blob: b1ff1d8b1b6276d453096b66a7314f0dd1bfbb02 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2015 Benoit Steiner <benoit.steiner.goog@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_CXX11_TENSOR_TENSOR_GENERATOR_H
#define EIGEN_CXX11_TENSOR_TENSOR_GENERATOR_H
namespace Eigen {
/** \class TensorGeneratorOp
* \ingroup CXX11_Tensor_Module
*
* \brief Tensor generator class.
*
*
*/
namespace internal {
template<typename Generator, typename XprType>
struct traits<TensorGeneratorOp<Generator, XprType> > : public traits<XprType>
{
typedef typename XprType::Scalar Scalar;
typedef traits<XprType> XprTraits;
typedef typename XprTraits::StorageKind StorageKind;
typedef typename XprTraits::Index Index;
typedef typename XprType::Nested Nested;
typedef typename remove_reference<Nested>::type _Nested;
static const int NumDimensions = XprTraits::NumDimensions;
static const int Layout = XprTraits::Layout;
typedef typename XprTraits::PointerType PointerType;
};
template<typename Generator, typename XprType>
struct eval<TensorGeneratorOp<Generator, XprType>, Eigen::Dense>
{
typedef const TensorGeneratorOp<Generator, XprType>& type;
};
template<typename Generator, typename XprType>
struct nested<TensorGeneratorOp<Generator, XprType>, 1, typename eval<TensorGeneratorOp<Generator, XprType> >::type>
{
typedef TensorGeneratorOp<Generator, XprType> type;
};
} // end namespace internal
template<typename Generator, typename XprType>
class TensorGeneratorOp : public TensorBase<TensorGeneratorOp<Generator, XprType>, ReadOnlyAccessors>
{
public:
typedef typename Eigen::internal::traits<TensorGeneratorOp>::Scalar Scalar;
typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
typedef typename XprType::CoeffReturnType CoeffReturnType;
typedef typename Eigen::internal::nested<TensorGeneratorOp>::type Nested;
typedef typename Eigen::internal::traits<TensorGeneratorOp>::StorageKind StorageKind;
typedef typename Eigen::internal::traits<TensorGeneratorOp>::Index Index;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorGeneratorOp(const XprType& expr, const Generator& generator)
: m_xpr(expr), m_generator(generator) {}
EIGEN_DEVICE_FUNC
const Generator& generator() const { return m_generator; }
EIGEN_DEVICE_FUNC
const typename internal::remove_all<typename XprType::Nested>::type&
expression() const { return m_xpr; }
protected:
typename XprType::Nested m_xpr;
const Generator m_generator;
};
// Eval as rvalue
template<typename Generator, typename ArgType, typename Device>
struct TensorEvaluator<const TensorGeneratorOp<Generator, ArgType>, Device>
{
typedef TensorGeneratorOp<Generator, ArgType> XprType;
typedef typename XprType::Index Index;
typedef typename TensorEvaluator<ArgType, Device>::Dimensions Dimensions;
static const int NumDims = internal::array_size<Dimensions>::value;
typedef typename XprType::Scalar Scalar;
typedef typename XprType::CoeffReturnType CoeffReturnType;
typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
typedef StorageMemory<CoeffReturnType, Device> Storage;
typedef typename Storage::Type EvaluatorPointerType;
enum {
IsAligned = false,
PacketAccess = (PacketType<CoeffReturnType, Device>::size > 1),
BlockAccess = true,
PreferBlockAccess = true,
Layout = TensorEvaluator<ArgType, Device>::Layout,
CoordAccess = false, // to be implemented
RawAccess = false
};
typedef internal::TensorIntDivisor<Index> IndexDivisor;
//===- Tensor block evaluation strategy (see TensorBlock.h) -------------===//
typedef internal::TensorBlockDescriptor<NumDims, Index> TensorBlockDesc;
typedef internal::TensorBlockScratchAllocator<Device> TensorBlockScratch;
typedef typename internal::TensorMaterializedBlock<CoeffReturnType, NumDims,
Layout, Index>
TensorBlock;
//===--------------------------------------------------------------------===//
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
: m_device(device), m_generator(op.generator())
{
TensorEvaluator<ArgType, Device> argImpl(op.expression(), device);
m_dimensions = argImpl.dimensions();
if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
m_strides[0] = 1;
EIGEN_UNROLL_LOOP
for (int i = 1; i < NumDims; ++i) {
m_strides[i] = m_strides[i - 1] * m_dimensions[i - 1];
if (m_strides[i] != 0) m_fast_strides[i] = IndexDivisor(m_strides[i]);
}
} else {
m_strides[NumDims - 1] = 1;
EIGEN_UNROLL_LOOP
for (int i = NumDims - 2; i >= 0; --i) {
m_strides[i] = m_strides[i + 1] * m_dimensions[i + 1];
if (m_strides[i] != 0) m_fast_strides[i] = IndexDivisor(m_strides[i]);
}
}
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(EvaluatorPointerType /*data*/) {
return true;
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
{
array<Index, NumDims> coords;
extract_coordinates(index, coords);
return m_generator(coords);
}
template<int LoadMode>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
{
const int packetSize = PacketType<CoeffReturnType, Device>::size;
EIGEN_STATIC_ASSERT((packetSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE)
eigen_assert(index+packetSize-1 < dimensions().TotalSize());
EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type values[packetSize];
for (int i = 0; i < packetSize; ++i) {
values[i] = coeff(index+i);
}
PacketReturnType rslt = internal::pload<PacketReturnType>(values);
return rslt;
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
internal::TensorBlockResourceRequirements getResourceRequirements() const {
const size_t target_size = m_device.firstLevelCacheSize();
// TODO(ezhulenev): Generator should have a cost.
