| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2018 Andy Davis <andydavis@google.com> |
| // Copyright (C) 2018 Eugene Zhulenev <ezhulenev@google.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #include "main.h" |
| |
| #include <algorithm> |
| #include <set> |
| |
| #include <Eigen/CXX11/Tensor> |
| |
| using Eigen::Tensor; |
| using Eigen::Index; |
| using Eigen::RowMajor; |
| using Eigen::ColMajor; |
| using Eigen::internal::TensorBlockShapeType; |
| |
| static TensorOpCost zeroCost() { return {0, 0, 0}; } |
| |
| template<typename T> |
| static const T& choose(int layout, const T& col, const T& row) { |
| return layout == ColMajor ? col : row; |
| } |
| |
| static TensorBlockShapeType RandomShape() { |
| return internal::random<bool>() |
| ? TensorBlockShapeType::kUniformAllDims |
| : TensorBlockShapeType::kSkewedInnerDims; |
| } |
| |
| template <int NumDims> |
| static size_t RandomTargetSize(const DSizes<Index, NumDims>& dims) { |
| return internal::random<size_t>(1, dims.TotalSize()); |
| } |
| |
| template <int NumDims> |
| static DSizes<Index, NumDims> RandomDims() { |
| array<Index, NumDims> dims; |
| for (int i = 0; i < NumDims; ++i) { |
| dims[i] = internal::random<int>(1, 20); |
| } |
| return DSizes<Index, NumDims>(dims); |
| } |
| |
| template <typename T> |
| static T* GenerateRandomData(const Index& size) { |
| T* data = new T[size]; |
| for (int i = 0; i < size; ++i) { |
| data[i] = internal::random<T>(); |
| } |
| return data; |
| } |
| |
| template <int NumDims> |
| static void Debug(DSizes<Index, NumDims> dims) { |
| for (int i = 0; i < NumDims; ++i) { |
| std::cout << dims[i] << "; "; |
| } |
| std::cout << std::endl; |
| } |
| |
| template <int Layout> |
| static void test_block_mapper_sanity() |
| { |
| typedef internal::TensorBlockMapper<2, Layout> TensorBlockMapper; |
| |
| DSizes<Index, 2> tensor_dims(100, 100); |
| |
| // Test uniform blocks. |
| TensorBlockMapper uniform_block_mapper( |
| tensor_dims, {TensorBlockShapeType::kUniformAllDims, 100, zeroCost()}); |
| |
| VERIFY_IS_EQUAL(uniform_block_mapper.blockCount(), 100); |
| VERIFY_IS_EQUAL(uniform_block_mapper.blockTotalSize(), 100); |
| |
| // 10x10 blocks |
| auto uniform_b0 = uniform_block_mapper.blockDescriptor(0); |
| VERIFY_IS_EQUAL(uniform_b0.dimensions().at(0), 10); |
| VERIFY_IS_EQUAL(uniform_b0.dimensions().at(1), 10); |
| |
| // Test skewed to inner dims blocks. |
| TensorBlockMapper skewed_block_mapper( |
| tensor_dims, {TensorBlockShapeType::kSkewedInnerDims, 100, zeroCost()}); |
| |
| VERIFY_IS_EQUAL(skewed_block_mapper.blockCount(), 100); |
| VERIFY_IS_EQUAL(skewed_block_mapper.blockTotalSize(), 100); |
| |
| // 1x100 (100x1) rows/cols depending on a tensor layout. |
| auto skewed_b0 = skewed_block_mapper.blockDescriptor(0); |
| VERIFY_IS_EQUAL(skewed_b0.dimensions().at(0), choose(Layout, 100, 1)); |
| VERIFY_IS_EQUAL(skewed_b0.dimensions().at(1), choose(Layout, 1, 100)); |
| } |
| |
| // Given a TensorBlock "visit" every element accessible though it, and a keep an |
| // index in the visited set. Verify that every coeff accessed only once. |
| template<int NumDims, int Layout> |
