blob: 477c50fa5f77859d71a89aabf7917b7c5e45058a [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2022 Intel Corporation
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef GEMM_KERNEL_H
#define GEMM_KERNEL_H
#if EIGEN_COMP_MSVC
#include <intrin.h>
#else
#include <x86intrin.h>
#endif
#include <immintrin.h>
#include <type_traits>
#include "../../InternalHeaderCheck.h"
#define SECOND_FETCH (32)
#if (EIGEN_COMP_GNUC_STRICT != 0) && !defined(EIGEN_ARCH_AVX512_GEMM_KERNEL_USE_LESS_A_REGS)
// Use less registers to load A elements to workaround compiler spills. Loose a
// bit of performance (less than ~2%).
#define EIGEN_ARCH_AVX512_GEMM_KERNEL_USE_LESS_A_REGS
#endif
namespace Eigen {
namespace internal {
template <typename Scalar, bool is_unit_inc>
class gemm_class {
using vec = typename packet_traits<Scalar>::type;
using vec_ymm = typename unpacket_traits<vec>::half;
using vec_xmm = typename unpacket_traits<vec_ymm>::half;
using umask_t = typename unpacket_traits<vec>::mask_t;
static constexpr bool is_f32 = sizeof(Scalar) == sizeof(float);
static constexpr bool is_f64 = sizeof(Scalar) == sizeof(double);
#ifndef EIGEN_ARCH_AVX512_GEMM_KERNEL_USE_LESS_A_REGS
static constexpr bool use_less_a_regs = !is_unit_inc;
#else
static constexpr bool use_less_a_regs = true;
#endif
#ifndef EIGEN_ARCH_AVX512_GEMM_KERNEL_USE_LESS_B_REGS
static constexpr bool use_less_b_regs = !is_unit_inc;
#else
static constexpr bool use_less_b_regs = true;
#endif
static constexpr int a_regs[] = {0, 1, 2, use_less_a_regs ? 0 : 3, use_less_a_regs ? 1 : 4, use_less_a_regs ? 2 : 5};
static constexpr int b_regs[] = {6, use_less_b_regs ? 6 : 7};
static constexpr int c_regs[] = {
8, 16, 24, 9, 17, 25, 10, 18, 26, 11, 19, 27, 12, 20, 28, 13, 21, 29, 14, 22, 30, 15, 23, 31,
};
static constexpr int alpha_load_reg = 0;
static constexpr int c_load_regs[] = {1, 2, 6};
static constexpr int a_shift = 128;
static constexpr int b_shift = 128;
static constexpr int nelems_in_cache_line = is_f32 ? 16 : 8;
static constexpr int a_prefetch_size = nelems_in_cache_line * 2;
static constexpr int b_prefetch_size = nelems_in_cache_line * 8;
vec zmm[32];
umask_t mask;
// gemm arguments.
Index m;
const Index n, k, ldc;
const Index inc;
const Scalar *alpha;
const Scalar *a, *b;
Scalar *c;
const bool is_alpha1;
const bool is_beta0;
const Index a_stride, b_stride;
const Index a_off, b_off;
static EIGEN_ALWAYS_INLINE constexpr int div_up(int a, int b) { return a == 0 ? 0 : (a - 1) / b + 1; }
EIGEN_ALWAYS_INLINE void prefetch_a(const Scalar *a_addr) {
_mm_prefetch((char *)(a_prefetch_size + a_addr - a_shift), _MM_HINT_T0);
}
EIGEN_ALWAYS_INLINE void prefetch_b(const Scalar *b_addr) {
_mm_prefetch((char *)(b_prefetch_size + b_addr - b_shift), _MM_HINT_T0);
}
EIGEN_ALWAYS_INLINE void prefetch_x(const Scalar *x_addr) { _mm_prefetch((char *)(x_addr - a_shift), _MM_HINT_T2); }
EIGEN_ALWAYS_INLINE void prefetch_c(const Scalar *c_addr) {
#if defined(__PRFCHW__) && __PRFCHW__ == 1
_m_prefetchw((void *)c_addr);
#else
_mm_prefetch((char *)c_addr, _MM_HINT_T0);
#endif
}
template <int nelems>
EIGEN_ALWAYS_INLINE void a_load(vec &a_reg, const Scalar *a_addr) {
switch (nelems * sizeof(*a_addr) * 8) {
default:
case 512 * 3:
a_reg = ploadu<vec>(a_addr);
break;
case 512 * 2:
a_reg = ploadu<vec>(a_addr);
break;
case 512 * 1:
a_reg = ploadu<vec>(a_addr);
break;
case 256 * 1:
a_reg = preinterpret<vec>(_mm512_broadcast_f64x4(ploadu<Packet4d>(reinterpret_cast<const double *>(a_addr))));
break;
case 128 * 1:
a_reg = preinterpret<vec>(_mm512_broadcast_f32x4(ploadu<Packet4f>(reinterpret_cast<const float *>(a_addr))));
break;
case 64 * 1:
a_reg = preinterpret<vec>(pload1<Packet8d>(reinterpret_cast<const double *>(a_addr)));
break;
case 32 * 1:
a_reg = pload1<vec>(a_addr);
break;
}
}
EIGEN_ALWAYS_INLINE void b_load(vec &b_reg, const Scalar *b_addr) { b_reg = pload1<vec>(b_addr); }
template <int nelems>
EIGEN_ALWAYS_INLINE void c_store(Scalar *mem, vec &src) {
if (is_unit_inc) {
switch (nelems * sizeof(*mem) * 8) {
default:
case 512 * 3:
pstoreu(mem, src);
break;
case 512 * 2:
pstoreu(mem, src);
break;
case 512 * 1:
pstoreu(mem, src);
break;
case 256 * 1:
pstoreu(mem, preinterpret<vec_ymm>(src));
break;
case 128 * 1:
pstoreu(mem, preinterpret<vec_xmm>(src));
break;
case 64 * 1:
pstorel(mem, preinterpret<vec_xmm>(src));
break;
case 32 * 1:
pstores(mem, preinterpret<vec_xmm>(src));
break;
}
} else {
switch (nelems * sizeof(*mem) * 8) {
default:
case 512 * 3:
pscatter(mem, src, inc);
break;
case 512 * 2:
pscatter(mem, src, inc);
break;
case 512 * 1:
pscatter(mem, src, inc);
break;
case 256 * 1:
pscatter(mem, src, inc, mask);
break;
case 128 * 1:
pscatter(mem, src, inc, mask);
break;
case 64 * 1:
pscatter(mem, src, inc, mask);
break;
case 32 * 1:
pscatter(mem, src, inc, mask);
break;
}
}
}
template <int nelems>
EIGEN_ALWAYS_INLINE void vaddm(vec &dst, const Scalar *mem, vec &src, vec &reg) {
if (is_unit_inc) {
switch (nelems * sizeof(*mem) * 8) {
default:
