5)*refM3); |
| VERIFY_IS_APPROX((RealScalar(0.5)*refM4 + m3.cwiseProduct(m3)).eval(), RealScalar(0.5)*refM4 + refM3.cwiseProduct(refM3)); |
| |
| VERIFY_IS_APPROX((RealScalar(0.5)*refM4 + RealScalar(0.5)*m3).eval(), RealScalar(0.5)*refM4 + RealScalar(0.5)*refM3); |
| VERIFY_IS_APPROX((RealScalar(0.5)*refM4 + m3*RealScalar(0.5)).eval(), RealScalar(0.5)*refM4 + RealScalar(0.5)*refM3); |
| VERIFY_IS_APPROX((RealScalar(0.5)*refM4 + (m3+m3)).eval(), RealScalar(0.5)*refM4 + (refM3+refM3)); |
| VERIFY_IS_APPROX(((refM3+m3)+RealScalar(0.5)*m3).eval(), RealScalar(0.5)*refM3 + (refM3+refM3)); |
| VERIFY_IS_APPROX((RealScalar(0.5)*refM4 + (refM3+m3)).eval(), RealScalar(0.5)*refM4 + (refM3+refM3)); |
| VERIFY_IS_APPROX((RealScalar(0.5)*refM4 + (m3+refM3)).eval(), RealScalar(0.5)*refM4 + (refM3+refM3)); |
| |
| |
| VERIFY_IS_APPROX(m1.sum(), refM1.sum()); |
| |
| m4 = m1; refM4 = m4; |
| |
| VERIFY_IS_APPROX(m1*=s1, refM1*=s1); |
| VERIFY_IS_EQUAL(m1.nonZeros(), m1_nnz); |
| VERIFY_IS_APPROX(m1/=s1, refM1/=s1); |
| VERIFY_IS_EQUAL(m1.nonZeros(), m1_nnz); |
| |
| VERIFY_IS_APPROX(m1+=m2, refM1+=refM2); |
| VERIFY_IS_APPROX(m1-=m2, refM1-=refM2); |
| |
| refM3 = refM1; |
| |
| VERIFY_IS_APPROX(refM1+=m2, refM3+=refM2); |
| VERIFY_IS_APPROX(refM1-=m2, refM3-=refM2); |
| |
| g_dense_op_sparse_count=0; VERIFY_IS_APPROX(refM1 =m2+refM4, refM3 =refM2+refM4); VERIFY_IS_EQUAL(g_dense_op_sparse_count,10); |
| g_dense_op_sparse_count=0; VERIFY_IS_APPROX(refM1+=m2+refM4, refM3+=refM2+refM4); VERIFY_IS_EQUAL(g_dense_op_sparse_count,1); |
| g_dense_op_sparse_count=0; VERIFY_IS_APPROX(refM1-=m2+refM4, refM3-=refM2+refM4); VERIFY_IS_EQUAL(g_dense_op_sparse_count,1); |
| g_dense_op_sparse_count=0; VERIFY_IS_APPROX(refM1 =refM4+m2, refM3 =refM2+refM4); VERIFY_IS_EQUAL(g_dense_op_sparse_count,1); |
| g_dense_op_sparse_count=0; VERIFY_IS_APPROX(refM1+=refM4+m2, refM3+=refM2+refM4); VERIFY_IS_EQUAL(g_dense_op_sparse_count,1); |
| g_dense_op_sparse_count=0; VERIFY_IS_APPROX(refM1-=refM4+m2, refM3-=refM2+refM4); VERIFY_IS_EQUAL(g_dense_op_sparse_count,1); |
| |
| g_dense_op_sparse_count=0; VERIFY_IS_APPROX(refM1 =m2-refM4, refM3 =refM2-refM4); VERIFY_IS_EQUAL(g_dense_op_sparse_count,20); |
| g_dense_op_sparse_count=0; VERIFY_IS_APPROX(refM1+=m2-refM4, refM3+=refM2-refM4); VERIFY_IS_EQUAL(g_dense_op_sparse_count,1); |
| g_dense_op_sparse_count=0; VERIFY_IS_APPROX(refM1-=m2-refM4, refM3-=refM2-refM4); VERIFY_IS_EQUAL(g_dense_op_sparse_count,1); |
| g_dense_op_sparse_count=0; VERIFY_IS_APPROX(refM1 =refM4-m2, refM3 =refM4-refM2); VERIFY_IS_EQUAL(g_dense_op_sparse_count,1); |
| g_dense_op_sparse_count=0; VERIFY_IS_APPROX(refM1+=refM4-m2, refM3+=refM4-refM2); VERIFY_IS_EQUAL(g_dense_op_sparse_count,1); |
| g_dense_op_sparse_count=0; VERIFY_IS_APPROX(refM1-=refM4-m2, refM3-=refM4-refM2); VERIFY_IS_EQUAL(g_dense_op_sparse_count,1); |
| refM3 = m3; |
| |
| if (rows>=2 && cols>=2) |
| { |
| VERIFY_RAISES_ASSERT( m1 += m1.innerVector(0) ); |
| VERIFY_RAISES_ASSERT( m1 -= m1.innerVector(0) ); |