| static void UpdateCoeffSet( |
| const DSizes<Index, NumDims>& tensor_strides, |
| const internal::TensorBlockDescriptor<NumDims>& block, |
| Index first_coeff_index, int dim_index, std::set<Index>* visited_coeffs) { |
| const DSizes<Index, NumDims>& block_sizes = block.dimensions(); |
| |
| for (int i = 0; i < block_sizes[dim_index]; ++i) { |
| if (tensor_strides[dim_index] == 1) { |
| typedef std::pair<std::set<Index>::iterator, bool> ReturnType; |
| ReturnType inserted = visited_coeffs->insert(first_coeff_index + i); |
| VERIFY_IS_EQUAL(inserted.second, true); |
| } else { |
| int next_dim_index = dim_index + choose(Layout, -1, 1); |
| UpdateCoeffSet<NumDims, Layout>(tensor_strides, block, first_coeff_index, |
| next_dim_index, visited_coeffs); |
| first_coeff_index += tensor_strides[dim_index]; |
| } |
| } |
| } |
| |
| template <typename T, int NumDims, int Layout> |
| static void test_block_mapper_maps_every_element() { |
| typedef internal::TensorBlockMapper<NumDims, Layout> TensorBlockMapper; |
| |
| DSizes<Index, NumDims> dims = RandomDims<NumDims>(); |
| DSizes<Index, NumDims> strides = internal::strides<Layout>(dims); |
| |
| // Keep track of elements indices available via block access. |
| std::set<Index> coeff_set; |
| |
| // Try different combinations of block types and sizes. |
| TensorBlockMapper block_mapper( |
| dims, {RandomShape(), RandomTargetSize(dims), zeroCost()}); |
| |
| for (int i = 0; i < block_mapper.blockCount(); ++i) { |
| auto block = block_mapper.blockDescriptor(i); |
| UpdateCoeffSet<NumDims, Layout>(strides, block, block.offset(), |
| choose(Layout, NumDims - 1, 0), |
| &coeff_set); |
| } |
| |
| // Verify that every coefficient in the original Tensor is accessible through |
| // TensorBlock only once. |
| Index total_coeffs = dims.TotalSize(); |
| VERIFY_IS_EQUAL(Index(coeff_set.size()), total_coeffs); |
| VERIFY_IS_EQUAL(*coeff_set.begin(), 0); |
| VERIFY_IS_EQUAL(*coeff_set.rbegin(), total_coeffs - 1); |
| } |
| |
| template <int Layout, int NumDims> |
| static Index GetInputIndex(Index output_index, |
| const array<Index, NumDims>& output_to_input_dim_map, |
| const array<Index, NumDims>& input_strides, |
| const array<Index, NumDims>& output_strides) { |
| int input_index = 0; |
| if (Layout == ColMajor) { |
| for (int i = NumDims - 1; i > 0; --i) { |
| const Index idx = output_index / output_strides[i]; |
| input_index += idx * input_strides[output_to_input_dim_map[i]]; |
| output_index -= idx * output_strides[i]; |
| } |
| return input_index + |
| output_index * input_strides[output_to_input_dim_map[0]]; |
| } else { |
| for (int i = 0; i < NumDims - 1; ++i) { |
| const Index idx = output_index / output_strides[i]; |
| input_index += idx * input_strides[output_to_input_dim_map[i]]; |
| output_index -= idx * output_strides[i]; |
| } |
| return input_index + |
| output_index * input_strides[output_to_input_dim_map[NumDims - 1]]; |
| } |
| } |
| |
| template <int Layout, int NumDims> |
| static array<Index, NumDims> ComputeStrides( |
| const array<Index, NumDims>& sizes) { |
| array<Index, NumDims> strides; |
| if (Layout == ColMajor) { |
| strides[0] = 1; |
