| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| |
| #define EIGEN_TEST_NO_LONGDOUBLE |
| |
| #define EIGEN_USE_GPU |
| |
| #include "main.h" |
| #include <unsupported/Eigen/CXX11/Tensor> |
| |
| #include <unsupported/Eigen/CXX11/src/Tensor/TensorGpuHipCudaDefines.h> |
| |
| using Eigen::Tensor; |
| |
| template <int Layout> |
| void test_gpu_simple_argmax() |
| { |
| Tensor<double, 3, Layout> in(Eigen::array<DenseIndex, 3>(72,53,97)); |
| Tensor<DenseIndex, 1, Layout> out_max(Eigen::array<DenseIndex, 1>(1)); |
| Tensor<DenseIndex, 1, Layout> out_min(Eigen::array<DenseIndex, 1>(1)); |
| in.setRandom(); |
| in *= in.constant(100.0); |
| in(0, 0, 0) = -1000.0; |
| in(71, 52, 96) = 1000.0; |
| |
| std::size_t in_bytes = in.size() * sizeof(double); |
| std::size_t out_bytes = out_max.size() * sizeof(DenseIndex); |
| |
| double* d_in; |
| DenseIndex* d_out_max; |
| DenseIndex* d_out_min; |
| gpuMalloc((void**)(&d_in), in_bytes); |
| gpuMalloc((void**)(&d_out_max), out_bytes); |
| gpuMalloc((void**)(&d_out_min), out_bytes); |
| |
| gpuMemcpy(d_in, in.data(), in_bytes, gpuMemcpyHostToDevice); |
| |
| Eigen::GpuStreamDevice stream; |
| Eigen::GpuDevice gpu_device(&stream); |
| |
| Eigen::TensorMap<Eigen::Tensor<double, 3, Layout>, Aligned > gpu_in(d_in, Eigen::array<DenseIndex, 3>(72,53,97)); |
| Eigen::TensorMap<Eigen::Tensor<DenseIndex, 1, Layout>, Aligned > gpu_out_max(d_out_max, Eigen::array<DenseIndex, 1>(1)); |
| Eigen::TensorMap<Eigen::Tensor<DenseIndex, 1, Layout>, Aligned > gpu_out_min(d_out_min, Eigen::array<DenseIndex, 1>(1)); |
| |
| gpu_out_max.device(gpu_device) = gpu_in.argmax(); |
| gpu_out_min.device(gpu_device) = gpu_in.argmin(); |
| |
| assert(gpuMemcpyAsync(out_max.data(), d_out_max, out_bytes, gpuMemcpyDeviceToHost, gpu_device.stream()) == gpuSuccess); |
| assert(gpuMemcpyAsync(out_min.data(), d_out_min, out_bytes, gpuMemcpyDeviceToHost, gpu_device.stream()) == gpuSuccess); |
| assert(gpuStreamSynchronize(gpu_device.stream()) == gpuSuccess); |
| |
| VERIFY_IS_EQUAL(out_max(Eigen::array<DenseIndex, 1>(0)), 72*53*97 - 1); |
| VERIFY_IS_EQUAL(out_min(Eigen::array<DenseIndex, 1>(0)), 0); |
| |
| gpuFree(d_in); |
| gpuFree(d_out_max); |
| gpuFree(d_out_min); |
| } |
| |
| template <int DataLayout> |
| void test_gpu_argmax_dim() |
| { |
| Tensor<float, 4, DataLayout> tensor(2,3,5,7); |
| std::vector<int> dims; |
| dims.push_back(2); dims.push_back(3); dims.push_back(5); dims.push_back(7); |
| |
| for (int dim = 0; dim < 4; ++dim) { |
| tensor.setRandom(); |
| tensor = (tensor + tensor.constant(0.5)).log(); |
| |
| array<DenseIndex, 3> out_shape; |
| for (int d = 0; d < 3; ++d) out_shape[d] = (d < dim) ? dims[d] : dims[d+1]; |
| |
| Tensor<DenseIndex, 3, DataLayout> tensor_arg(out_shape); |
| |
| array<DenseIndex, 4> ix; |
| for (int i = 0; i < 2; ++i) { |
| for (int j = 0; j < 3; ++j) { |
| for (int k = 0; k < 5; ++k) { |