| VERIFY_RAISES_ASSERT( refM1 -= m1.innerVector(0) ); |
| VERIFY_RAISES_ASSERT( refM1 += m1.innerVector(0) ); |
| } |
| m1 = m4; refM1 = refM4; |
| |
| // test aliasing |
| VERIFY_IS_APPROX((m1 = -m1), (refM1 = -refM1)); |
| VERIFY_IS_EQUAL(m1.nonZeros(), m1_nnz); |
| m1 = m4; refM1 = refM4; |
| VERIFY_IS_APPROX((m1 = m1.transpose()), (refM1 = refM1.transpose().eval())); |
| VERIFY_IS_EQUAL(m1.nonZeros(), m1_nnz); |
| m1 = m4; refM1 = refM4; |
| VERIFY_IS_APPROX((m1 = -m1.transpose()), (refM1 = -refM1.transpose().eval())); |
| VERIFY_IS_EQUAL(m1.nonZeros(), m1_nnz); |
| m1 = m4; refM1 = refM4; |
| VERIFY_IS_APPROX((m1 += -m1), (refM1 += -refM1)); |
| VERIFY_IS_EQUAL(m1.nonZeros(), m1_nnz); |
| m1 = m4; refM1 = refM4; |
| |
| if(m1.isCompressed()) |
| { |
| VERIFY_IS_APPROX(m1.coeffs().sum(), m1.sum()); |
| m1.coeffs() += s1; |
| for(Index j = 0; j<m1.outerSize(); ++j) |
| for(typename SparseMatrixType::InnerIterator it(m1,j); it; ++it) |
| refM1(it.row(), it.col()) += s1; |
| VERIFY_IS_APPROX(m1, refM1); |
| } |
| |
| // and/or |
| { |
| typedef SparseMatrix<bool, SparseMatrixType::Options, typename SparseMatrixType::StorageIndex> SpBool; |
| SpBool mb1 = m1.real().template cast<bool>(); |
| SpBool mb2 = m2.real().template cast<bool>(); |
| VERIFY_IS_EQUAL(mb1.template cast<int>().sum(), refM1.real().template cast<bool>().count()); |
| VERIFY_IS_EQUAL((mb1 && mb2).template cast<int>().sum(), (refM1.real().template cast<bool>() && refM2.real().template cast<bool>()).count()); |
| VERIFY_IS_EQUAL((mb1 || mb2).template cast<int>().sum(), (refM1.real().template cast<bool>() || refM2.real().template cast<bool>()).count()); |
| SpBool mb3 = mb1 && mb2; |
| if(mb1.coeffs().all() && mb2.coeffs().all()) |
| { |
| VERIFY_IS_EQUAL(mb3.nonZeros(), (refM1.real().template cast<bool>() && refM2.real().template cast<bool>()).count()); |
| } |
| } |
| } |
| |
| // test reverse iterators |
| { |
| DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols); |
| SparseMatrixType m2(rows, cols); |
| initSparse<Scalar>(density, refMat2, m2); |
| std::vector<Scalar> ref_value(m2.innerSize()); |
| std::vector<Index> ref_index(m2.innerSize()); |
| if(internal::random<bool>()) |
| m2.makeCompressed(); |
| for(Index j = 0; j<m2.outerSize(); ++j) |
| { |
| Index count_forward = 0; |
| |
| for(typename SparseMatrixType::InnerIterator it(m2,j); it; ++it) |
| { |
| ref_value[ref_value.size()-1-count_forward] = it.value(); |
| ref_index[ref_index.size()-1-count_forward] = it.index(); |
| count_forward++; |
| } |
| Index count_reverse = 0; |
| for(typename SparseMatrixType::ReverseInnerIterator it(m2,j); it; --it) |
| { |
| VERIFY_IS_APPROX( std::abs(ref_value[ref_value.size()-count_forward+count_reverse])+1, std::abs(it.value())+1); |
| VERIFY_IS_EQUAL( ref_index[ref_index.size()-count_forward+count_reverse] , it.index()); |
| count_reverse++; |
| } |
| VERIFY_IS_EQUAL(count_forward, count_reverse); |
| } |
| } |
| |
| // test transpose |
| { |
| DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols); |