| for (int i = 1; i < NumDims; ++i) { |
| strides[i] = strides[i - 1] * sizes[i - 1]; |
| } |
| } else { |
| strides[NumDims - 1] = 1; |
| for (int i = NumDims - 2; i >= 0; --i) { |
| strides[i] = strides[i + 1] * sizes[i + 1]; |
| } |
| } |
| return strides; |
| } |
| |
| template<typename Scalar, typename StorageIndex, int Dim> |
| class EqualityChecker |
| { |
| const Scalar* input_data; |
| const DSizes<StorageIndex, Dim> &input_dims, &input_strides, &output_dims, &output_strides; |
| void check_recursive(const Scalar* input, const Scalar* output, int depth=0) const |
| { |
| if(depth==Dim) |
| { |
| VERIFY_IS_EQUAL(*input, *output); |
| return; |
| } |
| |
| for(int i=0; i<output_dims[depth]; ++i) |
| { |
| check_recursive(input + i % input_dims[depth] * input_strides[depth], output + i*output_strides[depth], depth+1); |
| } |
| } |
| public: |
| EqualityChecker(const Scalar* input_data_, |
| const DSizes<StorageIndex, Dim> &input_dims_, const DSizes<StorageIndex, Dim> &input_strides_, |
| const DSizes<StorageIndex, Dim> &output_dims_, const DSizes<StorageIndex, Dim> &output_strides_) |
| : input_data(input_data_) |
| , input_dims(input_dims_), input_strides(input_strides_) |
| , output_dims(output_dims_), output_strides(output_strides_) |
| {} |
| |
| void operator()(const Scalar* output_data) const |
| { |
| check_recursive(input_data, output_data); |
| } |
| }; |
| |
| template <int Layout> |
| static void test_uniform_block_shape() |
| { |
| typedef internal::TensorBlockDescriptor<5> TensorBlock; |
| typedef internal::TensorBlockMapper<5, Layout> TensorBlockMapper; |
| |
| { |
| // Test shape 'UniformAllDims' with uniform 'max_coeff count'. |
| DSizes<Index, 5> dims(11, 5, 6, 17, 7); |
| const Index max_coeff_count = 5 * 5 * 5 * 5 * 5; |
| TensorBlockMapper block_mapper(dims, {TensorBlockShapeType::kUniformAllDims, |
| max_coeff_count, zeroCost()}); |
| TensorBlock block = block_mapper.blockDescriptor(0); |
| for (int i = 0; i < 5; ++i) { |
| VERIFY_IS_EQUAL(5, block.dimensions()[i]); |
| } |
| VERIFY(block.dimensions().TotalSize() <= max_coeff_count); |
| } |
| |
| // Test shape 'UniformAllDims' with larger 'max_coeff count' which spills |
| // partially into first inner-most dimension. |
| if (Layout == ColMajor) { |
| DSizes<Index, 5> dims(11, 5, 6, 17, 7); |
| const Index max_coeff_count = 7 * 5 * 5 * 5 * 5; |
| TensorBlockMapper block_mapper(dims, {TensorBlockShapeType::kUniformAllDims, |
| max_coeff_count, zeroCost()}); |
| TensorBlock block = block_mapper.blockDescriptor(0); |
| VERIFY_IS_EQUAL(7, block.dimensions()[0]); |
| for (int i = 1; i < 5; ++i) { |
| VERIFY_IS_EQUAL(5, block.dimensions()[i]); |
| } |
| VERIFY(block.dimensions().TotalSize() <= max_coeff_count); |
| } else { |
| DSizes<Index, 5> dims(11, 5, 6, 17, 7); |
| const Index max_coeff_count = 5 * 5 * 5 * 5 * 6; |
| TensorBlockMapper block_mapper(dims, {TensorBlockShapeType::kUniformAllDims, |
| max_coeff_count, zeroCost()}); |
| TensorBlock block = block_mapper.blockDescriptor(0); |
| VERIFY_IS_EQUAL(6, block.dimensions()[4]); |
| for (int i = 3; i >= 0; --i) { |
| VERIFY_IS_EQUAL(5, block.dimensions()[i]); |
