| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2011 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // Copyright (C) 2012, 2014 Kolja Brix <brix@igpm.rwth-aaachen.de> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_GMRES_H |
| #define EIGEN_GMRES_H |
| |
| namespace Eigen { |
| |
| namespace internal { |
| |
| /** |
| * Generalized Minimal Residual Algorithm based on the |
| * Arnoldi algorithm implemented with Householder reflections. |
| * |
| * Parameters: |
| * \param mat matrix of linear system of equations |
| * \param rhs right hand side vector of linear system of equations |
| * \param x on input: initial guess, on output: solution |
| * \param precond preconditioner used |
| * \param iters on input: maximum number of iterations to perform |
| * on output: number of iterations performed |
| * \param restart number of iterations for a restart |
| * \param tol_error on input: relative residual tolerance |
| * on output: residuum achieved |
| * |
| * \sa IterativeMethods::bicgstab() |
| * |
| * |
| * For references, please see: |
| * |
| * Saad, Y. and Schultz, M. H. |
| * GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems. |
| * SIAM J.Sci.Stat.Comp. 7, 1986, pp. 856 - 869. |
| * |
| * Saad, Y. |
| * Iterative Methods for Sparse Linear Systems. |
| * Society for Industrial and Applied Mathematics, Philadelphia, 2003. |
| * |
| * Walker, H. F. |
| * Implementations of the GMRES method. |
| * Comput.Phys.Comm. 53, 1989, pp. 311 - 320. |
| * |
| * Walker, H. F. |
| * Implementation of the GMRES Method using Householder Transformations. |
| * SIAM J.Sci.Stat.Comp. 9, 1988, pp. 152 - 163. |
| * |
| */ |
| template<typename MatrixType, typename Rhs, typename Dest, typename Preconditioner> |
| bool gmres(const MatrixType & mat, const Rhs & rhs, Dest & x, const Preconditioner & precond, |
| Index &iters, const Index &restart, typename Dest::RealScalar & tol_error) { |
| |
| using std::sqrt; |
| using std::abs; |
| |
| typedef typename Dest::RealScalar RealScalar; |
| typedef typename Dest::Scalar Scalar; |
| typedef Matrix < Scalar, Dynamic, 1 > VectorType; |
| typedef Matrix < Scalar, Dynamic, Dynamic, ColMajor> FMatrixType; |
| |
| const RealScalar considerAsZero = (std::numeric_limits<RealScalar>::min)(); |
| |
| if(rhs.norm() <= considerAsZero) |
| { |
| x.setZero(); |
| tol_error = 0; |
| return true; |
| } |
| |
| RealScalar tol = tol_error; |
| const Index maxIters = iters; |
| iters = 0; |
| |
| const Index m = mat.rows(); |
| |
| // residual and preconditioned residual |
| VectorType p0 = rhs - mat*x; |
| VectorType r0 = precond.solve(p0); |
| |
| const RealScalar r0Norm = r0.norm(); |
| |
| // is initial guess already good enough? |
| if(r0Norm == 0) |
| { |
| tol_error = 0; |
| return true; |
| } |
| |
| // storage for Hessenberg matrix and Householder data |
| FMatrixType H = FMatrixType::Zero(m, restart + 1); |
| VectorType w = VectorType::Zero(restart + 1); |
| VectorType tau = VectorType::Zero(restart + 1); |
| |
| // storage for Jacobi rotations |
| std::vector < JacobiRotation < Scalar > > G(restart); |
| |
| // storage for temporaries |
| VectorType t(m), v(m), workspace(m), x_new(m); |
| |
| // generate first Householder vector |
| Ref<VectorType> H0_tail = H.col(0).tail(m - 1); |
| RealScalar beta; |
| r0.makeHouseholder(H0_tail, tau.coeffRef(0), beta); |
| w(0) = Scalar(beta); |
| |
| for (Index k = 1; k <= restart; ++k) |
| { |