| SparseMatrixType m2(rows, cols); |
| initSparse<Scalar>(density, refMat2, m2); |
| VERIFY_IS_APPROX(m2.transpose().eval(), refMat2.transpose().eval()); |
| VERIFY_IS_APPROX(m2.transpose(), refMat2.transpose()); |
| |
| VERIFY_IS_APPROX(SparseMatrixType(m2.adjoint()), refMat2.adjoint()); |
| |
| // check isApprox handles opposite storage order |
| typename Transpose<SparseMatrixType>::PlainObject m3(m2); |
| VERIFY(m2.isApprox(m3)); |
| } |
| |
| // test prune |
| { |
| SparseMatrixType m2(rows, cols); |
| DenseMatrix refM2(rows, cols); |
| refM2.setZero(); |
| int countFalseNonZero = 0; |
| int countTrueNonZero = 0; |
| m2.reserve(VectorXi::Constant(m2.outerSize(), int(m2.innerSize()))); |
| for (Index j=0; j<m2.cols(); ++j) |
| { |
| for (Index i=0; i<m2.rows(); ++i) |
| { |
| float x = internal::random<float>(0,1); |
| if (x<0.1f) |
| { |
| // do nothing |
| } |
| else if (x<0.5f) |
| { |
| countFalseNonZero++; |
| m2.insert(i,j) = Scalar(0); |
| } |
| else |
| { |
| countTrueNonZero++; |
| m2.insert(i,j) = Scalar(1); |
| refM2(i,j) = Scalar(1); |
| } |
| } |
| } |
| if(internal::random<bool>()) |
| m2.makeCompressed(); |
| VERIFY(countFalseNonZero+countTrueNonZero == m2.nonZeros()); |
| if(countTrueNonZero>0) |
| VERIFY_IS_APPROX(m2, refM2); |
| m2.prune(Scalar(1)); |
| VERIFY(countTrueNonZero==m2.nonZeros()); |
| VERIFY_IS_APPROX(m2, refM2); |
| } |
| |
| // test setFromTriplets |
| { |
| typedef Triplet<Scalar,StorageIndex> TripletType; |
| std::vector<TripletType> triplets; |
| Index ntriplets = rows*cols; |
| triplets.reserve(ntriplets); |
| DenseMatrix refMat_sum = DenseMatrix::Zero(rows,cols); |
| DenseMatrix refMat_prod = DenseMatrix::Zero(rows,cols); |
| DenseMatrix refMat_last = DenseMatrix::Zero(rows,cols); |
| |
| for(Index i=0;i<ntriplets;++i) |
| { |
| StorageIndex r = internal::random<StorageIndex>(0,StorageIndex(rows-1)); |
| StorageIndex c = internal::random<StorageIndex>(0,StorageIndex(cols-1)); |
| Scalar v = internal::random<Scalar>(); |
| triplets.push_back(TripletType(r,c,v)); |
| refMat_sum(r,c) += v; |
| if(std::abs(refMat_prod(r,c))==0) |
| refMat_prod(r,c) = v; |
| else |
| refMat_prod(r,c) *= v; |
| refMat_last(r,c) = v; |
| } |
| SparseMatrixType m(rows,cols); |
| m.setFromTriplets(triplets.begin(), triplets.end()); |
| VERIFY_IS_APPROX(m, refMat_sum); |
| |
| m.setFromTriplets(triplets.begin(), triplets.end(), std::multiplies<Scalar>()); |
| VERIFY_IS_APPROX(m, refMat_prod); |
| #if (defined(__cplusplus) && __cplusplus >= 201103L) |
| m.setFromTriplets(triplets.begin(), triplets.end(), [] (Scalar,Scalar b) { return b; }); |
| VERIFY_IS_APPROX(m, refMat_last); |
| #endif |
| } |
| |
| // test Map |
| { |
| DenseMatrix refMat2(rows, cols), refMat3(rows, cols); |
| SparseMatrixType m2(rows, cols), m3(rows, cols); |
| initSparse<Scalar>(density, refMat2, m2); |
| initSparse<Scalar>(density, refMat3, m3); |
| { |
| Map<SparseMatrixType> mapMat2(m2.rows(), m2.cols(), m2.nonZeros(), m2.outerIndexPtr(), m2.innerIndexPtr(), m2.valuePtr(), m2.innerNonZeroPtr()); |