| } |
| VERIFY(block.dimensions().TotalSize() <= max_coeff_count); |
| } |
| |
| // Test shape 'UniformAllDims' with larger 'max_coeff count' which spills |
| // fully into first inner-most dimension. |
| if (Layout == ColMajor) { |
| DSizes<Index, 5> dims(11, 5, 6, 17, 7); |
| const Index max_coeff_count = 11 * 5 * 5 * 5 * 5; |
| TensorBlockMapper block_mapper(dims, {TensorBlockShapeType::kUniformAllDims, |
| max_coeff_count, zeroCost()}); |
| TensorBlock block = block_mapper.blockDescriptor(0); |
| VERIFY_IS_EQUAL(11, block.dimensions()[0]); |
| for (int i = 1; i < 5; ++i) { |
| VERIFY_IS_EQUAL(5, block.dimensions()[i]); |
| } |
| VERIFY(block.dimensions().TotalSize() <= max_coeff_count); |
| } else { |
| DSizes<Index, 5> dims(11, 5, 6, 17, 7); |
| const Index max_coeff_count = 5 * 5 * 5 * 5 * 7; |
| TensorBlockMapper block_mapper(dims, {TensorBlockShapeType::kUniformAllDims, |
| max_coeff_count, zeroCost()}); |
| TensorBlock block = block_mapper.blockDescriptor(0); |
| VERIFY_IS_EQUAL(7, block.dimensions()[4]); |
| for (int i = 3; i >= 0; --i) { |
| VERIFY_IS_EQUAL(5, block.dimensions()[i]); |
| } |
| VERIFY(block.dimensions().TotalSize() <= max_coeff_count); |
| } |
| |
| // Test shape 'UniformAllDims' with larger 'max_coeff count' which spills |
| // fully into first few inner-most dimensions. |
| if (Layout == ColMajor) { |
| DSizes<Index, 5> dims(7, 5, 6, 17, 7); |
| const Index max_coeff_count = 7 * 5 * 6 * 7 * 5; |
| TensorBlockMapper block_mapper(dims, {TensorBlockShapeType::kUniformAllDims, |
| max_coeff_count, zeroCost()}); |
| TensorBlock block = block_mapper.blockDescriptor(0); |
| VERIFY_IS_EQUAL(7, block.dimensions()[0]); |
| VERIFY_IS_EQUAL(5, block.dimensions()[1]); |
| VERIFY_IS_EQUAL(6, block.dimensions()[2]); |
| VERIFY_IS_EQUAL(7, block.dimensions()[3]); |
| VERIFY_IS_EQUAL(5, block.dimensions()[4]); |
| VERIFY(block.dimensions().TotalSize() <= max_coeff_count); |
| } else { |
| DSizes<Index, 5> dims(7, 5, 6, 9, 7); |
| const Index max_coeff_count = 5 * 5 * 5 * 6 * 7; |
| TensorBlockMapper block_mapper(dims, {TensorBlockShapeType::kUniformAllDims, |
| max_coeff_count, zeroCost()}); |
| TensorBlock block = block_mapper.blockDescriptor(0); |
| VERIFY_IS_EQUAL(7, block.dimensions()[4]); |
| VERIFY_IS_EQUAL(6, block.dimensions()[3]); |
| VERIFY_IS_EQUAL(5, block.dimensions()[2]); |
| VERIFY_IS_EQUAL(5, block.dimensions()[1]); |
| VERIFY_IS_EQUAL(5, block.dimensions()[0]); |
| VERIFY(block.dimensions().TotalSize() <= max_coeff_count); |
| } |
| |
| // Test shape 'UniformAllDims' with full allocation to all dims. |
| if (Layout == ColMajor) { |
| DSizes<Index, 5> dims(7, 5, 6, 17, 7); |
| const Index max_coeff_count = 7 * 5 * 6 * 17 * 7; |
| TensorBlockMapper block_mapper(dims, {TensorBlockShapeType::kUniformAllDims, |
| max_coeff_count, zeroCost()}); |
| TensorBlock block = block_mapper.blockDescriptor(0); |
| VERIFY_IS_EQUAL(7, block.dimensions()[0]); |
| VERIFY_IS_EQUAL(5, block.dimensions()[1]); |
| VERIFY_IS_EQUAL(6, block.dimensions()[2]); |
| VERIFY_IS_EQUAL(17, block.dimensions()[3]); |
| VERIFY_IS_EQUAL(7, block.dimensions()[4]); |
