| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2012, 2013 Chen-Pang He <jdh8@ms63.hinet.net> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #include "matrix_functions.h" |
| |
| template<typename T> |
| void test2dRotation(const T& tol) |
| { |
| Matrix<T,2,2> A, B, C; |
| T angle, c, s; |
| |
| A << 0, 1, -1, 0; |
| MatrixPower<Matrix<T,2,2> > Apow(A); |
| |
| for (int i=0; i<=20; ++i) { |
| angle = std::pow(T(10), T(i-10) / T(5.)); |
| c = std::cos(angle); |
| s = std::sin(angle); |
| B << c, s, -s, c; |
| |
| C = Apow(std::ldexp(angle,1) / T(EIGEN_PI)); |
| std::cout << "test2dRotation: i = " << i << " error powerm = " << relerr(C,B) << '\n'; |
| VERIFY(C.isApprox(B, tol)); |
| } |
| } |
| |
| template<typename T> |
| void test2dHyperbolicRotation(const T& tol) |
| { |
| Matrix<std::complex<T>,2,2> A, B, C; |
| T angle, ch = std::cosh((T)1); |
| std::complex<T> ish(0, std::sinh((T)1)); |
| |
| A << ch, ish, -ish, ch; |
| MatrixPower<Matrix<std::complex<T>,2,2> > Apow(A); |
| |
| for (int i=0; i<=20; ++i) { |
| angle = std::ldexp(static_cast<T>(i-10), -1); |
| ch = std::cosh(angle); |
| ish = std::complex<T>(0, std::sinh(angle)); |
| B << ch, ish, -ish, ch; |
| |
| C = Apow(angle); |
| std::cout << "test2dHyperbolicRotation: i = " << i << " error powerm = " << relerr(C,B) << '\n'; |
| VERIFY(C.isApprox(B, tol)); |
| } |
| } |
| |
| template<typename T> |
| void test3dRotation(const T& tol) |
| { |
| Matrix<T,3,1> v; |
| T angle; |
| |
| for (int i=0; i<=20; ++i) { |
| v = Matrix<T,3,1>::Random(); |
| v.normalize(); |
| angle = std::pow(T(10), T(i-10) / T(5.)); |
| VERIFY(AngleAxis<T>(angle, v).matrix().isApprox(AngleAxis<T>(1,v).matrix().pow(angle), tol)); |
| } |
| } |
| |
| template<typename MatrixType> |
| void testGeneral(const MatrixType& m, const typename MatrixType::RealScalar& tol) |
| { |
| typedef typename MatrixType::RealScalar RealScalar; |
| MatrixType m1, m2, m3, m4, m5; |
| RealScalar x, y; |
| |
| for (int i=0; i < g_repeat; ++i) { |
| generateTestMatrix<MatrixType>::run(m1, m.rows()); |
| MatrixPower<MatrixType> mpow(m1); |
| |
| x = internal::random<RealScalar>(); |
| y = internal::random<RealScalar>(); |
| m2 = mpow(x); |
| m3 = mpow(y); |
| |
| m4 = mpow(x+y); |
| m5.noalias() = m2 * m3; |
| VERIFY(m4.isApprox(m5, tol)); |
| |
| m4 = mpow(x*y); |
| m5 = m2.pow(y); |
| VERIFY(m4.isApprox(m5, tol)); |
| |
| m4 = (std::abs(x) * m1).pow(y); |
| m5 = std::pow(std::abs(x), y) * m3; |
| VERIFY(m4.isApprox(m5, tol)); |
| } |
| } |
| |
| template<typename MatrixType> |
| void testSingular(const MatrixType& m_const, const typename MatrixType::RealScalar& tol) |
| { |
| // we need to pass by reference in order to prevent errors with |
| // MSVC for aligned data types ... |
| MatrixType& m = const_cast<MatrixType&>(m_const); |
| |
| const int IsComplex = NumTraits<typename internal::traits<MatrixType>::Scalar>::IsComplex; |
| typedef typename internal::conditional<IsComplex, TriangularView<MatrixType,Upper>, const MatrixType&>::type TriangularType; |
| typename internal::conditional< IsComplex, ComplexSchur<MatrixType>, RealSchur<MatrixType> >::type schur; |
| MatrixType T; |
| |
| for (int i=0; i < g_repeat; ++i) { |
| m.setRandom(); |
| m.col(0).fill(0); |
| |
| schur.compute(m); |
| T = schur.matrixT(); |
| const MatrixType& U = schur.matrixU(); |
| processTriangularMatrix<MatrixType>::run(m, T, U); |
| MatrixPower<MatrixType> mpow(m); |
| |
| T = T.sqrt(); |
| VERIFY(mpow(0.5L).isApprox(U * (TriangularType(T) * U.adjoint()), tol)); |
| |
| T = T.sqrt(); |