case 512 * 3:
dst = padd(src, ploadu<vec>(mem));
break;
case 512 * 2:
dst = padd(src, ploadu<vec>(mem));
break;
case 512 * 1:
dst = padd(src, ploadu<vec>(mem));
break;
case 256 * 1:
dst = preinterpret<vec>(padd(preinterpret<vec_ymm>(src), ploadu<vec_ymm>(mem)));
break;
case 128 * 1:
dst = preinterpret<vec>(padd(preinterpret<vec_xmm>(src), ploadu<vec_xmm>(mem)));
break;
case 64 * 1:
dst = preinterpret<vec>(padd(preinterpret<vec_xmm>(src), ploadl<vec_xmm>(mem)));
break;
case 32 * 1:
dst = preinterpret<vec>(padds(preinterpret<vec_xmm>(src), ploads<vec_xmm>(mem)));
break;
}
} else {
// Zero out scratch register
reg = pzero(reg);
switch (nelems * sizeof(*mem) * 8) {
default:
case 512 * 3:
reg = pgather<Scalar, vec>(mem, inc);
dst = padd(src, reg);
break;
case 512 * 2:
reg = pgather<Scalar, vec>(mem, inc);
dst = padd(src, reg);
break;
case 512 * 1:
reg = pgather<Scalar, vec>(mem, inc);
dst = padd(src, reg);
break;
case 256 * 1:
reg = preinterpret<vec>(pgather<Scalar, vec_ymm>(mem, inc));
dst = preinterpret<vec>(padd(preinterpret<vec_ymm>(src), preinterpret<vec_ymm>(reg)));
break;
case 128 * 1:
reg = preinterpret<vec>(pgather<Scalar, vec_xmm>(mem, inc));
dst = preinterpret<vec>(padd(preinterpret<vec_xmm>(src), preinterpret<vec_xmm>(reg)));
break;
case 64 * 1:
if (is_f32) {
reg = pgather(reg, mem, inc, mask);
dst = preinterpret<vec>(padd(preinterpret<vec_xmm>(src), preinterpret<vec_xmm>(reg)));
} else {
dst = preinterpret<vec>(padd(preinterpret<vec_xmm>(src), ploadl<vec_xmm>(mem)));
}
break;
case 32 * 1:
dst = preinterpret<vec>(padds(preinterpret<vec_xmm>(src), ploads<vec_xmm>(mem)));
break;
}
}
}
EIGEN_STRONG_INLINE void vfmadd(vec &dst, const vec &src1, const vec &src2) {
dst = pmadd(src1, src2, dst);
#if (EIGEN_COMP_GNUC != 0) || (EIGEN_COMP_CLANG != 0)
// Workaround register spills for gcc and clang
__asm__("#" : [dst] "+v"(dst) : [src1] "%v"(src1), [src2] "v"(src2));
#endif
}
template <int nelems>
EIGEN_ALWAYS_INLINE void vfmaddm(vec &dst, const Scalar *mem, vec &src, vec &scale, vec &reg) {
if (is_unit_inc) {
switch (nelems * sizeof(*mem) * 8) {
default:
case 512 * 3:
dst = pmadd(scale, src, ploadu<vec>(mem));
break;
case 512 * 2:
dst = pmadd(scale, src, ploadu<vec>(mem));
break;
case 512 * 1:
dst = pmadd(scale, src, ploadu<vec>(mem));
break;
case 256 * 1:
dst =
preinterpret<vec>(pmadd(preinterpret<vec_ymm>(scale), preinterpret<vec_ymm>(src), ploadu<vec_ymm>(mem)));
break;
case 128 * 1:
dst =
preinterpret<vec>(pmadd(preinterpret<vec_xmm>(scale), preinterpret<vec_xmm>(src), ploadu<vec_xmm>(mem)));
break;
case 64 * 1:
dst =
preinterpret<vec>(pmadd(preinterpret<vec_xmm>(scale), preinterpret<vec_xmm>(src), ploadl<vec_xmm>(mem)));
break;
case 32 * 1:
dst =
preinterpret<vec>(pmadds(preinterpret<vec_xmm>(scale), preinterpret<vec_xmm>(src), ploads<vec_xmm>(mem)));
break;
}
} else {
// Zero out scratch register
reg = pzero(reg);
switch (nelems * sizeof(*mem) * 8) {
default:
case 512 * 3:
reg = pgather<Scalar, vec>(mem, inc);
dst = pmadd(scale, src, reg);
break;
case 512 * 2:
reg = pgather<Scalar, vec>(mem, inc);
dst = pmadd(scale, src, reg);
break;
case 512 * 1:
reg = pgather<Scalar, vec>(mem, inc);
dst = pmadd(scale, src, reg);
break;
case 256 * 1:
reg = preinterpret<vec>(pgather<Scalar, vec_ymm>(mem, inc));
dst = preinterpret<vec>(
pmadd(preinterpret<vec_ymm>(scale), preinterpret<vec_ymm>(src), preinterpret<vec_ymm>(reg)));
break;
case 128 * 1:
reg = preinterpret<vec>(pgather<Scalar, vec_xmm>(mem, inc));
dst = preinterpret<vec>(
pmadd(preinterpret<vec_xmm>(scale), preinterpret<vec_xmm>(src), preinterpret<vec_xmm>(reg)));
break;
case 64 * 1:
if (is_f32) {
reg = pgather(reg, mem, inc, mask);
dst = preinterpret<vec>(
pmadd(preinterpret<vec_xmm>(scale), preinterpret<vec_xmm>(src), preinterpret<vec_xmm>(reg)));
} else {
dst = preinterpret<vec>(
pmadd(preinterpret<vec_xmm>(scale), preinterpret<vec_xmm>(src), ploadl<vec_xmm>(mem)));
}
break;
case 32 * 1:
dst =
preinterpret<vec>(pmadds(preinterpret<vec_xmm>(scale), preinterpret<vec_xmm>(src), ploads<vec_xmm>(mem)));
break;
}
}
}
template <int j, int endX, int i, int endY, int nelems>
EIGEN_ALWAYS_INLINE std::enable_if_t<(j > endX) || (i > endY)> a_loads(const Scalar *ao) {
EIGEN_UNUSED_VARIABLE(ao);
}
template <int j, int endX, int i, int endY, int nelems>
EIGEN_ALWAYS_INLINE std::enable_if_t<(j <= endX) && (i <= endY)> a_loads(const Scalar *ao) {
if (j < endX) {
if (i < endY) {
auto &a_reg = zmm[a_regs[i + (j % 2) * 3]];
const Scalar *a_addr = ao + nelems * j + nelems_in_cache_line * i - a_shift;
a_load<nelems>(a_reg, a_addr);
a_loads<j, endX, i + 1, endY, nelems>(ao);
} else {
a_loads<j + 1, endX, 0, endY, nelems>(ao);
}
}
}
template <int un, int max_b_unroll, int i, int um_vecs, int a_unroll, int b_unroll>
EIGEN_ALWAYS_INLINE std::enable_if_t<(un > max_b_unroll) || (i > um_vecs)> prefetch_cs(const Scalar *co1,
const Scalar *co2) {
EIGEN_UNUSED_VARIABLE(co1);
EIGEN_UNUSED_VARIABLE(co2);
}
/* C prefetch loop structure.