| for (int l = 0; l < 7; ++l) { |
| ix[0] = i; ix[1] = j; ix[2] = k; ix[3] = l; |
| if (ix[dim] != 0) continue; |
| // suppose dim == 1, then for all i, k, l, set tensor(i, 0, k, l) = 10.0 |
| tensor(ix) = 10.0; |
| } |
| } |
| } |
| } |
| |
| std::size_t in_bytes = tensor.size() * sizeof(float); |
| std::size_t out_bytes = tensor_arg.size() * sizeof(DenseIndex); |
| |
| float* d_in; |
| DenseIndex* d_out; |
| gpuMalloc((void**)(&d_in), in_bytes); |
| gpuMalloc((void**)(&d_out), out_bytes); |
| |
| gpuMemcpy(d_in, tensor.data(), in_bytes, gpuMemcpyHostToDevice); |
| |
| Eigen::GpuStreamDevice stream; |
| Eigen::GpuDevice gpu_device(&stream); |
| |
| Eigen::TensorMap<Eigen::Tensor<float, 4, DataLayout>, Aligned > gpu_in(d_in, Eigen::array<DenseIndex, 4>(2, 3, 5, 7)); |
| Eigen::TensorMap<Eigen::Tensor<DenseIndex, 3, DataLayout>, Aligned > gpu_out(d_out, out_shape); |
| |
| gpu_out.device(gpu_device) = gpu_in.argmax(dim); |
| |
| assert(gpuMemcpyAsync(tensor_arg.data(), d_out, out_bytes, gpuMemcpyDeviceToHost, gpu_device.stream()) == gpuSuccess); |
| assert(gpuStreamSynchronize(gpu_device.stream()) == gpuSuccess); |
| |
| VERIFY_IS_EQUAL(tensor_arg.size(), |
| size_t(2*3*5*7 / tensor.dimension(dim))); |
| |
| for (DenseIndex n = 0; n < tensor_arg.size(); ++n) { |
| // Expect max to be in the first index of the reduced dimension |
| VERIFY_IS_EQUAL(tensor_arg.data()[n], 0); |
| } |
| |
| for (int i = 0; i < 2; ++i) { |
| for (int j = 0; j < 3; ++j) { |
| for (int k = 0; k < 5; ++k) { |
| for (int l = 0; l < 7; ++l) { |
| ix[0] = i; ix[1] = j; ix[2] = k; ix[3] = l; |
| if (ix[dim] != tensor.dimension(dim) - 1) continue; |
| // suppose dim == 1, then for all i, k, l, set tensor(i, 2, k, l) = 20.0 |
| tensor(ix) = 20.0; |
| } |
| } |
| } |
| } |
| |
| gpuMemcpy(d_in, tensor.data(), in_bytes, gpuMemcpyHostToDevice); |
| |
| gpu_out.device(gpu_device) = gpu_in.argmax(dim); |
| |
| assert(gpuMemcpyAsync(tensor_arg.data(), d_out, out_bytes, gpuMemcpyDeviceToHost, gpu_device.stream()) == gpuSuccess); |
| assert(gpuStreamSynchronize(gpu_device.stream()) == gpuSuccess); |
| |
| for (DenseIndex n = 0; n < tensor_arg.size(); ++n) { |
| // Expect max to be in the last index of the reduced dimension |
| VERIFY_IS_EQUAL(tensor_arg.data()[n], tensor.dimension(dim) - 1); |
| } |
| |
| gpuFree(d_in); |
| gpuFree(d_out); |
| } |
| } |
| |
| template <int DataLayout> |
| void test_gpu_argmin_dim() |
| { |
| Tensor<float, 4, DataLayout> tensor(2,3,5,7); |
| std::vector<int> dims; |
| dims.push_back(2); dims.push_back(3); dims.push_back(5); dims.push_back(7); |
| |
| for (int dim = 0; dim < 4; ++dim) { |
| tensor.setRandom(); |
| tensor = (tensor + tensor.constant(0.5)).log(); |
| |
| array<DenseIndex, 3> out_shape; |
| for (int d = 0; d < 3; ++d) out_shape[d] = (d < dim) ? dims[d] : dims[d+1]; |
| |
| Tensor<DenseIndex, 3, DataLayout> tensor_arg(out_shape); |
