| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> |
| // Copyright (C) 2014 Navdeep Jaitly <ndjaitly@google.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #define EIGEN_TEST_NO_LONGDOUBLE |
| #define EIGEN_TEST_NO_COMPLEX |
| |
| #define EIGEN_DEFAULT_DENSE_INDEX_TYPE int |
| #define EIGEN_USE_GPU |
| |
| #include "main.h" |
| #include <unsupported/Eigen/CXX11/Tensor> |
| |
| #include <unsupported/Eigen/CXX11/src/Tensor/TensorGpuHipCudaDefines.h> |
| |
| using Eigen::Tensor; |
| typedef Tensor<float, 1>::DimensionPair DimPair; |
| |
| template<int DataLayout> |
| void test_gpu_contraction(int m_size, int k_size, int n_size) |
| { |
| std::cout << "Testing for (" << m_size << "," << k_size << "," << n_size << ")" << std::endl; |
| // with these dimensions, the output has 300 * 140 elements, which is |
| // more than 30 * 1024, which is the number of threads in blocks on |
| // a 15 SM GK110 GPU |
| Tensor<float, 2, DataLayout> t_left(m_size, k_size); |
| Tensor<float, 2, DataLayout> t_right(k_size, n_size); |
| Tensor<float, 2, DataLayout> t_result(m_size, n_size); |
| Tensor<float, 2, DataLayout> t_result_gpu(m_size, n_size); |
| Eigen::array<DimPair, 1> dims(DimPair(1, 0)); |
| |
| t_left.setRandom(); |
| t_right.setRandom(); |
| |
| std::size_t t_left_bytes = t_left.size() * sizeof(float); |
| std::size_t t_right_bytes = t_right.size() * sizeof(float); |
| std::size_t t_result_bytes = t_result.size() * sizeof(float); |
| |
| float* d_t_left; |
| float* d_t_right; |
| float* d_t_result; |
| |
| gpuMalloc((void**)(&d_t_left), t_left_bytes); |
| gpuMalloc((void**)(&d_t_right), t_right_bytes); |
| gpuMalloc((void**)(&d_t_result), t_result_bytes); |
| |
| gpuMemcpy(d_t_left, t_left.data(), t_left_bytes, gpuMemcpyHostToDevice); |
| gpuMemcpy(d_t_right, t_right.data(), t_right_bytes, gpuMemcpyHostToDevice); |
| |
| Eigen::GpuStreamDevice stream; |
| Eigen::GpuDevice gpu_device(&stream); |
| |
| Eigen::TensorMap<Eigen::Tensor<float, 2, DataLayout> > |
| gpu_t_left(d_t_left, Eigen::array<int, 2>(m_size, k_size)); |
| Eigen::TensorMap<Eigen::Tensor<float, 2, DataLayout> > |
| gpu_t_right(d_t_right, Eigen::array<int, 2>(k_size, n_size)); |
| Eigen::TensorMap<Eigen::Tensor<float, 2, DataLayout> > |
| gpu_t_result(d_t_result, Eigen::array<int, 2>(m_size, n_size)); |
| |
| |
| gpu_t_result.device(gpu_device) = gpu_t_left.contract(gpu_t_right, dims); |
| t_result = t_left.contract(t_right, dims); |
| |
| gpuMemcpy(t_result_gpu.data(), d_t_result, t_result_bytes, gpuMemcpyDeviceToHost); |
| for (DenseIndex i = 0; i < t_result.size(); i++) { |
| if (fabs(t_result(i) - t_result_gpu(i)) < 1e-4f) { |
| continue; |
| } |
| if (Eigen::internal::isApprox(t_result(i), t_result_gpu(i), 1e-4f)) { |
| continue; |
| } |
| std::cout << "mismatch detected at index " << i << ": " << t_result(i) |
| << " vs " << t_result_gpu(i) << std::endl; |
| assert(false); |
| } |
| |
| gpuFree((void*)d_t_left); |
| gpuFree((void*)d_t_right); |
| gpuFree((void*)d_t_result); |
| } |
| |
| |
| template<int DataLayout> |
| void test_scalar(int m_size, int k_size, int n_size) |
| { |
| std::cout << "Testing for (" << m_size << "," << k_size << "," << n_size << ")" << std::endl; |
| // with these dimensions, the output has 300 * 140 elements, which is |
| // more than 30 * 1024, which is the number of threads in blocks on |
| // a 15 SM GK110 GPU |
| Tensor<float, 2, DataLayout> t_left(m_size, k_size); |
| Tensor<float, 2, DataLayout> t_right(k_size, n_size); |
| Tensor<float, 0, DataLayout> t_result; |
| Tensor<float, 0, DataLayout> t_result_gpu; |
| Eigen::array<DimPair, 2> dims(DimPair(0, 0), DimPair(1, 1)); |
| |
| t_left.setRandom(); |