* for (int un = 0; un < 8; un++) {
* if (b_unroll >= un + 1) {
* if (un == 4) co2 = co1 + 4 * ldc;
*
* for (int i = 0; i < um_vecs; i++) {
* Scalar *co = (un + 1 <= 4) ? co1 : co2;
* auto co_off = (un % 4) * ldc + a_unroll - 1 + i * nelems_in_cache_line * sizeof *co;
* prefetch_c(co + co_off);
* }
* }
* }
*/
template <int un, int max_b_unroll, int i, int um_vecs, int a_unroll, int b_unroll>
EIGEN_ALWAYS_INLINE std::enable_if_t<(un <= max_b_unroll) && (i <= um_vecs)> prefetch_cs(Scalar *&co1, Scalar *&co2) {
if (un < max_b_unroll) {
if (b_unroll >= un + 1) {
if (un == 4 && i == 0) co2 = co1 + 4 * ldc;
if (i < um_vecs) {
Scalar *co = (un + 1 <= 4) ? co1 : co2;
auto co_off = (un % 4) * ldc + a_unroll - 1 + i * nelems_in_cache_line * sizeof *co;
prefetch_c(co + co_off);
prefetch_cs<un, max_b_unroll, i + 1, um_vecs, a_unroll, b_unroll>(co1, co2);
} else {
prefetch_cs<un + 1, max_b_unroll, 0, um_vecs, a_unroll, b_unroll>(co1, co2);
}
} else {
prefetch_cs<un + 1, max_b_unroll, 0, um_vecs, a_unroll, b_unroll>(co1, co2);
}
}
}
// load_c
template <int i, int um_vecs, int idx, int nelems>
EIGEN_ALWAYS_INLINE std::enable_if_t<(i > um_vecs)> scale_load_c(const Scalar *cox, vec &alpha_reg) {
EIGEN_UNUSED_VARIABLE(cox);
EIGEN_UNUSED_VARIABLE(alpha_reg);
}
template <int i, int um_vecs, int idx, int nelems>
EIGEN_ALWAYS_INLINE std::enable_if_t<(i <= um_vecs)> scale_load_c(const Scalar *cox, vec &alpha_reg) {
if (i < um_vecs) {
auto &c_reg = zmm[c_regs[i + idx * 3]];
auto &c_load_reg = zmm[c_load_regs[i % 3]];
auto c_mem = cox;
if (is_unit_inc)
c_mem += i * nelems_in_cache_line;
else
c_mem += i * nelems_in_cache_line * inc;
if (!is_beta0 && is_alpha1)
vaddm<nelems>(c_reg, c_mem, c_reg, c_load_reg);
else if (!is_beta0 && !is_alpha1)
vfmaddm<nelems>(c_reg, c_mem, c_reg, alpha_reg, c_load_reg);
else if (is_beta0 && !is_alpha1)
c_reg = pmul(alpha_reg, c_reg);
scale_load_c<i + 1, um_vecs, idx, nelems>(cox, alpha_reg);
}
}
// store_c
template <int i, int um_vecs, int idx, int nelems>
EIGEN_ALWAYS_INLINE std::enable_if_t<(i > um_vecs)> write_c(Scalar *cox) {
EIGEN_UNUSED_VARIABLE(cox);
}
template <int i, int um_vecs, int idx, int nelems>
EIGEN_ALWAYS_INLINE std::enable_if_t<(i <= um_vecs)> write_c(Scalar *cox) {
if (i < um_vecs) {
auto &c_reg = zmm[c_regs[i + idx * 3]];
auto c_mem = cox;
if (is_unit_inc)
c_mem += i * nelems_in_cache_line;
else
c_mem += i * nelems_in_cache_line * inc;
c_store<nelems>(c_mem, c_reg);
c_reg = pzero(c_reg);
write_c<i + 1, um_vecs, idx, nelems>(cox);
}
}
/* C update loop structure.
* co2 = co1 + ldc;
*
* auto &alpha_reg = zmm[alpha_load_reg];
* if (!is_alpha1) alpha_reg = pload1<vec>(alpha);
*
* int idx = 0;
* for (pow = 1; pow <= 8; pow <<= 1) {
*
* if (b_unroll >= pow) {
* for (count = 1; count < (pow + 1) / 2 + 1; count++) {
* if (pow >= 4) co2 += ldc;
*
* const Scalar *cox = (idx == 0) ? co1 : co2;
*
* const int um_vecs = div_up(a_unroll, nelems_in_cache_line);
* scale_load_c<0, um_vecs, idx, a_unroll>(cox, alpha_reg);
* write_c<0, um_vecs, idx, a_unroll>(cox);
*
* idx++;
* }
* }
* }
*
* if (b_unroll == 1)
* co1 += ldc;
* else
* co1 = co2 + ldc;
*/
template <int pow, int a_unroll, int idx>
EIGEN_ALWAYS_INLINE void c_update_1count(Scalar *&cox) {
if (pow >= 4) cox += ldc;
const int um_vecs = div_up(a_unroll, nelems_in_cache_line);
auto &alpha_reg = zmm[alpha_load_reg];
scale_load_c<0, um_vecs, idx, a_unroll>(cox, alpha_reg);
write_c<0, um_vecs, idx, a_unroll>(cox);
}
template <int pow, int a_unroll>
EIGEN_ALWAYS_INLINE void c_update_1pow(Scalar *&co1, Scalar *&co2) {
constexpr int idx = pow / 2;
Scalar *&cox = idx == 0 ? co1 : co2;
constexpr int max_count = (pow + 1) / 2;
static_assert(max_count <= 4, "Unsupported max_count.");
if (1 <= max_count) c_update_1count<pow, a_unroll, idx + 0>(cox);
if (2 <= max_count) c_update_1count<pow, a_unroll, idx + 1>(cox);
if (3 <= max_count) c_update_1count<pow, a_unroll, idx + 2>(cox);
if (4 <= max_count) c_update_1count<pow, a_unroll, idx + 3>(cox);
}
template <int max_b_unroll, int a_unroll, int b_unroll>
EIGEN_ALWAYS_INLINE void c_update(Scalar *&co1, Scalar *&co2) {
auto &alpha_reg = zmm[alpha_load_reg];
co2 = co1 + ldc;
if (!is_alpha1) alpha_reg = pload1<vec>(alpha);
if (!is_unit_inc && a_unroll < nelems_in_cache_line) mask = static_cast<umask_t>((1ull << a_unroll) - 1);
static_assert(max_b_unroll <= 8, "Unsupported max_b_unroll");
if (1 <= max_b_unroll && 1 <= b_unroll) c_update_1pow<1, a_unroll>(co1, co2);
if (2 <= max_b_unroll && 2 <= b_unroll) c_update_1pow<2, a_unroll>(co1, co2);
