| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2010 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // Copyright (C) 2010-2016 Konstantinos Margaritis <markos@freevec.org> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_COMPLEX32_ALTIVEC_H |
| #define EIGEN_COMPLEX32_ALTIVEC_H |
| |
| #include "../../InternalHeaderCheck.h" |
| |
| namespace Eigen { |
| |
| namespace internal { |
| |
| static Packet4ui p4ui_CONJ_XOR = vec_mergeh((Packet4ui)p4i_ZERO, (Packet4ui)p4f_MZERO);//{ 0x00000000, 0x80000000, 0x00000000, 0x80000000 }; |
| #ifdef EIGEN_VECTORIZE_VSX |
| #if defined(_BIG_ENDIAN) |
| static Packet2ul p2ul_CONJ_XOR1 = (Packet2ul) vec_sld((Packet4ui) p2d_MZERO, (Packet4ui) p2l_ZERO, 8);//{ 0x8000000000000000, 0x0000000000000000 }; |
| static Packet2ul p2ul_CONJ_XOR2 = (Packet2ul) vec_sld((Packet4ui) p2l_ZERO, (Packet4ui) p2d_MZERO, 8);//{ 0x8000000000000000, 0x0000000000000000 }; |
| #else |
| static Packet2ul p2ul_CONJ_XOR1 = (Packet2ul) vec_sld((Packet4ui) p2l_ZERO, (Packet4ui) p2d_MZERO, 8);//{ 0x8000000000000000, 0x0000000000000000 }; |
| static Packet2ul p2ul_CONJ_XOR2 = (Packet2ul) vec_sld((Packet4ui) p2d_MZERO, (Packet4ui) p2l_ZERO, 8);//{ 0x8000000000000000, 0x0000000000000000 }; |
| #endif |
| #endif |
| |
| //---------- float ---------- |
| struct Packet2cf |
| { |
| EIGEN_STRONG_INLINE explicit Packet2cf() {} |
| EIGEN_STRONG_INLINE explicit Packet2cf(const Packet4f& a) : v(a) {} |
| |
| EIGEN_STRONG_INLINE Packet2cf pmul(const Packet2cf& a, const Packet2cf& b) |
| { |
| Packet4f v1, v2; |
| |
| // Permute and multiply the real parts of a and b |
| v1 = vec_perm(a.v, a.v, p16uc_PSET32_WODD); |
| // Get the imaginary parts of a |
| v2 = vec_perm(a.v, a.v, p16uc_PSET32_WEVEN); |
| // multiply a_re * b |
| v1 = vec_madd(v1, b.v, p4f_ZERO); |
| // multiply a_im * b and get the conjugate result |
| v2 = vec_madd(v2, b.v, p4f_ZERO); |
| v2 = reinterpret_cast<Packet4f>(pxor(v2, reinterpret_cast<Packet4f>(p4ui_CONJ_XOR))); |
| // permute back to a proper order |
| v2 = vec_perm(v2, v2, p16uc_COMPLEX32_REV); |
| |
| return Packet2cf(padd<Packet4f>(v1, v2)); |
| } |
| |
| EIGEN_STRONG_INLINE Packet2cf& operator*=(const Packet2cf& b) { |
| v = pmul(Packet2cf(*this), b).v; |
| return *this; |
| } |
| EIGEN_STRONG_INLINE Packet2cf operator*(const Packet2cf& b) const { |
| return Packet2cf(*this) *= b; |
| } |
| |
| EIGEN_STRONG_INLINE Packet2cf& operator+=(const Packet2cf& b) { |
| v = padd(v, b.v); |
| return *this; |
| } |
| EIGEN_STRONG_INLINE Packet2cf operator+(const Packet2cf& b) const { |
| return Packet2cf(*this) += b; |
| } |
| EIGEN_STRONG_INLINE Packet2cf& operator-=(const Packet2cf& b) { |
| v = psub(v, b.v); |
| return *this; |
| } |
| EIGEN_STRONG_INLINE Packet2cf operator-(const Packet2cf& b) const { |
| return Packet2cf(*this) -= b; |
| } |
| EIGEN_STRONG_INLINE Packet2cf operator-(void) const { |
| return Packet2cf(-v); |
| } |
| |
| Packet4f v; |
| }; |
| |
| template<> struct packet_traits<std::complex<float> > : default_packet_traits |
| { |
| typedef Packet2cf type; |
| typedef Packet2cf half; |
| typedef Packet4f as_real; |
| enum { |
| Vectorizable = 1, |
| AlignedOnScalar = 1, |
| size = 2, |
| |
| HasAdd = 1, |
| HasSub = 1, |
| HasMul = 1, |
| HasDiv = 1, |
| HasNegate = 1, |
| HasAbs = 0, |
| HasAbs2 = 0, |
| HasMin = 0, |
| HasMax = 0, |
| HasSqrt = 1, |
| #ifdef EIGEN_VECTORIZE_VSX |
| HasBlend = 1, |
| #endif |
| HasSetLinear = 0 |
| }; |
| }; |
| |
| template<> struct unpacket_traits<Packet2cf> { typedef std::complex<float> type; enum {size=2, alignment=Aligned16, vectorizable=true, masked_load_available=false, masked_store_available=false}; typedef Packet2cf half; typedef Packet4f as_real; }; |
| |