| Map<SparseMatrixType> mapMat3(m3.rows(), m3.cols(), m3.nonZeros(), m3.outerIndexPtr(), m3.innerIndexPtr(), m3.valuePtr(), m3.innerNonZeroPtr()); |
| VERIFY_IS_APPROX(mapMat2+mapMat3, refMat2+refMat3); |
| VERIFY_IS_APPROX(mapMat2+mapMat3, refMat2+refMat3); |
| } |
| { |
| MappedSparseMatrix<Scalar,SparseMatrixType::Options,StorageIndex> mapMat2(m2.rows(), m2.cols(), m2.nonZeros(), m2.outerIndexPtr(), m2.innerIndexPtr(), m2.valuePtr(), m2.innerNonZeroPtr()); |
| MappedSparseMatrix<Scalar,SparseMatrixType::Options,StorageIndex> mapMat3(m3.rows(), m3.cols(), m3.nonZeros(), m3.outerIndexPtr(), m3.innerIndexPtr(), m3.valuePtr(), m3.innerNonZeroPtr()); |
| VERIFY_IS_APPROX(mapMat2+mapMat3, refMat2+refMat3); |
| VERIFY_IS_APPROX(mapMat2+mapMat3, refMat2+refMat3); |
| } |
| |
| Index i = internal::random<Index>(0,rows-1); |
| Index j = internal::random<Index>(0,cols-1); |
| m2.coeffRef(i,j) = 123; |
| if(internal::random<bool>()) |
| m2.makeCompressed(); |
| Map<SparseMatrixType> mapMat2(rows, cols, m2.nonZeros(), m2.outerIndexPtr(), m2.innerIndexPtr(), m2.valuePtr(), m2.innerNonZeroPtr()); |
| VERIFY_IS_EQUAL(m2.coeff(i,j),Scalar(123)); |
| VERIFY_IS_EQUAL(mapMat2.coeff(i,j),Scalar(123)); |
| mapMat2.coeffRef(i,j) = -123; |
| VERIFY_IS_EQUAL(m2.coeff(i,j),Scalar(-123)); |
| } |
| |
| // test triangularView |
| { |
| DenseMatrix refMat2(rows, cols), refMat3(rows, cols); |
| SparseMatrixType m2(rows, cols), m3(rows, cols); |
| initSparse<Scalar>(density, refMat2, m2); |
| refMat3 = refMat2.template triangularView<Lower>(); |
| m3 = m2.template triangularView<Lower>(); |
| VERIFY_IS_APPROX(m3, refMat3); |
| |
| refMat3 = refMat2.template triangularView<Upper>(); |
| m3 = m2.template triangularView<Upper>(); |
| VERIFY_IS_APPROX(m3, refMat3); |
| |
| { |
| refMat3 = refMat2.template triangularView<UnitUpper>(); |
| m3 = m2.template triangularView<UnitUpper>(); |
| VERIFY_IS_APPROX(m3, refMat3); |
| |
| refMat3 = refMat2.template triangularView<UnitLower>(); |
| m3 = m2.template triangularView<UnitLower>(); |
| VERIFY_IS_APPROX(m3, refMat3); |
| } |
| |
| refMat3 = refMat2.template triangularView<StrictlyUpper>(); |
| m3 = m2.template triangularView<StrictlyUpper>(); |
| VERIFY_IS_APPROX(m3, refMat3); |
| |
| refMat3 = refMat2.template triangularView<StrictlyLower>(); |
| m3 = m2.template triangularView<StrictlyLower>(); |
| VERIFY_IS_APPROX(m3, refMat3); |
| |
| // check sparse-triangular to dense |
| refMat3 = m2.template triangularView<StrictlyUpper>(); |
| VERIFY_IS_APPROX(refMat3, DenseMatrix(refMat2.template triangularView<StrictlyUpper>())); |
| } |
| |
| // test selfadjointView |
| if(!SparseMatrixType::IsRowMajor) |
| { |
| DenseMatrix refMat2(rows, rows), refMat3(rows, rows); |
| SparseMatrixType m2(rows, rows), m3(rows, rows); |
| initSparse<Scalar>(density, refMat2, m2); |
| refMat3 = refMat2.template selfadjointView<Lower>(); |
| m3 = m2.template selfadjointView<Lower>(); |
| VERIFY_IS_APPROX(m3, refMat3); |
| |