if (4 <= max_b_unroll && 4 <= b_unroll) c_update_1pow<4, a_unroll>(co1, co2);
if (8 <= max_b_unroll && 8 <= b_unroll) c_update_1pow<8, a_unroll>(co1, co2);
if (b_unroll == 1)
co1 += ldc;
else
co1 = co2 + ldc;
}
// compute
template <int um, int um_vecs, int idx, int uk, bool fetch_x, bool ktail>
EIGEN_ALWAYS_INLINE std::enable_if_t<(um > um_vecs)> compute(const Scalar *ao, const Scalar *bo, int &fetchA_idx,
int &fetchB_idx, vec &b_reg) {
EIGEN_UNUSED_VARIABLE(ao);
EIGEN_UNUSED_VARIABLE(bo);
EIGEN_UNUSED_VARIABLE(fetchA_idx);
EIGEN_UNUSED_VARIABLE(fetchB_idx);
EIGEN_UNUSED_VARIABLE(b_reg);
}
template <int um, int um_vecs, int idx, int uk, bool fetch_x, bool ktail>
EIGEN_ALWAYS_INLINE std::enable_if_t<(um <= um_vecs)> compute(const Scalar *ao, const Scalar *bo, int &fetchA_idx,
int &fetchB_idx, vec &b_reg) {
if (um < um_vecs) {
auto &c_reg = zmm[c_regs[um + idx * 3]];
auto &a_reg = zmm[a_regs[um + (uk % 2) * 3]];
vfmadd(c_reg, a_reg, b_reg);
if (!fetch_x && um == 0 &&
(((idx == 0 || idx == 6) && (uk % 2 == 0 || is_f64 || ktail)) ||
(idx == 3 && (uk % 2 == 1 || is_f64 || ktail)))) {
prefetch_a(ao + nelems_in_cache_line * fetchA_idx);
fetchA_idx++;
}
if (um == 0 && idx == 1 && (uk % 2 == 0 || is_f64 || ktail)) {
prefetch_b(bo + nelems_in_cache_line * fetchB_idx);
fetchB_idx++;
}
compute<um + 1, um_vecs, idx, uk, fetch_x, ktail>(ao, bo, fetchA_idx, fetchB_idx, b_reg);
}
}
// load_a
template <int um, int um_vecs, int uk, int nelems, bool ktail>
EIGEN_ALWAYS_INLINE std::enable_if_t<(um > um_vecs)> load_a(const Scalar *ao) {
EIGEN_UNUSED_VARIABLE(ao);
}
template <int um, int um_vecs, int uk, int nelems, bool ktail>
EIGEN_ALWAYS_INLINE std::enable_if_t<(um <= um_vecs)> load_a(const Scalar *ao) {
if (um < um_vecs) {
auto &a_reg = zmm[a_regs[um + (uk % 2) * 3]];
const Scalar *a_addr = ao + nelems * (1 + !ktail * !use_less_a_regs + uk) + nelems_in_cache_line * um - a_shift;
a_load<nelems>(a_reg, a_addr);
load_a<um + 1, um_vecs, uk, nelems, ktail>(ao);
}
}
template <int uk, int pow, int count, int um_vecs, int b_unroll, bool ktail, bool fetch_x, bool c_fetch>
EIGEN_ALWAYS_INLINE std::enable_if_t<(count > (pow + 1) / 2)> innerkernel_1pow(const Scalar *&aa,
const Scalar *const &ao,
const Scalar *const &bo, Scalar *&co2,
int &fetchA_idx, int &fetchB_idx) {
EIGEN_UNUSED_VARIABLE(aa);
EIGEN_UNUSED_VARIABLE(ao);
EIGEN_UNUSED_VARIABLE(bo);
EIGEN_UNUSED_VARIABLE(co2);
EIGEN_UNUSED_VARIABLE(fetchA_idx);
EIGEN_UNUSED_VARIABLE(fetchB_idx);
}
template <int uk, int pow, int count, int um_vecs, int b_unroll, bool ktail, bool fetch_x, bool c_fetch>
EIGEN_ALWAYS_INLINE std::enable_if_t<(count <= (pow + 1) / 2)> innerkernel_1pow(const Scalar *&aa,
const Scalar *const &ao,
const Scalar *const &bo, Scalar *&co2,
int &fetchA_idx, int &fetchB_idx) {
const int idx = (pow / 2) + count;
if (count < (pow + 1) / 2) {
auto &b_reg = zmm[b_regs[idx % 2]];
if (fetch_x && uk == 3 && idx == 0) prefetch_x(aa);
if (fetch_x && uk == 3 && idx == 4) aa += 8;
if (b_unroll >= pow) {
compute<0, um_vecs, idx, uk, fetch_x, ktail>(ao, bo, fetchA_idx, fetchB_idx, b_reg);
const Scalar *b_addr = bo + b_unroll * uk + idx + 1 + (b_unroll > 1) * !use_less_b_regs - b_shift;
b_load(b_reg, b_addr);
}
// Go to the next count.
innerkernel_1pow<uk, pow, count + 1, um_vecs, b_unroll, ktail, fetch_x, c_fetch>(aa, ao, bo, co2, fetchA_idx,
fetchB_idx);
} else {
// Maybe prefetch C data after count-loop.
if (pow == 2 && c_fetch) {
if (uk % 3 == 0 && uk > 0) {
co2 += ldc;
} else {
prefetch_c(co2 + (uk % 3) * nelems_in_cache_line);
}
}
}
}
template <int uk, int max_b_unroll, int a_unroll, int b_unroll, bool ktail, bool fetch_x, bool c_fetch>
EIGEN_ALWAYS_INLINE void innerkernel_1uk(const Scalar *&aa, const Scalar *const &ao, const Scalar *const &bo,
Scalar *&co2, int &fetchA_idx, int &fetchB_idx) {
const int um_vecs = div_up(a_unroll, nelems_in_cache_line);
if (max_b_unroll >= 1)
innerkernel_1pow<uk, 1, 0, um_vecs, b_unroll, ktail, fetch_x, c_fetch>(aa, ao, bo, co2, fetchA_idx, fetchB_idx);
if (max_b_unroll >= 2)
innerkernel_1pow<uk, 2, 0, um_vecs, b_unroll, ktail, fetch_x, c_fetch>(aa, ao, bo, co2, fetchA_idx, fetchB_idx);
if (max_b_unroll >= 4)
innerkernel_1pow<uk, 4, 0, um_vecs, b_unroll, ktail, fetch_x, c_fetch>(aa, ao, bo, co2, fetchA_idx, fetchB_idx);
if (max_b_unroll >= 8)
innerkernel_1pow<uk, 8, 0, um_vecs, b_unroll, ktail, fetch_x, c_fetch>(aa, ao, bo, co2, fetchA_idx, fetchB_idx);
// Load A after pow-loop.
load_a<0, um_vecs, uk, a_unroll, ktail>(ao);
}
/* Inner kernel loop structure.