| |
| array<DenseIndex, 4> ix; |
| for (int i = 0; i < 2; ++i) { |
| for (int j = 0; j < 3; ++j) { |
| for (int k = 0; k < 5; ++k) { |
| for (int l = 0; l < 7; ++l) { |
| ix[0] = i; ix[1] = j; ix[2] = k; ix[3] = l; |
| if (ix[dim] != 0) continue; |
| // suppose dim == 1, then for all i, k, l, set tensor(i, 0, k, l) = 10.0 |
| tensor(ix) = -10.0; |
| } |
| } |
| } |
| } |
| |
| std::size_t in_bytes = tensor.size() * sizeof(float); |
| std::size_t out_bytes = tensor_arg.size() * sizeof(DenseIndex); |
| |
| float* d_in; |
| DenseIndex* d_out; |
| gpuMalloc((void**)(&d_in), in_bytes); |
| gpuMalloc((void**)(&d_out), out_bytes); |
| |
| gpuMemcpy(d_in, tensor.data(), in_bytes, gpuMemcpyHostToDevice); |
| |
| Eigen::GpuStreamDevice stream; |
| Eigen::GpuDevice gpu_device(&stream); |
| |
| Eigen::TensorMap<Eigen::Tensor<float, 4, DataLayout>, Aligned > gpu_in(d_in, Eigen::array<DenseIndex, 4>(2, 3, 5, 7)); |
| Eigen::TensorMap<Eigen::Tensor<DenseIndex, 3, DataLayout>, Aligned > gpu_out(d_out, out_shape); |
| |
| gpu_out.device(gpu_device) = gpu_in.argmin(dim); |
| |
| assert(gpuMemcpyAsync(tensor_arg.data(), d_out, out_bytes, gpuMemcpyDeviceToHost, gpu_device.stream()) == gpuSuccess); |
| assert(gpuStreamSynchronize(gpu_device.stream()) == gpuSuccess); |
| |
| VERIFY_IS_EQUAL(tensor_arg.size(), |
| 2*3*5*7 / tensor.dimension(dim)); |
| |
| for (DenseIndex n = 0; n < tensor_arg.size(); ++n) { |
| // Expect min to be in the first index of the reduced dimension |
| VERIFY_IS_EQUAL(tensor_arg.data()[n], 0); |
| } |
| |
| for (int i = 0; i < 2; ++i) { |
| for (int j = 0; j < 3; ++j) { |
| for (int k = 0; k < 5; ++k) { |
| for (int l = 0; l < 7; ++l) { |
| ix[0] = i; ix[1] = j; ix[2] = k; ix[3] = l; |
| if (ix[dim] != tensor.dimension(dim) - 1) continue; |
| // suppose dim == 1, then for all i, k, l, set tensor(i, 2, k, l) = 20.0 |
| tensor(ix) = -20.0; |
| } |
| } |
| } |
| } |
| |
| gpuMemcpy(d_in, tensor.data(), in_bytes, gpuMemcpyHostToDevice); |
| |
| gpu_out.device(gpu_device) = gpu_in.argmin(dim); |
| |
| assert(gpuMemcpyAsync(tensor_arg.data(), d_out, out_bytes, gpuMemcpyDeviceToHost, gpu_device.stream()) == gpuSuccess); |
| assert(gpuStreamSynchronize(gpu_device.stream()) == gpuSuccess); |
| |
| for (DenseIndex n = 0; n < tensor_arg.size(); ++n) { |
| // Expect max to be in the last index of the reduced dimension |
| VERIFY_IS_EQUAL(tensor_arg.data()[n], tensor.dimension(dim) - 1); |
| } |
| |
| gpuFree(d_in); |
| gpuFree(d_out); |
| } |
| } |
| |
| EIGEN_DECLARE_TEST(cxx11_tensor_argmax_gpu) |
| { |
| CALL_SUBTEST_1(test_gpu_simple_argmax<RowMajor>()); |
| CALL_SUBTEST_1(test_gpu_simple_argmax<ColMajor>()); |
| CALL_SUBTEST_2(test_gpu_argmax_dim<RowMajor>()); |
| CALL_SUBTEST_2(test_gpu_argmax_dim<ColMajor>()); |
| CALL_SUBTEST_3(test_gpu_argmin_dim<RowMajor>()); |
| CALL_SUBTEST_3(test_gpu_argmin_dim<ColMajor>()); |
| } |