| VERIFY(block.dimensions().TotalSize() <= max_coeff_count); |
| } else { |
| DSizes<Index, 5> dims(7, 5, 6, 9, 7); |
| const Index max_coeff_count = 7 * 5 * 6 * 9 * 7; |
| TensorBlockMapper block_mapper(dims, {TensorBlockShapeType::kUniformAllDims, |
| max_coeff_count, zeroCost()}); |
| TensorBlock block = block_mapper.blockDescriptor(0); |
| VERIFY_IS_EQUAL(7, block.dimensions()[4]); |
| VERIFY_IS_EQUAL(9, block.dimensions()[3]); |
| VERIFY_IS_EQUAL(6, block.dimensions()[2]); |
| VERIFY_IS_EQUAL(5, block.dimensions()[1]); |
| VERIFY_IS_EQUAL(7, block.dimensions()[0]); |
| VERIFY(block.dimensions().TotalSize() <= max_coeff_count); |
| } |
| } |
| |
| template <int Layout> |
| static void test_skewed_inner_dim_block_shape() |
| { |
| typedef internal::TensorBlockDescriptor<5> TensorBlock; |
| typedef internal::TensorBlockMapper<5, Layout> TensorBlockMapper; |
| |
| // Test shape 'SkewedInnerDims' with partial allocation to inner-most dim. |
| if (Layout == ColMajor) { |
| DSizes<Index, 5> dims(11, 5, 6, 17, 7); |
| const Index max_coeff_count = 10 * 1 * 1 * 1 * 1; |
| TensorBlockMapper block_mapper( |
| dims, |
| {TensorBlockShapeType::kSkewedInnerDims, max_coeff_count, zeroCost()}); |
| TensorBlock block = block_mapper.blockDescriptor(0); |
| VERIFY_IS_EQUAL(10, block.dimensions()[0]); |
| for (int i = 1; i < 5; ++i) { |
| VERIFY_IS_EQUAL(1, block.dimensions()[i]); |
| } |
| VERIFY(block.dimensions().TotalSize() <= max_coeff_count); |
| } else { |
| DSizes<Index, 5> dims(11, 5, 6, 17, 7); |
| const Index max_coeff_count = 1 * 1 * 1 * 1 * 6; |
| TensorBlockMapper block_mapper( |
| dims, |
| {TensorBlockShapeType::kSkewedInnerDims, max_coeff_count, zeroCost()}); |
| TensorBlock block = block_mapper.blockDescriptor(0); |
| VERIFY_IS_EQUAL(6, block.dimensions()[4]); |
| for (int i = 3; i >= 0; --i) { |
| VERIFY_IS_EQUAL(1, block.dimensions()[i]); |
| } |
| VERIFY(block.dimensions().TotalSize() <= max_coeff_count); |
| } |
| |
| // Test shape 'SkewedInnerDims' with full allocation to inner-most dim. |
| if (Layout == ColMajor) { |
| DSizes<Index, 5> dims(11, 5, 6, 17, 7); |
| const Index max_coeff_count = 11 * 1 * 1 * 1 * 1; |
| TensorBlockMapper block_mapper( |
| dims, |
| {TensorBlockShapeType::kSkewedInnerDims, max_coeff_count, zeroCost()}); |
| TensorBlock block = block_mapper.blockDescriptor(0); |
| VERIFY_IS_EQUAL(11, block.dimensions()[0]); |
| for (int i = 1; i < 5; ++i) { |
| VERIFY_IS_EQUAL(1, block.dimensions()[i]); |
| } |
| VERIFY(block.dimensions().TotalSize() <= max_coeff_count); |
| } else { |
| DSizes<Index, 5> dims(11, 5, 6, 17, 7); |
| const Index max_coeff_count = 1 * 1 * 1 * 1 * 7; |
| TensorBlockMapper block_mapper( |
| dims, |
| {TensorBlockShapeType::kSkewedInnerDims, max_coeff_count, zeroCost()}); |
| TensorBlock block = block_mapper.blockDescriptor(0); |
| VERIFY_IS_EQUAL(7, block.dimensions()[4]); |
| for (int i = 3; i >= 0; --i) { |
| VERIFY_IS_EQUAL(1, block.dimensions()[i]); |
| } |
| VERIFY(block.dimensions().TotalSize() <= max_coeff_count); |
| } |
| |
| // Test shape 'SkewedInnerDims' with full allocation to inner-most dim, |
| // and partial allocation to second inner-dim. |
| if (Layout == ColMajor) { |