* for (int uk = 0; uk < kfactor; uk++) {
* int idx = 0;
*
* for (pow = 1; pow < max_b_unroll << 1; pow <<= 1) {
* for (int count = 0; count < (pow + 1) / 2; count++) {
* auto &b_reg = zmm[b_regs[idx % 2]];
*
* if (fetch_x && uk == 3 && idx == 0) prefetch_x(aa);
* if (fetch_x && uk == 3 && idx == 4) aa += 8;
*
* if (b_unroll >= pow) {
* compute<0, um_vecs, idx, uk, fetchx, ktail>(ao, bo, fetchA_idx, fetchB_idx, b_reg);
*
* const Scalar *b_addr = bo + b_unroll * uk + idx + 1 + (b_unroll > 1) - b_shift ;
* b_load(b_reg, b_addr);
* }
* idx++;
* }
*
* Maybe prefetch C data.
* if (pow == 2 && c_fetch) {
* if (uk % 3 == 0 && uk > 0) {
* co2 += ldc;
* } else {
* prefetch_c(co2 + (uk % 3) * nelems_in_cache_line);
* }
* }
* }
*
* Load A.
* load_a<0, um_vecs, uk, ktail, a_unroll>(ao);
* }
*
* Advance A/B pointers after uk-loop.
* ao += a_unroll * kfactor;
* bo += b_unroll * kfactor;
*/
template <int a_unroll, int b_unroll, int k_factor, int max_b_unroll, int max_k_factor, bool c_fetch>
EIGEN_ALWAYS_INLINE void innerkernel(const Scalar *&aa, const Scalar *&ao, const Scalar *&bo, Scalar *&co2) {
int fetchA_idx = 0;
int fetchB_idx = 0;
const bool fetch_x = k_factor == max_k_factor;
const bool ktail = k_factor == 1;
static_assert(k_factor <= 4 && k_factor > 0, "innerkernel maximum k_factor supported is 4");
if (k_factor > 0)
innerkernel_1uk<0, max_b_unroll, a_unroll, b_unroll, ktail, fetch_x, c_fetch>(aa, ao, bo, co2, fetchA_idx,
fetchB_idx);
if (k_factor > 1)
innerkernel_1uk<1, max_b_unroll, a_unroll, b_unroll, ktail, fetch_x, c_fetch>(aa, ao, bo, co2, fetchA_idx,
fetchB_idx);
if (k_factor > 2)
innerkernel_1uk<2, max_b_unroll, a_unroll, b_unroll, ktail, fetch_x, c_fetch>(aa, ao, bo, co2, fetchA_idx,
fetchB_idx);
if (k_factor > 3)
innerkernel_1uk<3, max_b_unroll, a_unroll, b_unroll, ktail, fetch_x, c_fetch>(aa, ao, bo, co2, fetchA_idx,
fetchB_idx);
// Advance A/B pointers after uk-loop.
ao += a_unroll * k_factor;
bo += b_unroll * k_factor;
}
template <int a_unroll, int b_unroll, int max_b_unroll>
EIGEN_ALWAYS_INLINE void kloop(const Scalar *&aa, const Scalar *&ao, const Scalar *&bo, Scalar *&co1, Scalar *&co2) {
const int um_vecs = div_up(a_unroll, nelems_in_cache_line);
if (!use_less_a_regs)
a_loads<0, 2, 0, um_vecs, a_unroll>(ao);
else
a_loads<0, 1, 0, um_vecs, a_unroll>(ao);
b_load(zmm[b_regs[0]], bo - b_shift + 0);
if (!use_less_b_regs) b_load(zmm[b_regs[1]], bo - b_shift + 1);
#ifndef SECOND_FETCH
prefetch_cs<0, max_b_unroll, 0, um_vecs, a_unroll, b_unroll>(co1, co2);
#endif // SECOND_FETCH
// Unrolling k-loop by a factor of 4.
const int max_k_factor = 4;
Index loop_count = k / max_k_factor;
if (loop_count > 0) {
#ifdef SECOND_FETCH
loop_count -= SECOND_FETCH;
#endif
while (loop_count > 0) {
innerkernel<a_unroll, b_unroll, max_k_factor, max_b_unroll, max_k_factor, 0>(aa, ao, bo, co2);
loop_count--;
}
#ifdef SECOND_FETCH
co2 = co1 + nelems_in_cache_line - 1;
loop_count += b_unroll;
while (loop_count > 0) {
innerkernel<a_unroll, b_unroll, max_k_factor, max_b_unroll, max_k_factor, 1>(aa, ao, bo, co2);
loop_count--;
}
loop_count += SECOND_FETCH - b_unroll;
while (loop_count > 0) {
innerkernel<a_unroll, b_unroll, max_k_factor, max_b_unroll, max_k_factor, 0>(aa, ao, bo, co2);
loop_count--;
}
#endif
}
// k-loop remainder handling.
loop_count = k % max_k_factor;
while (loop_count > 0) {
innerkernel<a_unroll, b_unroll, 1, max_b_unroll, max_k_factor, 0>(aa, ao, bo, co2);
loop_count--;
}
// Update C matrix.
c_update<max_b_unroll, a_unroll, b_unroll>(co1, co2);
}
template <int a_unroll, int b_unroll, int max_b_unroll>
EIGEN_ALWAYS_INLINE void nloop(const Scalar *&aa, const Scalar *&ao, const Scalar *&bo, Scalar *&co1, Scalar *&co2) {
// Set A matrix pointer.
ao = a + a_off * a_unroll;
// Set B matrix pointer if needed.
bo += b_unroll * b_off;
kloop<a_unroll, b_unroll, max_b_unroll>(aa, ao, bo, co1, co2);
// Advance B matrix pointer if needed.
bo += b_unroll * (b_stride - k - b_off);
// Advance prefetch A pointer.
aa += 16;
}
template <int a_unroll, int max_a_unroll, int max_b_unroll>
EIGEN_ALWAYS_INLINE void mloop(const Scalar *&ao, const Scalar *&bo, Scalar *&co1, Scalar *&co2) {
// Set prefetch A pointers.
const Scalar *aa = a + a_unroll * a_stride;
// Set C matrix pointers.
co1 = c;
if (a_unroll >= max_a_unroll) co2 = c + 2 * ldc;
if (is_unit_inc)
c += a_unroll;
else
c += a_unroll * inc;
// Set B matrix pointer.
bo = b;
// Main n-loop.
for (Index i = n / max_b_unroll; i > 0; i--) nloop<a_unroll, max_b_unroll, max_b_unroll>(aa, ao, bo, co1, co2);
// n-remainders.
if (n & 4 && max_b_unroll > 4) nloop<a_unroll, 4, max_b_unroll>(aa, ao, bo, co1, co2);
#if 0
if (n & 2 && max_b_unroll > 2) nloop<a_unroll, 2, max_b_unroll>(aa, ao, bo, co1, co2);
if (n & 1 && max_b_unroll > 1) nloop<a_unroll, 1, max_b_unroll>(aa, ao, bo, co1, co2);
#else
// Copy kernels don't support tails of n = 2 for single/double precision.