| template<> EIGEN_STRONG_INLINE Packet2cf pset1<Packet2cf>(const std::complex<float>& from) |
| { |
| Packet2cf res; |
| #ifdef EIGEN_VECTORIZE_VSX |
| // Load a single std::complex<float> from memory and duplicate |
| // |
| // Using pload would read past the end of the reference in this case |
| // Using vec_xl_len + vec_splat, generates poor assembly |
| __asm__ ("lxvdsx %x0,%y1" : "=wa" (res.v) : "Z" (from)); |
| #else |
| if((std::ptrdiff_t(&from) % 16) == 0) |
| res.v = pload<Packet4f>((const float *)&from); |
| else |
| res.v = ploadu<Packet4f>((const float *)&from); |
| res.v = vec_perm(res.v, res.v, p16uc_PSET64_HI); |
| #endif |
| return res; |
| } |
| |
| template<> EIGEN_STRONG_INLINE Packet2cf pload<Packet2cf>(const std::complex<float>* from) { return Packet2cf(pload<Packet4f>((const float *) from)); } |
| template<> EIGEN_STRONG_INLINE Packet2cf ploadu<Packet2cf>(const std::complex<float>* from) { return Packet2cf(ploadu<Packet4f>((const float*) from)); } |
| template<> EIGEN_ALWAYS_INLINE Packet2cf pload_partial<Packet2cf>(const std::complex<float>* from, const Index n, const Index offset) |
| { |
| return Packet2cf(pload_partial<Packet4f>((const float *) from, n * 2, offset * 2)); |
| } |
| template<> EIGEN_ALWAYS_INLINE Packet2cf ploadu_partial<Packet2cf>(const std::complex<float>* from, const Index n) |
| { |
| return Packet2cf(ploadu_partial<Packet4f>((const float*) from, n * 2)); |
| } |
| template<> EIGEN_STRONG_INLINE Packet2cf ploaddup<Packet2cf>(const std::complex<float>* from) { return pset1<Packet2cf>(*from); } |
| |
| template<> EIGEN_STRONG_INLINE void pstore <std::complex<float> >(std::complex<float> * to, const Packet2cf& from) { pstore((float*)to, from.v); } |
| template<> EIGEN_STRONG_INLINE void pstoreu<std::complex<float> >(std::complex<float> * to, const Packet2cf& from) { pstoreu((float*)to, from.v); } |
| template<> EIGEN_ALWAYS_INLINE void pstore_partial <std::complex<float> >(std::complex<float> * to, const Packet2cf& from, const Index n, const Index offset) { pstore_partial((float*)to, from.v, n * 2, offset * 2); } |
| template<> EIGEN_ALWAYS_INLINE void pstoreu_partial<std::complex<float> >(std::complex<float> * to, const Packet2cf& from, const Index n) { pstoreu_partial((float*)to, from.v, n * 2); } |
| |
| EIGEN_STRONG_INLINE Packet2cf pload2(const std::complex<float>& from0, const std::complex<float>& from1) |
| { |
| Packet4f res0, res1; |
| #ifdef EIGEN_VECTORIZE_VSX |
| // Load two std::complex<float> from memory and combine |
| __asm__ ("lxsdx %x0,%y1" : "=wa" (res0) : "Z" (from0)); |
| __asm__ ("lxsdx %x0,%y1" : "=wa" (res1) : "Z" (from1)); |
| #ifdef _BIG_ENDIAN |
| __asm__ ("xxpermdi %x0, %x1, %x2, 0" : "=wa" (res0) : "wa" (res0), "wa" (res1)); |
| #else |
| __asm__ ("xxpermdi %x0, %x2, %x1, 0" : "=wa" (res0) : "wa" (res0), "wa" (res1)); |
| #endif |
| #else |
| *reinterpret_cast<std::complex<float> *>(&res0) = from0; |
| *reinterpret_cast<std::complex<float> *>(&res1) = from1; |
| res0 = vec_perm(res0, res1, p16uc_TRANSPOSE64_HI); |
| #endif |
| return Packet2cf(res0); |
| } |
| |
| template<> EIGEN_ALWAYS_INLINE Packet2cf pload_ignore<Packet2cf>(const std::complex<float>* from) |
| { |
| Packet2cf res; |
| res.v = pload_ignore<Packet4f>(reinterpret_cast<const float*>(from)); |
| return res; |
| } |
| |
| template<typename Scalar, typename Packet> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Packet pgather_complex_size2(const Scalar* from, Index stride, const Index n = 2) |
| { |
| eigen_internal_assert(n <= unpacket_traits<Packet>::size && "number of elements will gather past end of packet"); |
| EIGEN_ALIGN16 Scalar af[2]; |
| for (Index i = 0; i < n; i++) { |
| af[i] = from[i*stride]; |
| } |
| return pload_ignore<Packet>(af); |
| } |