| VERIFY(mpow(0.25L).isApprox(U * (TriangularType(T) * U.adjoint()), tol)); |
| |
| T = T.sqrt(); |
| VERIFY(mpow(0.125L).isApprox(U * (TriangularType(T) * U.adjoint()), tol)); |
| } |
| } |
| |
| template<typename MatrixType> |
| void testLogThenExp(const MatrixType& m_const, const typename MatrixType::RealScalar& tol) |
| { |
| // we need to pass by reference in order to prevent errors with |
| // MSVC for aligned data types ... |
| MatrixType& m = const_cast<MatrixType&>(m_const); |
| |
| typedef typename MatrixType::Scalar Scalar; |
| Scalar x; |
| |
| for (int i=0; i < g_repeat; ++i) { |
| generateTestMatrix<MatrixType>::run(m, m.rows()); |
| x = internal::random<Scalar>(); |
| VERIFY(m.pow(x).isApprox((x * m.log()).exp(), tol)); |
| } |
| } |
| |
| typedef Matrix<double,3,3,RowMajor> Matrix3dRowMajor; |
| typedef Matrix<long double,3,3> Matrix3e; |
| typedef Matrix<long double,Dynamic,Dynamic> MatrixXe; |
| |
| EIGEN_DECLARE_TEST(matrix_power) |
| { |
| CALL_SUBTEST_2(test2dRotation<double>(1e-13)); |
| CALL_SUBTEST_1(test2dRotation<float>(2e-5f)); // was 1e-5, relaxed for clang 2.8 / linux / x86-64 |
| CALL_SUBTEST_9(test2dRotation<long double>(1e-13L)); |
| CALL_SUBTEST_2(test2dHyperbolicRotation<double>(1e-14)); |
| CALL_SUBTEST_1(test2dHyperbolicRotation<float>(1e-5f)); |
| CALL_SUBTEST_9(test2dHyperbolicRotation<long double>(1e-14L)); |
| |
| CALL_SUBTEST_10(test3dRotation<double>(1e-13)); |
| CALL_SUBTEST_11(test3dRotation<float>(1e-5f)); |
| CALL_SUBTEST_12(test3dRotation<long double>(1e-13L)); |
| |
| CALL_SUBTEST_2(testGeneral(Matrix2d(), 1e-13)); |
| CALL_SUBTEST_7(testGeneral(Matrix3dRowMajor(), 1e-13)); |
| CALL_SUBTEST_3(testGeneral(Matrix4cd(), 1e-13)); |
| CALL_SUBTEST_4(testGeneral(MatrixXd(8,8), 2e-12)); |
| CALL_SUBTEST_1(testGeneral(Matrix2f(), 1e-4f)); |
| CALL_SUBTEST_5(testGeneral(Matrix3cf(), 1e-4f)); |
| CALL_SUBTEST_8(testGeneral(Matrix4f(), 1e-4f)); |
| CALL_SUBTEST_6(testGeneral(MatrixXf(2,2), 1e-3f)); // see bug 614 |
| CALL_SUBTEST_9(testGeneral(MatrixXe(7,7), 1e-13L)); |
| CALL_SUBTEST_10(testGeneral(Matrix3d(), 1e-13)); |
| CALL_SUBTEST_11(testGeneral(Matrix3f(), 1e-4f)); |
| CALL_SUBTEST_12(testGeneral(Matrix3e(), 1e-13L)); |
| |
| CALL_SUBTEST_2(testSingular(Matrix2d(), 1e-13)); |
| CALL_SUBTEST_7(testSingular(Matrix3dRowMajor(), 1e-13)); |
| CALL_SUBTEST_3(testSingular(Matrix4cd(), 1e-13)); |
| CALL_SUBTEST_4(testSingular(MatrixXd(8,8), 2e-12)); |
| CALL_SUBTEST_1(testSingular(Matrix2f(), 1e-4f)); |
| CALL_SUBTEST_5(testSingular(Matrix3cf(), 1e-4f)); |
| CALL_SUBTEST_8(testSingular(Matrix4f(), 1e-4f)); |
| CALL_SUBTEST_6(testSingular(MatrixXf(2,2), 1e-3f)); |
| CALL_SUBTEST_9(testSingular(MatrixXe(7,7), 1e-13L)); |
| CALL_SUBTEST_10(testSingular(Matrix3d(), 1e-13)); |
| CALL_SUBTEST_11(testSingular(Matrix3f(), 1e-4f)); |
| CALL_SUBTEST_12(testSingular(Matrix3e(), 1e-13L)); |
| |
| CALL_SUBTEST_2(testLogThenExp(Matrix2d(), 1e-13)); |
| CALL_SUBTEST_7(testLogThenExp(Matrix3dRowMajor(), 1e-13)); |
| CALL_SUBTEST_3(testLogThenExp(Matrix4cd(), 1e-13)); |
| CALL_SUBTEST_4(testLogThenExp(MatrixXd(8,8), 2e-12)); |
| CALL_SUBTEST_1(testLogThenExp(Matrix2f(), 1e-4f)); |
| CALL_SUBTEST_5(testLogThenExp(Matrix3cf(), 1e-4f)); |
| CALL_SUBTEST_8(testLogThenExp(Matrix4f(), 1e-4f)); |
| CALL_SUBTEST_6(testLogThenExp(MatrixXf(2,2), 1e-3f)); |
| CALL_SUBTEST_9(testLogThenExp(MatrixXe(7,7), 1e-13L)); |
| CALL_SUBTEST_10(testLogThenExp(Matrix3d(), 1e-13)); |
| CALL_SUBTEST_11(testLogThenExp(Matrix3f(), 1e-4f)); |
| CALL_SUBTEST_12(testLogThenExp(Matrix3e(), 1e-13L)); |
| } |