// Loop over ones.
int n_rem = 2 * ((n & 2) != 0) + 1 * ((n & 1) != 0);
while (n_rem > 0) {
nloop<a_unroll, 1, max_b_unroll>(aa, ao, bo, co1, co2);
n_rem--;
}
#endif
// Advance A matrix pointer.
a = ao + a_unroll * (a_stride - k - a_off);
}
public:
// Compute kernel unrolling C matrix by max_a_unroll x max_b_unroll.
template <int max_a_unroll, int max_b_unroll>
EIGEN_ALWAYS_INLINE void compute_kern() {
a -= -a_shift;
b -= -b_shift;
const Scalar *ao = nullptr;
const Scalar *bo = nullptr;
Scalar *co1 = nullptr;
Scalar *co2 = nullptr;
// Main m-loop.
for (; m >= max_a_unroll; m -= max_a_unroll) mloop<max_a_unroll, max_a_unroll, max_b_unroll>(ao, bo, co1, co2);
// m-remainders.
if (m & 32 && max_a_unroll > 32) mloop<32, max_a_unroll, max_b_unroll>(ao, bo, co1, co2);
if (m & 16 && max_a_unroll > 16) mloop<16, max_a_unroll, max_b_unroll>(ao, bo, co1, co2);
if (m & 8 && max_a_unroll > 8) mloop<8, max_a_unroll, max_b_unroll>(ao, bo, co1, co2);
if (m & 4 && max_a_unroll > 4) mloop<4, max_a_unroll, max_b_unroll>(ao, bo, co1, co2);
if (m & 2 && max_a_unroll > 2 && is_f64) mloop<2, max_a_unroll, max_b_unroll>(ao, bo, co1, co2);
if (m & 1 && max_a_unroll > 1 && is_f64) mloop<1, max_a_unroll, max_b_unroll>(ao, bo, co1, co2);
// Copy kernels don't support tails of m = 2 for single precision.
// Loop over ones.
if (is_f32) {
int m_rem = 2 * ((m & 2) != 0) + 1 * ((m & 1) != 0);
while (m_rem > 0) {
mloop<1, max_a_unroll, max_b_unroll>(ao, bo, co1, co2);
m_rem--;
}
}
}
gemm_class(Index m_, Index n_, Index k_, Index ldc_, Index inc_, const Scalar *alpha_, const Scalar *a_,
const Scalar *b_, Scalar *c_, bool is_alpha1_, bool is_beta0_, Index a_stride_, Index b_stride_,
Index a_off_, Index b_off_)
: m(m_),
n(n_),
k(k_),
ldc(ldc_),
inc(inc_),
alpha(alpha_),
a(a_),
b(b_),
c(c_),
is_alpha1(is_alpha1_),
is_beta0(is_beta0_),
a_stride(a_stride_),
b_stride(b_stride_),
a_off(a_off_),
b_off(b_off_) {
// Zero out all accumulation registers.
zmm[8] = pzero(zmm[8]);
zmm[9] = pzero(zmm[9]);
zmm[10] = pzero(zmm[10]);
zmm[11] = pzero(zmm[11]);
zmm[12] = pzero(zmm[12]);
zmm[13] = pzero(zmm[13]);
zmm[14] = pzero(zmm[14]);
zmm[15] = pzero(zmm[15]);
zmm[16] = pzero(zmm[16]);
zmm[17] = pzero(zmm[17]);
zmm[18] = pzero(zmm[18]);
zmm[19] = pzero(zmm[19]);
zmm[20] = pzero(zmm[20]);
zmm[21] = pzero(zmm[21]);
zmm[22] = pzero(zmm[22]);
zmm[23] = pzero(zmm[23]);
zmm[24] = pzero(zmm[24]);
zmm[25] = pzero(zmm[25]);
zmm[26] = pzero(zmm[26]);
zmm[27] = pzero(zmm[27]);
zmm[28] = pzero(zmm[28]);
zmm[29] = pzero(zmm[29]);
zmm[30] = pzero(zmm[30]);
zmm[31] = pzero(zmm[31]);
}
};
// Compute kernel with max unroll support of:
// Single precision:
// max_a_unroll: 48, 32, 16, 8, 4, 2, 1
// max_b_unroll: 8, 4, 2, 1
// Double precision:
// max_a_unroll: 24, 16, 8, 4, 2, 1
// max_b_unroll: 8, 4, 2, 1
template <typename Scalar, int max_a_unroll, int max_b_unroll, bool is_alpha1, bool is_beta0, bool is_unit_inc>
EIGEN_DONT_INLINE void gemm_kern_avx512(Index m, Index n, Index k, Scalar *alpha, const Scalar *a, const Scalar *b,
Scalar *c, Index ldc, Index inc = 1, Index a_stride = -1, Index b_stride = -1,
Index a_off = 0, Index b_off = 0) {
if (a_stride == -1) a_stride = k;
if (b_stride == -1) b_stride = k;
gemm_class<Scalar, is_unit_inc> g(m, n, k, ldc, inc, alpha, a, b, c, is_alpha1, is_beta0, a_stride, b_stride, a_off,
b_off);
g.template compute_kern<max_a_unroll, max_b_unroll>();
}
template <bool ConjLhs_, bool ConjRhs_, int PacketSize_>
class gebp_traits<float, float, ConjLhs_, ConjRhs_, Architecture::Target, PacketSize_>
: public gebp_traits<float, float, ConjLhs_, ConjRhs_, Architecture::Generic, PacketSize_> {
using Base = gebp_traits<float, float, ConjLhs_, ConjRhs_, Architecture::Generic, PacketSize_>;
public:
enum { nr = Base::Vectorizable ? 8 : 4 };
};
template <bool ConjLhs_, bool ConjRhs_, int PacketSize_>
class gebp_traits<double, double, ConjLhs_, ConjRhs_, Architecture::Target, PacketSize_>
: public gebp_traits<double, double, ConjLhs_, ConjRhs_, Architecture::Generic, PacketSize_> {
using Base = gebp_traits<double, double, ConjLhs_, ConjRhs_, Architecture::Generic, PacketSize_>;
public:
enum { nr = Base::Vectorizable ? 8 : 4 };
};
template <typename Scalar, typename Index, typename DataMapper, bool Conjugate, bool PanelMode>
struct gemm_pack_rhs<Scalar, Index, DataMapper, 8, ColMajor, Conjugate, PanelMode> {
typedef typename packet_traits<Scalar>::type Packet;
typedef typename DataMapper::LinearMapper LinearMapper;
enum { PacketSize = packet_traits<Scalar>::size };
EIGEN_DONT_INLINE void operator()(Scalar *blockB, const DataMapper &rhs, Index depth, Index cols, Index stride = 0,
Index offset = 0);
};
template <typename Scalar, typename Index, typename DataMapper, bool Conjugate, bool PanelMode>
EIGEN_DONT_INLINE void gemm_pack_rhs<Scalar, Index, DataMapper, 8, ColMajor, Conjugate, PanelMode>::operator()(
Scalar *blockB, const DataMapper &rhs, Index depth, Index cols, Index stride, Index offset) {
constexpr int nr = 8;
EIGEN_ASM_COMMENT("EIGEN PRODUCT PACK RHS COLMAJOR");
EIGEN_UNUSED_VARIABLE(stride);
EIGEN_UNUSED_VARIABLE(offset);
