| /* zlarfg.f -- translated by f2c (version 20061008). |
| You must link the resulting object file with libf2c: |
| on Microsoft Windows system, link with libf2c.lib; |
| on Linux or Unix systems, link with .../path/to/libf2c.a -lm |
| or, if you install libf2c.a in a standard place, with -lf2c -lm |
| -- in that order, at the end of the command line, as in |
| cc *.o -lf2c -lm |
| Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., |
| |
| http://www.netlib.org/f2c/libf2c.zip |
| */ |
| |
| #include "f2c.h" |
| #include "blaswrap.h" |
| |
| /* Table of constant values */ |
| |
| static doublecomplex c_b5 = {1.,0.}; |
| |
| /* Subroutine */ int zlarfg_(integer *n, doublecomplex *alpha, doublecomplex * |
| x, integer *incx, doublecomplex *tau) |
| { |
| /* System generated locals */ |
| integer i__1; |
| doublereal d__1, d__2; |
| doublecomplex z__1, z__2; |
| |
| /* Builtin functions */ |
| double d_imag(doublecomplex *), d_sign(doublereal *, doublereal *); |
| |
| /* Local variables */ |
| integer j, knt; |
| doublereal beta, alphi, alphr; |
| extern /* Subroutine */ int zscal_(integer *, doublecomplex *, |
| doublecomplex *, integer *); |
| doublereal xnorm; |
| extern doublereal dlapy3_(doublereal *, doublereal *, doublereal *), |
| dznrm2_(integer *, doublecomplex *, integer *), dlamch_(char *); |
| doublereal safmin; |
| extern /* Subroutine */ int zdscal_(integer *, doublereal *, |
| doublecomplex *, integer *); |
| doublereal rsafmn; |
| extern /* Double Complex */ VOID zladiv_(doublecomplex *, doublecomplex *, |
| doublecomplex *); |
| |
| |
| /* -- LAPACK auxiliary routine (version 3.2) -- */ |
| /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ |
| /* November 2006 */ |
| |
| /* .. Scalar Arguments .. */ |
| /* .. */ |
| /* .. Array Arguments .. */ |
| /* .. */ |
| |
| /* Purpose */ |
| /* ======= */ |
| |
| /* ZLARFG generates a complex elementary reflector H of order n, such */ |
| /* that */ |
| |
| /* H' * ( alpha ) = ( beta ), H' * H = I. */ |
| /* ( x ) ( 0 ) */ |
| |
| /* where alpha and beta are scalars, with beta real, and x is an */ |
| /* (n-1)-element complex vector. H is represented in the form */ |
| |
| /* H = I - tau * ( 1 ) * ( 1 v' ) , */ |
| /* ( v ) */ |
| |
| /* where tau is a complex scalar and v is a complex (n-1)-element */ |
| /* vector. Note that H is not hermitian. */ |
| |
| /* If the elements of x are all zero and alpha is real, then tau = 0 */ |
| /* and H is taken to be the unit matrix. */ |
| |
| /* Otherwise 1 <= real(tau) <= 2 and abs(tau-1) <= 1 . */ |
| |
| /* Arguments */ |
| /* ========= */ |
| |
| /* N (input) INTEGER */ |
| /* The order of the elementary reflector. */ |
| |
| /* ALPHA (input/output) COMPLEX*16 */ |
| /* On entry, the value alpha. */ |
| /* On exit, it is overwritten with the value beta. */ |
| |
| /* X (input/output) COMPLEX*16 array, dimension */ |
| /* (1+(N-2)*abs(INCX)) */ |
| /* On entry, the vector x. */ |
| /* On exit, it is overwritten with the vector v. */ |
| |
| /* INCX (input) INTEGER */ |
| /* The increment between elements of X. INCX > 0. */ |
| |
| /* TAU (output) COMPLEX*16 */ |
| /* The value tau. */ |
| |
| /* ===================================================================== */ |
| |
| /* .. Parameters .. */ |
| /* .. */ |
| /* .. Local Scalars .. */ |
| /* .. */ |
| /* .. External Functions .. */ |
| /* .. */ |
| /* .. Intrinsic Functions .. */ |
| /* .. */ |
| /* .. External Subroutines .. */ |
| /* .. */ |
| /* .. Executable Statements .. */ |
| |
| /* Parameter adjustments */ |
| --x; |
| |
| /* Function Body */ |
| if (*n <= 0) { |
| tau->r = 0., tau->i = 0.; |
| return 0; |
| } |
| |
| i__1 = *n - 1; |
| xnorm = dznrm2_(&i__1, &x[1], incx); |
| alphr = alpha->r; |
| alphi = d_imag(alpha); |
| |
| if (xnorm == 0. && alphi == 0.) { |
| |
| /* H = I */ |
| |
| tau->r = 0., tau->i = 0.; |
| } else { |
| |
| /* general case */ |
| |
| d__1 = dlapy3_(&alphr, &alphi, &xnorm); |
| beta = -d_sign(&d__1, &alphr); |
| safmin = dlamch_("S") / dlamch_("E"); |
| rsafmn = 1. / safmin; |
| |
| knt = 0; |
| if (abs(beta) < safmin) { |
| |
| /* XNORM, BETA may be inaccurate; scale X and recompute them */ |
| |
| L10: |
| ++knt; |
| i__1 = *n - 1; |
| zdscal_(&i__1, &rsafmn, &x[1], incx); |
| beta *= rsafmn; |
| alphi *= rsafmn; |
| alphr *= rsafmn; |
| if (abs(beta) < safmin) { |
| goto L10; |
| } |
| |
| /* New BETA is at most 1, at least SAFMIN */ |
| |
| i__1 = *n - 1; |
| xnorm = dznrm2_(&i__1, &x[1], incx); |
| z__1.r = alphr, z__1.i = alphi; |
| alpha->r = z__1.r, alpha->i = z__1.i; |
| d__1 = dlapy3_(&alphr, &alphi, &xnorm); |
| beta = -d_sign(&d__1, &alphr); |
| } |
| d__1 = (beta - alphr) / beta; |
| d__2 = -alphi / beta; |
| z__1.r = d__1, z__1.i = d__2; |
| tau->r = z__1.r, tau->i = z__1.i; |
| z__2.r = alpha->r - beta, z__2.i = alpha->i; |
| zladiv_(&z__1, &c_b5, &z__2); |
| alpha->r = z__1.r, alpha->i = z__1.i; |
| i__1 = *n - 1; |
| zscal_(&i__1, alpha, &x[1], incx); |
| |
| /* If ALPHA is subnormal, it may lose relative accuracy */ |
| |
| i__1 = knt; |
| for (j = 1; j <= i__1; ++j) { |
| beta *= safmin; |
| /* L20: */ |
| } |
| alpha->r = beta, alpha->i = 0.; |
| } |
| |
| return 0; |
| |
| /* End of ZLARFG */ |
| |
| } /* zlarfg_ */ |