| refMat3 += refMat2.template selfadjointView<Lower>(); |
| m3 += m2.template selfadjointView<Lower>(); |
| VERIFY_IS_APPROX(m3, refMat3); |
| |
| refMat3 -= refMat2.template selfadjointView<Lower>(); |
| m3 -= m2.template selfadjointView<Lower>(); |
| VERIFY_IS_APPROX(m3, refMat3); |
| |
| // selfadjointView only works for square matrices: |
| SparseMatrixType m4(rows, rows+1); |
| VERIFY_RAISES_ASSERT(m4.template selfadjointView<Lower>()); |
| VERIFY_RAISES_ASSERT(m4.template selfadjointView<Upper>()); |
| } |
| |
| // test sparseView |
| { |
| DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows); |
| SparseMatrixType m2(rows, rows); |
| initSparse<Scalar>(density, refMat2, m2); |
| VERIFY_IS_APPROX(m2.eval(), refMat2.sparseView().eval()); |
| |
| // sparse view on expressions: |
| VERIFY_IS_APPROX((s1*m2).eval(), (s1*refMat2).sparseView().eval()); |
| VERIFY_IS_APPROX((m2+m2).eval(), (refMat2+refMat2).sparseView().eval()); |
| VERIFY_IS_APPROX((m2*m2).eval(), (refMat2.lazyProduct(refMat2)).sparseView().eval()); |
| VERIFY_IS_APPROX((m2*m2).eval(), (refMat2*refMat2).sparseView().eval()); |
| } |
| |
| // test diagonal |
| { |
| DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols); |
| SparseMatrixType m2(rows, cols); |
| initSparse<Scalar>(density, refMat2, m2); |
| VERIFY_IS_APPROX(m2.diagonal(), refMat2.diagonal().eval()); |
| DenseVector d = m2.diagonal(); |
| VERIFY_IS_APPROX(d, refMat2.diagonal().eval()); |
| d = m2.diagonal().array(); |
| VERIFY_IS_APPROX(d, refMat2.diagonal().eval()); |
| VERIFY_IS_APPROX(const_cast<const SparseMatrixType&>(m2).diagonal(), refMat2.diagonal().eval()); |
| |
| initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag); |
| m2.diagonal() += refMat2.diagonal(); |
| refMat2.diagonal() += refMat2.diagonal(); |
| VERIFY_IS_APPROX(m2, refMat2); |
| } |
| |
| // test diagonal to sparse |
| { |
| DenseVector d = DenseVector::Random(rows); |
| DenseMatrix refMat2 = d.asDiagonal(); |
| SparseMatrixType m2; |
| m2 = d.asDiagonal(); |
| VERIFY_IS_APPROX(m2, refMat2); |
| SparseMatrixType m3(d.asDiagonal()); |
| VERIFY_IS_APPROX(m3, refMat2); |
| refMat2 += d.asDiagonal(); |
| m2 += d.asDiagonal(); |
| VERIFY_IS_APPROX(m2, refMat2); |
| m2.setZero(); m2 += d.asDiagonal(); |
| refMat2.setZero(); refMat2 += d.asDiagonal(); |
| VERIFY_IS_APPROX(m2, refMat2); |
| m2.setZero(); m2 -= d.asDiagonal(); |
| refMat2.setZero(); refMat2 -= d.asDiagonal(); |
| VERIFY_IS_APPROX(m2, refMat2); |
| |
| initSparse<Scalar>(density, refMat2, m2); |
| m2.makeCompressed(); |
| m2 += d.asDiagonal(); |
| refMat2 += d.asDiagonal(); |
| VERIFY_IS_APPROX(m2, refMat2); |
| |
| initSparse<Scalar>(density, refMat2, m2); |
| m2.makeCompressed(); |
| VectorXi res(rows); |
| for(Index i=0; i<rows; ++i) |
| res(i) = internal::random<int>(0,3); |
| m2.reserve(res); |
| m2 -= d.asDiagonal(); |
| refMat2 -= d.asDiagonal(); |
| VERIFY_IS_APPROX(m2, refMat2); |
| } |
| |
| // test conservative resize |
| { |
| std::vector< std::pair<StorageIndex,StorageIndex> > inc; |