eigen_assert(((!PanelMode) && stride == 0 && offset == 0) || (PanelMode && stride >= depth && offset <= stride));
conj_if<NumTraits<Scalar>::IsComplex && Conjugate> cj;
Index packet_cols8 = nr >= 8 ? (cols / 8) * 8 : 0;
Index packet_cols4 = nr >= 4 ? (cols / 4) * 4 : 0;
Index count = 0;
const Index peeled_k = (depth / PacketSize) * PacketSize;
if (nr >= 8) {
for (Index j2 = 0; j2 < packet_cols8; j2 += 8) {
// skip what we have before
if (PanelMode) count += 8 * offset;
const LinearMapper dm0 = rhs.getLinearMapper(0, j2 + 0);
const LinearMapper dm1 = rhs.getLinearMapper(0, j2 + 1);
const LinearMapper dm2 = rhs.getLinearMapper(0, j2 + 2);
const LinearMapper dm3 = rhs.getLinearMapper(0, j2 + 3);
const LinearMapper dm4 = rhs.getLinearMapper(0, j2 + 4);
const LinearMapper dm5 = rhs.getLinearMapper(0, j2 + 5);
const LinearMapper dm6 = rhs.getLinearMapper(0, j2 + 6);
const LinearMapper dm7 = rhs.getLinearMapper(0, j2 + 7);
Index k = 0;
if ((PacketSize % 8) == 0) // TODO enable vectorized transposition for PacketSize==4
{
for (; k < peeled_k; k += PacketSize) {
PacketBlock<Packet, (PacketSize % 8) == 0 ? 8 : PacketSize> kernel;
kernel.packet[0] = dm0.template loadPacket<Packet>(k);
kernel.packet[1] = dm1.template loadPacket<Packet>(k);
kernel.packet[2] = dm2.template loadPacket<Packet>(k);
kernel.packet[3] = dm3.template loadPacket<Packet>(k);
kernel.packet[4] = dm4.template loadPacket<Packet>(k);
kernel.packet[5] = dm5.template loadPacket<Packet>(k);
kernel.packet[6] = dm6.template loadPacket<Packet>(k);
kernel.packet[7] = dm7.template loadPacket<Packet>(k);
ptranspose(kernel);
pstoreu(blockB + count + 0 * PacketSize, cj.pconj(kernel.packet[0]));
pstoreu(blockB + count + 1 * PacketSize, cj.pconj(kernel.packet[1 % PacketSize]));
pstoreu(blockB + count + 2 * PacketSize, cj.pconj(kernel.packet[2 % PacketSize]));
pstoreu(blockB + count + 3 * PacketSize, cj.pconj(kernel.packet[3 % PacketSize]));
pstoreu(blockB + count + 4 * PacketSize, cj.pconj(kernel.packet[4 % PacketSize]));
pstoreu(blockB + count + 5 * PacketSize, cj.pconj(kernel.packet[5 % PacketSize]));
pstoreu(blockB + count + 6 * PacketSize, cj.pconj(kernel.packet[6 % PacketSize]));
pstoreu(blockB + count + 7 * PacketSize, cj.pconj(kernel.packet[7 % PacketSize]));
count += 8 * PacketSize;
}
}
for (; k < depth; k++) {
blockB[count + 0] = cj(dm0(k));
blockB[count + 1] = cj(dm1(k));
blockB[count + 2] = cj(dm2(k));
blockB[count + 3] = cj(dm3(k));
blockB[count + 4] = cj(dm4(k));
blockB[count + 5] = cj(dm5(k));
blockB[count + 6] = cj(dm6(k));
blockB[count + 7] = cj(dm7(k));
count += 8;
}
// skip what we have after
if (PanelMode) count += 8 * (stride - offset - depth);
}
}
if (nr >= 4) {
for (Index j2 = packet_cols8; j2 < packet_cols4; j2 += 4) {
// skip what we have before
if (PanelMode) count += 4 * offset;
const LinearMapper dm0 = rhs.getLinearMapper(0, j2 + 0);
const LinearMapper dm1 = rhs.getLinearMapper(0, j2 + 1);
const LinearMapper dm2 = rhs.getLinearMapper(0, j2 + 2);
const LinearMapper dm3 = rhs.getLinearMapper(0, j2 + 3);
Index k = 0;
if ((PacketSize % 4) == 0) // TODO enable vectorized transposition for PacketSize==2 ??
{
for (; k < peeled_k; k += PacketSize) {
PacketBlock<Packet, (PacketSize % 4) == 0 ? 4 : PacketSize> kernel;
kernel.packet[0] = dm0.template loadPacket<Packet>(k);
kernel.packet[1 % PacketSize] = dm1.template loadPacket<Packet>(k);
kernel.packet[2 % PacketSize] = dm2.template loadPacket<Packet>(k);
kernel.packet[3 % PacketSize] = dm3.template loadPacket<Packet>(k);
ptranspose(kernel);
pstoreu(blockB + count + 0 * PacketSize, cj.pconj(kernel.packet[0]));
pstoreu(blockB + count + 1 * PacketSize, cj.pconj(kernel.packet[1 % PacketSize]));
pstoreu(blockB + count + 2 * PacketSize, cj.pconj(kernel.packet[2 % PacketSize]));
pstoreu(blockB + count + 3 * PacketSize, cj.pconj(kernel.packet[3 % PacketSize]));
count += 4 * PacketSize;
}
}
for (; k < depth; k++) {
blockB[count + 0] = cj(dm0(k));
blockB[count + 1] = cj(dm1(k));
blockB[count + 2] = cj(dm2(k));
blockB[count + 3] = cj(dm3(k));
count += 4;
}
// skip what we have after
if (PanelMode) count += 4 * (stride - offset - depth);
}
}
// copy the remaining columns one at a time (nr==1)
for (Index j2 = packet_cols4; j2 < cols; ++j2) {
if (PanelMode) count += offset;
const LinearMapper dm0 = rhs.getLinearMapper(0, j2);
for (Index k = 0; k < depth; k++) {
blockB[count] = cj(dm0(k));
count += 1;
}
if (PanelMode) count += (stride - offset - depth);
}
}
template <typename Scalar, typename Index, typename DataMapper, bool Conjugate, bool PanelMode>
struct gemm_pack_rhs<Scalar, Index, DataMapper, 8, RowMajor, Conjugate, PanelMode> {
typedef typename packet_traits<Scalar>::type Packet;
typedef typename unpacket_traits<Packet>::half HalfPacket;
typedef typename unpacket_traits<typename unpacket_traits<Packet>::half>::half QuarterPacket;
typedef typename DataMapper::LinearMapper LinearMapper;
enum {
PacketSize = packet_traits<Scalar>::size,
HalfPacketSize = unpacket_traits<HalfPacket>::size,
QuarterPacketSize = unpacket_traits<QuarterPacket>::size
};