| DSizes<Index, 5> dims(11, 5, 6, 17, 7); |
| const Index max_coeff_count = 11 * 3 * 1 * 1 * 1; |
| TensorBlockMapper block_mapper( |
| dims, |
| {TensorBlockShapeType::kSkewedInnerDims, max_coeff_count, zeroCost()}); |
| TensorBlock block = block_mapper.blockDescriptor(0); |
| VERIFY_IS_EQUAL(11, block.dimensions()[0]); |
| VERIFY_IS_EQUAL(3, block.dimensions()[1]); |
| for (int i = 2; i < 5; ++i) { |
| VERIFY_IS_EQUAL(1, block.dimensions()[i]); |
| } |
| VERIFY(block.dimensions().TotalSize() <= max_coeff_count); |
| } else { |
| DSizes<Index, 5> dims(11, 5, 6, 17, 7); |
| const Index max_coeff_count = 1 * 1 * 1 * 15 * 7; |
| TensorBlockMapper block_mapper( |
| dims, |
| {TensorBlockShapeType::kSkewedInnerDims, max_coeff_count, zeroCost()}); |
| TensorBlock block = block_mapper.blockDescriptor(0); |
| VERIFY_IS_EQUAL(7, block.dimensions()[4]); |
| VERIFY_IS_EQUAL(15, block.dimensions()[3]); |
| for (int i = 2; i >= 0; --i) { |
| VERIFY_IS_EQUAL(1, block.dimensions()[i]); |
| } |
| VERIFY(block.dimensions().TotalSize() <= max_coeff_count); |
| } |
| |
| // Test shape 'SkewedInnerDims' with full allocation to inner-most dim, |
| // and partial allocation to third inner-dim. |
| if (Layout == ColMajor) { |
| DSizes<Index, 5> dims(11, 5, 6, 17, 7); |
| const Index max_coeff_count = 11 * 5 * 5 * 1 * 1; |
| TensorBlockMapper block_mapper( |
| dims, |
| {TensorBlockShapeType::kSkewedInnerDims, max_coeff_count, zeroCost()}); |
| TensorBlock block = block_mapper.blockDescriptor(0); |
| VERIFY_IS_EQUAL(11, block.dimensions()[0]); |
| VERIFY_IS_EQUAL(5, block.dimensions()[1]); |
| VERIFY_IS_EQUAL(5, block.dimensions()[2]); |
| for (int i = 3; i < 5; ++i) { |
| VERIFY_IS_EQUAL(1, block.dimensions()[i]); |
| } |
| VERIFY(block.dimensions().TotalSize() <= max_coeff_count); |
| } else { |
| DSizes<Index, 5> dims(11, 5, 6, 17, 7); |
| const Index max_coeff_count = 1 * 1 * 5 * 17 * 7; |
| TensorBlockMapper block_mapper( |
| dims, |
| {TensorBlockShapeType::kSkewedInnerDims, max_coeff_count, zeroCost()}); |
| TensorBlock block = block_mapper.blockDescriptor(0); |
| VERIFY_IS_EQUAL(7, block.dimensions()[4]); |
| VERIFY_IS_EQUAL(17, block.dimensions()[3]); |
| VERIFY_IS_EQUAL(5, block.dimensions()[2]); |
| for (int i = 1; i >= 0; --i) { |
| VERIFY_IS_EQUAL(1, block.dimensions()[i]); |
| } |
| VERIFY(block.dimensions().TotalSize() <= max_coeff_count); |
| } |
| |
| // Test shape 'SkewedInnerDims' with full allocation to all dims. |
| if (Layout == ColMajor) { |
| DSizes<Index, 5> dims(11, 5, 6, 17, 7); |
| const Index max_coeff_count = 11 * 5 * 6 * 17 * 7; |
| TensorBlockMapper block_mapper( |
| dims, |
| {TensorBlockShapeType::kSkewedInnerDims, max_coeff_count, zeroCost()}); |
| TensorBlock block = block_mapper.blockDescriptor(0); |
| VERIFY_IS_EQUAL(11, block.dimensions()[0]); |
| VERIFY_IS_EQUAL(5, block.dimensions()[1]); |
| VERIFY_IS_EQUAL(6, block.dimensions()[2]); |
| VERIFY_IS_EQUAL(17, block.dimensions()[3]); |
| VERIFY_IS_EQUAL(7, block.dimensions()[4]); |
| VERIFY(block.dimensions().TotalSize() <= max_coeff_count); |
| } else { |
| DSizes<Index, 5> dims(11, 5, 6, 17, 7); |