| if(rows > 3 && cols > 2) |
| inc.push_back(std::pair<StorageIndex,StorageIndex>(-3,-2)); |
| inc.push_back(std::pair<StorageIndex,StorageIndex>(0,0)); |
| inc.push_back(std::pair<StorageIndex,StorageIndex>(3,2)); |
| inc.push_back(std::pair<StorageIndex,StorageIndex>(3,0)); |
| inc.push_back(std::pair<StorageIndex,StorageIndex>(0,3)); |
| |
| for(size_t i = 0; i< inc.size(); i++) { |
| StorageIndex incRows = inc[i].first; |
| StorageIndex incCols = inc[i].second; |
| SparseMatrixType m1(rows, cols); |
| DenseMatrix refMat1 = DenseMatrix::Zero(rows, cols); |
| initSparse<Scalar>(density, refMat1, m1); |
| |
| m1.conservativeResize(rows+incRows, cols+incCols); |
| refMat1.conservativeResize(rows+incRows, cols+incCols); |
| if (incRows > 0) refMat1.bottomRows(incRows).setZero(); |
| if (incCols > 0) refMat1.rightCols(incCols).setZero(); |
| |
| VERIFY_IS_APPROX(m1, refMat1); |
| |
| // Insert new values |
| if (incRows > 0) |
| m1.insert(m1.rows()-1, 0) = refMat1(refMat1.rows()-1, 0) = 1; |
| if (incCols > 0) |
| m1.insert(0, m1.cols()-1) = refMat1(0, refMat1.cols()-1) = 1; |
| |
| VERIFY_IS_APPROX(m1, refMat1); |
| |
| |
| } |
| } |
| |
| // test Identity matrix |
| { |
| DenseMatrix refMat1 = DenseMatrix::Identity(rows, rows); |
| SparseMatrixType m1(rows, rows); |
| m1.setIdentity(); |
| VERIFY_IS_APPROX(m1, refMat1); |
| for(int k=0; k<rows*rows/4; ++k) |
| { |
| Index i = internal::random<Index>(0,rows-1); |
| Index j = internal::random<Index>(0,rows-1); |
| Scalar v = internal::random<Scalar>(); |
| m1.coeffRef(i,j) = v; |
| refMat1.coeffRef(i,j) = v; |
| VERIFY_IS_APPROX(m1, refMat1); |
| if(internal::random<Index>(0,10)<2) |
| m1.makeCompressed(); |
| } |
| m1.setIdentity(); |
| refMat1.setIdentity(); |
| VERIFY_IS_APPROX(m1, refMat1); |
| } |
| |
| // test array/vector of InnerIterator |
| { |
| typedef typename SparseMatrixType::InnerIterator IteratorType; |
| |
| DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols); |
| SparseMatrixType m2(rows, cols); |
| initSparse<Scalar>(density, refMat2, m2); |
| IteratorType static_array[2]; |
| static_array[0] = IteratorType(m2,0); |
| static_array[1] = IteratorType(m2,m2.outerSize()-1); |
| VERIFY( static_array[0] || m2.innerVector(static_array[0].outer()).nonZeros() == 0 ); |
| VERIFY( static_array[1] || m2.innerVector(static_array[1].outer()).nonZeros() == 0 ); |
| if(static_array[0] && static_array[1]) |
| { |
| ++(static_array[1]); |
| static_array[1] = IteratorType(m2,0); |
| VERIFY( static_array[1] ); |
| VERIFY( static_array[1].index() == static_array[0].index() ); |
| VERIFY( static_array[1].outer() == static_array[0].outer() ); |
| VERIFY( static_array[1].value() == static_array[0].value() ); |
| } |
| |
| std::vector<IteratorType> iters(2); |
| iters[0] = IteratorType(m2,0); |
| iters[1] = IteratorType(m2,m2.outerSize()-1); |
| } |
| } |
| |
| |
| template<typename SparseMatrixType> |
| void big_sparse_triplet(Index rows, Index cols, double density) { |
| typedef typename SparseMatrixType::StorageIndex StorageIndex; |