| ++iters; |
| |
| v = VectorType::Unit(m, k - 1); |
| |
| // apply Householder reflections H_{1} ... H_{k-1} to v |
| // TODO: use a HouseholderSequence |
| for (Index i = k - 1; i >= 0; --i) { |
| v.tail(m - i).applyHouseholderOnTheLeft(H.col(i).tail(m - i - 1), tau.coeffRef(i), workspace.data()); |
| } |
| |
| // apply matrix M to v: v = mat * v; |
| t.noalias() = mat * v; |
| v = precond.solve(t); |
| |
| // apply Householder reflections H_{k-1} ... H_{1} to v |
| // TODO: use a HouseholderSequence |
| for (Index i = 0; i < k; ++i) { |
| v.tail(m - i).applyHouseholderOnTheLeft(H.col(i).tail(m - i - 1), tau.coeffRef(i), workspace.data()); |
| } |
| |
| if (v.tail(m - k).norm() != 0.0) |
| { |
| if (k <= restart) |
| { |
| // generate new Householder vector |
| Ref<VectorType> Hk_tail = H.col(k).tail(m - k - 1); |
| v.tail(m - k).makeHouseholder(Hk_tail, tau.coeffRef(k), beta); |
| |
| // apply Householder reflection H_{k} to v |
| v.tail(m - k).applyHouseholderOnTheLeft(Hk_tail, tau.coeffRef(k), workspace.data()); |
| } |
| } |
| |
| if (k > 1) |
| { |
| for (Index i = 0; i < k - 1; ++i) |
| { |
| // apply old Givens rotations to v |
| v.applyOnTheLeft(i, i + 1, G[i].adjoint()); |
| } |
| } |
| |
| if (k<m && v(k) != (Scalar) 0) |
| { |
| // determine next Givens rotation |
| G[k - 1].makeGivens(v(k - 1), v(k)); |
| |
| // apply Givens rotation to v and w |
| v.applyOnTheLeft(k - 1, k, G[k - 1].adjoint()); |
| w.applyOnTheLeft(k - 1, k, G[k - 1].adjoint()); |
| } |
| |
| // insert coefficients into upper matrix triangle |
| H.col(k-1).head(k) = v.head(k); |
| |
| tol_error = abs(w(k)) / r0Norm; |
| bool stop = (k==m || tol_error < tol || iters == maxIters); |
| |
| if (stop || k == restart) |
| { |
| // solve upper triangular system |
| Ref<VectorType> y = w.head(k); |
| H.topLeftCorner(k, k).template triangularView <Upper>().solveInPlace(y); |
| |
| // use Horner-like scheme to calculate solution vector |
| x_new.setZero(); |
| for (Index i = k - 1; i >= 0; --i) |
| { |
| x_new(i) += y(i); |
| // apply Householder reflection H_{i} to x_new |
| x_new.tail(m - i).applyHouseholderOnTheLeft(H.col(i).tail(m - i - 1), tau.coeffRef(i), workspace.data()); |
| } |
| |
| x += x_new; |
| |
| if(stop) |
| { |
| return true; |
| } |
| else |
| { |
| k=0; |
| |
| // reset data for restart |
| p0.noalias() = rhs - mat*x; |
| r0 = precond.solve(p0); |
| |
| // clear Hessenberg matrix and Householder data |
| H.setZero(); |
| w.setZero(); |
| tau.setZero(); |
| |
| // generate first Householder vector |
| r0.makeHouseholder(H0_tail, tau.coeffRef(0), beta); |
| w(0) = Scalar(beta); |
| } |
| } |
| } |
| |
| return false; |
| |
| } |
| |
| } |
| |
| template< typename _MatrixType, |
| typename _Preconditioner = DiagonalPreconditioner<typename _MatrixType::Scalar> > |
| class GMRES; |
| |
| namespace internal { |
| |
| template< typename _MatrixType, typename _Preconditioner> |
| struct traits<GMRES<_MatrixType,_Preconditioner> > |
| { |
| typedef _MatrixType MatrixType; |
| typedef _Preconditioner Preconditioner; |
| }; |
| |
| } |
| |
| /** \ingroup IterativeLinearSolvers_Module |
| * \brief A GMRES solver for sparse square problems |
| * |
| * This class allows to solve for A.x = b sparse linear problems using a generalized minimal |
| * residual method. The vectors x and b can be either dense or sparse. |
| * |
| * \tparam _MatrixType the type of the sparse matrix A, can be a dense or a sparse matrix. |