return internal::TensorBlockResourceRequirements::skewed<Scalar>(
target_size);
}
struct BlockIteratorState {
Index stride;
Index span;
Index size;
Index count;
};
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorBlock
block(TensorBlockDesc& desc, TensorBlockScratch& scratch,
bool /*root_of_expr_ast*/ = false) const {
static const bool is_col_major =
static_cast<int>(Layout) == static_cast<int>(ColMajor);
// Compute spatial coordinates for the first block element.
array<Index, NumDims> coords;
extract_coordinates(desc.offset(), coords);
array<Index, NumDims> initial_coords = coords;
// Offset in the output block buffer.
Index offset = 0;
// Initialize output block iterator state. Dimension in this array are
// always in inner_most -> outer_most order (col major layout).
array<BlockIteratorState, NumDims> it;
for (int i = 0; i < NumDims; ++i) {
const int dim = is_col_major ? i : NumDims - 1 - i;
it[i].size = desc.dimension(dim);
it[i].stride = i == 0 ? 1 : (it[i - 1].size * it[i - 1].stride);
it[i].span = it[i].stride * (it[i].size - 1);
it[i].count = 0;
}
eigen_assert(it[0].stride == 1);
// Prepare storage for the materialized generator result.
const typename TensorBlock::Storage block_storage =
TensorBlock::prepareStorage(desc, scratch);
CoeffReturnType* block_buffer = block_storage.data();
static const int packet_size = PacketType<CoeffReturnType, Device>::size;
static const int inner_dim = is_col_major ? 0 : NumDims - 1;
const Index inner_dim_size = it[0].size;
const Index inner_dim_vectorized = inner_dim_size - packet_size;
while (it[NumDims - 1].count < it[NumDims - 1].size) {
Index i = 0;
// Generate data for the vectorized part of the inner-most dimension.
for (; i <= inner_dim_vectorized; i += packet_size) {
for (Index j = 0; j < packet_size; ++j) {
array<Index, NumDims> j_coords = coords; // Break loop dependence.
j_coords[inner_dim] += j;
*(block_buffer + offset + i + j) = m_generator(j_coords);
}
coords[inner_dim] += packet_size;
}
// Finalize non-vectorized part of the inner-most dimension.
for (; i < inner_dim_size; ++i) {
*(block_buffer + offset + i) = m_generator(coords);
coords[inner_dim]++;
}
coords[inner_dim] = initial_coords[inner_dim];
// For the 1d tensor we need to generate only one inner-most dimension.
if (NumDims == 1) break;
// Update offset.
for (i = 1; i < NumDims; ++i) {
if (++it[i].count < it[i].size) {
offset += it[i].stride;
coords[is_col_major ? i : NumDims - 1 - i]++;
break;
}
if (i != NumDims - 1) it[i].count = 0;
coords[is_col_major ? i : NumDims - 1 - i] =
initial_coords[is_col_major ? i : NumDims - 1 - i];
offset -= it[i].span;
}
}
return block_storage.AsTensorMaterializedBlock();
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost
costPerCoeff(bool) const {
// TODO(rmlarsen): This is just a placeholder. Define interface to make
// generators return their cost.
return TensorOpCost(0, 0, TensorOpCost::AddCost<Scalar>() +
TensorOpCost::MulCost<Scalar>());
}
EIGEN_DEVICE_FUNC EvaluatorPointerType data() const { return NULL; }
#ifdef EIGEN_USE_SYCL
// binding placeholder accessors to a command group handler for SYCL
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void bind(cl::sycl::handler&) const {}
#endif
protected:
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
void extract_coordinates(Index index, array<Index, NumDims>& coords) const {
if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
for (int i = NumDims - 1; i > 0; --i) {
const Index idx = index / m_fast_strides[i];
index -= idx * m_strides[i];
coords[i] = idx;
}
coords[0] = index;
} else {
for (int i = 0; i < NumDims - 1; ++i) {
const Index idx = index / m_fast_strides[i];
index -= idx * m_strides[i];
coords[i] = idx;
}
coords[NumDims-1] = index;
}
}
const Device EIGEN_DEVICE_REF m_device;
Dimensions m_dimensions;
array<Index, NumDims> m_strides;
array<IndexDivisor, NumDims> m_fast_strides;
Generator m_generator;
};
} // end namespace Eigen
#endif // EIGEN_CXX11_TENSOR_TENSOR_GENERATOR_H