| t_right.setRandom(); |
| |
| std::size_t t_left_bytes = t_left.size() * sizeof(float); |
| std::size_t t_right_bytes = t_right.size() * sizeof(float); |
| std::size_t t_result_bytes = sizeof(float); |
| |
| float* d_t_left; |
| float* d_t_right; |
| float* d_t_result; |
| |
| gpuMalloc((void**)(&d_t_left), t_left_bytes); |
| gpuMalloc((void**)(&d_t_right), t_right_bytes); |
| gpuMalloc((void**)(&d_t_result), t_result_bytes); |
| |
| gpuMemcpy(d_t_left, t_left.data(), t_left_bytes, gpuMemcpyHostToDevice); |
| gpuMemcpy(d_t_right, t_right.data(), t_right_bytes, gpuMemcpyHostToDevice); |
| |
| Eigen::GpuStreamDevice stream; |
| Eigen::GpuDevice gpu_device(&stream); |
| |
| Eigen::TensorMap<Eigen::Tensor<float, 2, DataLayout> > |
| gpu_t_left(d_t_left, m_size, k_size); |
| Eigen::TensorMap<Eigen::Tensor<float, 2, DataLayout> > |
| gpu_t_right(d_t_right, k_size, n_size); |
| Eigen::TensorMap<Eigen::Tensor<float, 0, DataLayout> > |
| gpu_t_result(d_t_result); |
| |
| gpu_t_result.device(gpu_device) = gpu_t_left.contract(gpu_t_right, dims); |
| t_result = t_left.contract(t_right, dims); |
| |
| gpuMemcpy(t_result_gpu.data(), d_t_result, t_result_bytes, gpuMemcpyDeviceToHost); |
| if (fabs(t_result() - t_result_gpu()) > 1e-4f && |
| !Eigen::internal::isApprox(t_result(), t_result_gpu(), 1e-4f)) { |
| std::cout << "mismatch detected: " << t_result() |
| << " vs " << t_result_gpu() << std::endl; |
| assert(false); |
| } |
| |
| gpuFree((void*)d_t_left); |
| gpuFree((void*)d_t_right); |
| gpuFree((void*)d_t_result); |
| } |
| |
| |
| template<int DataLayout> |
| void test_gpu_contraction_m() { |
| for (int k = 32; k < 256; k++) { |
| test_gpu_contraction<ColMajor>(k, 128, 128); |
| test_gpu_contraction<RowMajor>(k, 128, 128); |
| } |
| } |
| |
| template<int DataLayout> |
| void test_gpu_contraction_k() { |
| for (int k = 32; k < 256; k++) { |
| test_gpu_contraction<ColMajor>(128, k, 128); |
| test_gpu_contraction<RowMajor>(128, k, 128); |
| } |
| } |
| |
| template<int DataLayout> |
| void test_gpu_contraction_n() { |
| for (int k = 32; k < 256; k++) { |
| test_gpu_contraction<ColMajor>(128, 128, k); |
| test_gpu_contraction<RowMajor>(128, 128, k); |
| } |
| } |
| |
| |
| template<int DataLayout> |
| void test_gpu_contraction_sizes() { |
| int m_sizes[] = { 31, 39, 63, 64, 65, |
| 127, 129, 255, 257 , 511, |
| 512, 513, 1023, 1024, 1025}; |
| |
| int n_sizes[] = { 31, 39, 63, 64, 65, |
| 127, 129, 255, 257, 511, |
| 512, 513, 1023, 1024, 1025}; |
| |
| int k_sizes[] = { 31, 39, 63, 64, 65, |
| 95, 96, 127, 129, 255, |
| 257, 511, 512, 513, 1023, |
| 1024, 1025}; |
| |
| for (int i = 0; i < 15; i++) { |
| for (int j = 0; j < 15; j++) { |
| for (int k = 0; k < 17; k++) { |
| test_gpu_contraction<DataLayout>(m_sizes[i], n_sizes[j], k_sizes[k]); |
| } |
| } |
| } |
| } |
| |
| EIGEN_DECLARE_TEST(cxx11_tensor_contract_gpu) |
| { |
| CALL_SUBTEST_1(test_gpu_contraction<ColMajor>(128, 128, 128)); |
| CALL_SUBTEST_1(test_gpu_contraction<RowMajor>(128, 128, 128)); |
| |
| CALL_SUBTEST_1(test_scalar<ColMajor>(128, 128, 128)); |
| CALL_SUBTEST_1(test_scalar<RowMajor>(128, 128, 128)); |
| |
| CALL_SUBTEST_2(test_gpu_contraction_m<ColMajor>()); |
| CALL_SUBTEST_3(test_gpu_contraction_m<RowMajor>()); |
| |
| CALL_SUBTEST_4(test_gpu_contraction_k<ColMajor>()); |
| CALL_SUBTEST_5(test_gpu_contraction_k<RowMajor>()); |
| |
| CALL_SUBTEST_6(test_gpu_contraction_n<ColMajor>()); |
| CALL_SUBTEST_7(test_gpu_contraction_n<RowMajor>()); |
| |
| #if !defined(EIGEN_USE_HIP) |
| // disable these subtests for HIP |
| CALL_SUBTEST_8(test_gpu_contraction_sizes<ColMajor>()); |
| CALL_SUBTEST_9(test_gpu_contraction_sizes<RowMajor>()); |
| #endif |
| } |