| typedef typename SparseMatrixType::Scalar Scalar; |
| typedef Triplet<Scalar,Index> TripletType; |
| std::vector<TripletType> triplets; |
| double nelements = density * rows*cols; |
| VERIFY(nelements>=0 && nelements < NumTraits<StorageIndex>::highest()); |
| Index ntriplets = Index(nelements); |
| triplets.reserve(ntriplets); |
| Scalar sum = Scalar(0); |
| for(Index i=0;i<ntriplets;++i) |
| { |
| Index r = internal::random<Index>(0,rows-1); |
| Index c = internal::random<Index>(0,cols-1); |
| // use positive values to prevent numerical cancellation errors in sum |
| Scalar v = numext::abs(internal::random<Scalar>()); |
| triplets.push_back(TripletType(r,c,v)); |
| sum += v; |
| } |
| SparseMatrixType m(rows,cols); |
| m.setFromTriplets(triplets.begin(), triplets.end()); |
| VERIFY(m.nonZeros() <= ntriplets); |
| VERIFY_IS_APPROX(sum, m.sum()); |
| } |
| |
| template<int> |
| void bug1105() |
| { |
| // Regression test for bug 1105 |
| int n = Eigen::internal::random<int>(200,600); |
| SparseMatrix<std::complex<double>,0, long> mat(n, n); |
| std::complex<double> val; |
| |
| for(int i=0; i<n; ++i) |
| { |
| mat.coeffRef(i, i%(n/10)) = val; |
| VERIFY(mat.data().allocatedSize()<20*n); |
| } |
| } |
| |
| #ifndef EIGEN_SPARSE_TEST_INCLUDED_FROM_SPARSE_EXTRA |
| |
| EIGEN_DECLARE_TEST(sparse_basic) |
| { |
| g_dense_op_sparse_count = 0; // Suppresses compiler warning. |
| for(int i = 0; i < g_repeat; i++) { |
| int r = Eigen::internal::random<int>(1,200), c = Eigen::internal::random<int>(1,200); |
| if(Eigen::internal::random<int>(0,4) == 0) { |
| r = c; // check square matrices in 25% of tries |
| } |
| EIGEN_UNUSED_VARIABLE(r+c); |
| CALL_SUBTEST_1(( sparse_basic(SparseMatrix<double>(1, 1)) )); |
| CALL_SUBTEST_1(( sparse_basic(SparseMatrix<double>(8, 8)) )); |
| CALL_SUBTEST_2(( sparse_basic(SparseMatrix<std::complex<double>, ColMajor>(r, c)) )); |
| CALL_SUBTEST_2(( sparse_basic(SparseMatrix<std::complex<double>, RowMajor>(r, c)) )); |
| CALL_SUBTEST_1(( sparse_basic(SparseMatrix<double>(r, c)) )); |
| CALL_SUBTEST_5(( sparse_basic(SparseMatrix<double,ColMajor,long int>(r, c)) )); |
| CALL_SUBTEST_5(( sparse_basic(SparseMatrix<double,RowMajor,long int>(r, c)) )); |
| |
| r = Eigen::internal::random<int>(1,100); |
| c = Eigen::internal::random<int>(1,100); |
| if(Eigen::internal::random<int>(0,4) == 0) { |
| r = c; // check square matrices in 25% of tries |
| } |
| |
| CALL_SUBTEST_6(( sparse_basic(SparseMatrix<double,ColMajor,short int>(short(r), short(c))) )); |
| CALL_SUBTEST_6(( sparse_basic(SparseMatrix<double,RowMajor,short int>(short(r), short(c))) )); |
| } |
| |
| // Regression test for bug 900: (manually insert higher values here, if you have enough RAM): |
| CALL_SUBTEST_3((big_sparse_triplet<SparseMatrix<float, RowMajor, int> >(10000, 10000, 0.125))); |
| CALL_SUBTEST_4((big_sparse_triplet<SparseMatrix<double, ColMajor, long int> >(10000, 10000, 0.125))); |
| |
| CALL_SUBTEST_7( bug1105<0>() ); |
| } |
| #endif |