EIGEN_DONT_INLINE void operator()(Scalar *blockB, const DataMapper &rhs, Index depth, Index cols, Index stride = 0,
Index offset = 0) {
constexpr int nr = 8;
EIGEN_ASM_COMMENT("EIGEN PRODUCT PACK RHS ROWMAJOR");
EIGEN_UNUSED_VARIABLE(stride);
EIGEN_UNUSED_VARIABLE(offset);
eigen_assert(((!PanelMode) && stride == 0 && offset == 0) || (PanelMode && stride >= depth && offset <= stride));
const bool HasHalf = (int)HalfPacketSize < (int)PacketSize;
const bool HasQuarter = (int)QuarterPacketSize < (int)HalfPacketSize;
conj_if<NumTraits<Scalar>::IsComplex && Conjugate> cj;
Index packet_cols8 = nr >= 8 ? (cols / 8) * 8 : 0;
Index packet_cols4 = nr >= 4 ? (cols / 4) * 4 : 0;
Index count = 0;
if (nr >= 8) {
for (Index j2 = 0; j2 < packet_cols8; j2 += 8) {
// skip what we have before
if (PanelMode) count += 8 * offset;
for (Index k = 0; k < depth; k++) {
if (PacketSize == 8) {
// Packet A = ploadu<Packet>(&rhs.data()[k*rhs.stride() + j2]);
Packet A = rhs.template loadPacket<Packet>(k, j2);
pstoreu(blockB + count, cj.pconj(A));
} else if (HasHalf && HalfPacketSize == 8) {
HalfPacket A = rhs.template loadPacket<HalfPacket>(k, j2);
pstoreu(blockB + count, cj.pconj(A));
} else if (HasQuarter && QuarterPacketSize == 8) {
QuarterPacket A = rhs.template loadPacket<QuarterPacket>(k, j2);
pstoreu(blockB + count, cj.pconj(A));
} else if (PacketSize == 4) {
// Packet A = ploadu<Packet>(&rhs.data()[k*rhs.stride() + j2]);
// Packet B = ploadu<Packet>(&rhs.data()[k*rhs.stride() + j2 + PacketSize]);
Packet A = rhs.template loadPacket<Packet>(k, j2);
Packet B = rhs.template loadPacket<Packet>(k, j2 + PacketSize);
pstoreu(blockB + count, cj.pconj(A));
pstoreu(blockB + count + PacketSize, cj.pconj(B));
} else {
// const Scalar* b0 = &rhs.data()[k*rhs.stride() + j2];
const LinearMapper dm0 = rhs.getLinearMapper(k, j2);
blockB[count + 0] = cj(dm0(0));
blockB[count + 1] = cj(dm0(1));
blockB[count + 2] = cj(dm0(2));
blockB[count + 3] = cj(dm0(3));
blockB[count + 4] = cj(dm0(4));
blockB[count + 5] = cj(dm0(5));
blockB[count + 6] = cj(dm0(6));
blockB[count + 7] = cj(dm0(7));
}
count += 8;
}
// skip what we have after
if (PanelMode) count += 8 * (stride - offset - depth);
}
}
if (nr >= 4) {
for (Index j2 = packet_cols8; j2 < packet_cols4; j2 += 4) {
// skip what we have before
if (PanelMode) count += 4 * offset;
for (Index k = 0; k < depth; k++) {
if (PacketSize == 4) {
Packet A = rhs.template loadPacket<Packet>(k, j2);
pstoreu(blockB + count, cj.pconj(A));
count += PacketSize;
} else if (HasHalf && HalfPacketSize == 4) {
HalfPacket A = rhs.template loadPacket<HalfPacket>(k, j2);
pstoreu(blockB + count, cj.pconj(A));
count += HalfPacketSize;
} else if (HasQuarter && QuarterPacketSize == 4) {
QuarterPacket A = rhs.template loadPacket<QuarterPacket>(k, j2);
pstoreu(blockB + count, cj.pconj(A));
count += QuarterPacketSize;
} else {
const LinearMapper dm0 = rhs.getLinearMapper(k, j2);
blockB[count + 0] = cj(dm0(0));
blockB[count + 1] = cj(dm0(1));
blockB[count + 2] = cj(dm0(2));
blockB[count + 3] = cj(dm0(3));
count += 4;
}
}
// skip what we have after
if (PanelMode) count += 4 * (stride - offset - depth);
}
}
// copy the remaining columns one at a time (nr==1)
for (Index j2 = packet_cols4; j2 < cols; ++j2) {
if (PanelMode) count += offset;
for (Index k = 0; k < depth; k++) {
blockB[count] = cj(rhs(k, j2));
count += 1;
}
if (PanelMode) count += stride - offset - depth;
}
}
};
template <typename Scalar, typename Index, typename DataMapper, int mr, bool ConjugateLhs, bool ConjugateRhs>
struct gebp_kernel<Scalar, Scalar, Index, DataMapper, mr, 8, ConjugateLhs, ConjugateRhs> {
EIGEN_ALWAYS_INLINE
void operator()(const DataMapper &res, const Scalar *blockA, const Scalar *blockB, Index rows, Index depth,
Index cols, Scalar alpha, Index strideA = -1, Index strideB = -1, Index offsetA = 0,
Index offsetB = 0);
};
template <typename Scalar, typename Index, typename DataMapper, int mr, bool ConjugateLhs, bool ConjugateRhs>
EIGEN_ALWAYS_INLINE void gebp_kernel<Scalar, Scalar, Index, DataMapper, mr, 8, ConjugateLhs, ConjugateRhs>::operator()(
const DataMapper &res, const Scalar *blockA, const Scalar *blockB, Index rows, Index depth, Index cols,
Scalar alpha, Index strideA, Index strideB, Index offsetA, Index offsetB) {
if (res.incr() == 1) {
if (alpha == 1) {
gemm_kern_avx512<Scalar, mr, 8, true, false, true>(rows, cols, depth, &alpha, blockA, blockB,
(Scalar *)res.data(), res.stride(), res.incr(), strideA,
strideB, offsetA, offsetB);
} else {
gemm_kern_avx512<Scalar, mr, 8, false, false, true>(rows, cols, depth, &alpha, blockA, blockB,
(Scalar *)res.data(), res.stride(), res.incr(), strideA,
strideB, offsetA, offsetB);
}
} else {
if (alpha == 1) {
gemm_kern_avx512<Scalar, mr, 8, true, false, false>(rows, cols, depth, &alpha, blockA, blockB,
(Scalar *)res.data(), res.stride(), res.incr(), strideA,
strideB, offsetA, offsetB);
} else {
gemm_kern_avx512<Scalar, mr, 8, false, false, false>(rows, cols, depth, &alpha, blockA, blockB,
(Scalar *)res.data(), res.stride(), res.incr(), strideA,
strideB, offsetA, offsetB);
}
}
}
} // namespace internal
} // namespace Eigen
#endif // GEMM_KERNEL_H