| * \tparam _Preconditioner the type of the preconditioner. Default is DiagonalPreconditioner |
| * |
| * The maximal number of iterations and tolerance value can be controlled via the setMaxIterations() |
| * and setTolerance() methods. The defaults are the size of the problem for the maximal number of iterations |
| * and NumTraits<Scalar>::epsilon() for the tolerance. |
| * |
| * This class can be used as the direct solver classes. Here is a typical usage example: |
| * \code |
| * int n = 10000; |
| * VectorXd x(n), b(n); |
| * SparseMatrix<double> A(n,n); |
| * // fill A and b |
| * GMRES<SparseMatrix<double> > solver(A); |
| * x = solver.solve(b); |
| * std::cout << "#iterations: " << solver.iterations() << std::endl; |
| * std::cout << "estimated error: " << solver.error() << std::endl; |
| * // update b, and solve again |
| * x = solver.solve(b); |
| * \endcode |
| * |
| * By default the iterations start with x=0 as an initial guess of the solution. |
| * One can control the start using the solveWithGuess() method. |
| * |
| * GMRES can also be used in a matrix-free context, see the following \link MatrixfreeSolverExample example \endlink. |
| * |
| * \sa class SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner |
| */ |
| template< typename _MatrixType, typename _Preconditioner> |
| class GMRES : public IterativeSolverBase<GMRES<_MatrixType,_Preconditioner> > |
| { |
| typedef IterativeSolverBase<GMRES> Base; |
| using Base::matrix; |
| using Base::m_error; |
| using Base::m_iterations; |
| using Base::m_info; |
| using Base::m_isInitialized; |
| |
| private: |
| Index m_restart; |
| |
| public: |
| using Base::_solve_impl; |
| typedef _MatrixType MatrixType; |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename MatrixType::RealScalar RealScalar; |
| typedef _Preconditioner Preconditioner; |
| |
| public: |
| |
| /** Default constructor. */ |
| GMRES() : Base(), m_restart(30) {} |
| |
| /** Initialize the solver with matrix \a A for further \c Ax=b solving. |
| * |
| * This constructor is a shortcut for the default constructor followed |
| * by a call to compute(). |
| * |
| * \warning this class stores a reference to the matrix A as well as some |
| * precomputed values that depend on it. Therefore, if \a A is changed |
| * this class becomes invalid. Call compute() to update it with the new |
| * matrix A, or modify a copy of A. |
| */ |
| template<typename MatrixDerived> |
| explicit GMRES(const EigenBase<MatrixDerived>& A) : Base(A.derived()), m_restart(30) {} |
| |
| ~GMRES() {} |
| |
| /** Get the number of iterations after that a restart is performed. |
| */ |
| Index get_restart() { return m_restart; } |
| |
| /** Set the number of iterations after that a restart is performed. |
| * \param restart number of iterations for a restarti, default is 30. |
| */ |
| void set_restart(const Index restart) { m_restart=restart; } |
| |
| /** \internal */ |
| template<typename Rhs,typename Dest> |
| void _solve_vector_with_guess_impl(const Rhs& b, Dest& x) const |
| { |
| m_iterations = Base::maxIterations(); |
| m_error = Base::m_tolerance; |
| bool ret = internal::gmres(matrix(), b, x, Base::m_preconditioner, m_iterations, m_restart, m_error); |
| m_info = (!ret) ? NumericalIssue |
| : m_error <= Base::m_tolerance ? Success |
| : NoConvergence; |
| } |
| |
| protected: |
| |
| }; |
| |
| } // end namespace Eigen |
| |
| #endif // EIGEN_GMRES_H |