| const Index max_coeff_count = 11 * 5 * 6 * 17 * 7; |
| TensorBlockMapper block_mapper( |
| dims, |
| {TensorBlockShapeType::kSkewedInnerDims, max_coeff_count, zeroCost()}); |
| TensorBlock block = block_mapper.blockDescriptor(0); |
| VERIFY_IS_EQUAL(7, block.dimensions()[4]); |
| VERIFY_IS_EQUAL(17, block.dimensions()[3]); |
| VERIFY_IS_EQUAL(6, block.dimensions()[2]); |
| VERIFY_IS_EQUAL(5, block.dimensions()[1]); |
| VERIFY_IS_EQUAL(11, block.dimensions()[0]); |
| VERIFY(block.dimensions().TotalSize() <= max_coeff_count); |
| } |
| } |
| |
| template <int Layout> |
| static void test_empty_dims(const internal::TensorBlockShapeType block_shape) |
| { |
| // Test blocking of tensors with zero dimensions: |
| // - we must not crash on asserts and divisions by zero |
| // - we must not return block with zero dimensions |
| // (recipe for overflows/underflows, divisions by zero and NaNs later) |
| // - total block count must be zero |
| { |
| typedef internal::TensorBlockMapper<1, Layout> TensorBlockMapper; |
| |
| DSizes<Index, 1> dims(0); |
| for (size_t max_coeff_count = 0; max_coeff_count < 2; ++max_coeff_count) { |
| TensorBlockMapper block_mapper( |
| dims, {block_shape, max_coeff_count, zeroCost()}); |
| VERIFY_IS_EQUAL(block_mapper.blockCount(), 0); |
| VERIFY(block_mapper.blockTotalSize() >= 1); |
| } |
| } |
| |
| { |
| typedef internal::TensorBlockMapper<2, Layout> TensorBlockMapper; |
| |
| for (int dim1 = 0; dim1 < 3; ++dim1) { |
| for (int dim2 = 0; dim2 < 3; ++dim2) { |
| DSizes<Index, 2> dims(dim1, dim2); |
| for (size_t max_coeff_count = 0; max_coeff_count < 2; ++max_coeff_count) { |
| TensorBlockMapper block_mapper( |
| dims, {block_shape, max_coeff_count, zeroCost()}); |
| if (dim1 * dim2 == 0) { |
| VERIFY_IS_EQUAL(block_mapper.blockCount(), 0); |
| } |
| VERIFY(block_mapper.blockTotalSize() >= 1); |
| } |
| } |
| } |
| } |
| } |
| |
| #define TEST_LAYOUTS(NAME) \ |
| CALL_SUBTEST(NAME<ColMajor>()); \ |
| CALL_SUBTEST(NAME<RowMajor>()) |
| |
| #define TEST_LAYOUTS_AND_DIMS(TYPE, NAME) \ |
| CALL_SUBTEST((NAME<TYPE, 1, ColMajor>())); \ |
| CALL_SUBTEST((NAME<TYPE, 1, RowMajor>())); \ |
| CALL_SUBTEST((NAME<TYPE, 2, ColMajor>())); \ |
| CALL_SUBTEST((NAME<TYPE, 2, RowMajor>())); \ |
| CALL_SUBTEST((NAME<TYPE, 3, ColMajor>())); \ |
| CALL_SUBTEST((NAME<TYPE, 3, RowMajor>())); \ |
| CALL_SUBTEST((NAME<TYPE, 4, ColMajor>())); \ |
| CALL_SUBTEST((NAME<TYPE, 4, RowMajor>())); \ |
| CALL_SUBTEST((NAME<TYPE, 5, ColMajor>())); \ |
| CALL_SUBTEST((NAME<TYPE, 5, RowMajor>())) |
| |
| #define TEST_LAYOUTS_WITH_ARG(NAME, ARG) \ |
| CALL_SUBTEST(NAME<ColMajor>(ARG)); \ |
| CALL_SUBTEST(NAME<RowMajor>(ARG)) |
| |
| EIGEN_DECLARE_TEST(cxx11_tensor_block_access) { |
| TEST_LAYOUTS(test_block_mapper_sanity); |
| TEST_LAYOUTS_AND_DIMS(float, test_block_mapper_maps_every_element); |
| TEST_LAYOUTS(test_uniform_block_shape); |
| TEST_LAYOUTS(test_skewed_inner_dim_block_shape); |
| TEST_LAYOUTS_WITH_ARG(test_empty_dims, TensorBlockShapeType::kUniformAllDims); |
| TEST_LAYOUTS_WITH_ARG(test_empty_dims, TensorBlockShapeType::kSkewedInnerDims); |
| } |
| |
| #undef TEST_LAYOUTS |
| #undef TEST_LAYOUTS_WITH_ARG |