| template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Packet2cf pgather<std::complex<float>, Packet2cf>(const std::complex<float>* from, Index stride) |
| { |
| return pgather_complex_size2<std::complex<float>, Packet2cf>(from, stride); |
| } |
| template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Packet2cf pgather_partial<std::complex<float>, Packet2cf>(const std::complex<float>* from, Index stride, const Index n) |
| { |
| return pgather_complex_size2<std::complex<float>, Packet2cf>(from, stride, n); |
| } |
| template<typename Scalar, typename Packet> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void pscatter_complex_size2(Scalar* to, const Packet& from, Index stride, const Index n = 2) |
| { |
| eigen_internal_assert(n <= unpacket_traits<Packet>::size && "number of elements will scatter past end of packet"); |
| EIGEN_ALIGN16 Scalar af[2]; |
| pstore<Scalar>((Scalar *) af, from); |
| for (Index i = 0; i < n; i++) { |
| to[i*stride] = af[i]; |
| } |
| } |
| template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void pscatter<std::complex<float>, Packet2cf>(std::complex<float>* to, const Packet2cf& from, Index stride) |
| { |
| pscatter_complex_size2<std::complex<float>, Packet2cf>(to, from, stride); |
| } |
| template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void pscatter_partial<std::complex<float>, Packet2cf>(std::complex<float>* to, const Packet2cf& from, Index stride, const Index n) |
| { |
| pscatter_complex_size2<std::complex<float>, Packet2cf>(to, from, stride, n); |
| } |
| |
| template<> EIGEN_STRONG_INLINE Packet2cf padd<Packet2cf>(const Packet2cf& a, const Packet2cf& b) { return Packet2cf(a.v + b.v); } |
| template<> EIGEN_STRONG_INLINE Packet2cf psub<Packet2cf>(const Packet2cf& a, const Packet2cf& b) { return Packet2cf(a.v - b.v); } |
| template<> EIGEN_STRONG_INLINE Packet2cf pnegate(const Packet2cf& a) { return Packet2cf(pnegate(a.v)); } |
| template<> EIGEN_STRONG_INLINE Packet2cf pconj(const Packet2cf& a) { return Packet2cf(pxor<Packet4f>(a.v, reinterpret_cast<Packet4f>(p4ui_CONJ_XOR))); } |
| |
| template<> EIGEN_STRONG_INLINE Packet2cf pand <Packet2cf>(const Packet2cf& a, const Packet2cf& b) { return Packet2cf(pand<Packet4f>(a.v, b.v)); } |
| template<> EIGEN_STRONG_INLINE Packet2cf por <Packet2cf>(const Packet2cf& a, const Packet2cf& b) { return Packet2cf(por<Packet4f>(a.v, b.v)); } |
| template<> EIGEN_STRONG_INLINE Packet2cf pxor <Packet2cf>(const Packet2cf& a, const Packet2cf& b) { return Packet2cf(pxor<Packet4f>(a.v, b.v)); } |
| template<> EIGEN_STRONG_INLINE Packet2cf pandnot<Packet2cf>(const Packet2cf& a, const Packet2cf& b) { return Packet2cf(pandnot<Packet4f>(a.v, b.v)); } |
| |
| template<> EIGEN_STRONG_INLINE void prefetch<std::complex<float> >(const std::complex<float> * addr) { EIGEN_PPC_PREFETCH(addr); } |
| |
| template<> EIGEN_STRONG_INLINE std::complex<float> pfirst<Packet2cf>(const Packet2cf& a) |
| { |
| EIGEN_ALIGN16 std::complex<float> res[2]; |
| pstore((float *)&res, a.v); |
| |
| return res[0]; |
| } |
| |
| template<> EIGEN_STRONG_INLINE Packet2cf preverse(const Packet2cf& a) |
| { |
| Packet4f rev_a; |
| rev_a = vec_sld(a.v, a.v, 8); |
| return Packet2cf(rev_a); |
| } |
| |
| template<> EIGEN_STRONG_INLINE std::complex<float> predux<Packet2cf>(const Packet2cf& a) |
| { |
| Packet4f b; |
| b = vec_sld(a.v, a.v, 8); |
| b = padd<Packet4f>(a.v, b); |
| return pfirst<Packet2cf>(Packet2cf(b)); |
| } |
| |
| template<> EIGEN_STRONG_INLINE std::complex<float> predux_mul<Packet2cf>(const Packet2cf& a) |
| { |
| Packet4f b; |
| Packet2cf prod; |
| b = vec_sld(a.v, a.v, 8); |
| prod = pmul<Packet2cf>(a, Packet2cf(b)); |
| |
| return pfirst<Packet2cf>(prod); |
| } |
| |
| EIGEN_MAKE_CONJ_HELPER_CPLX_REAL(Packet2cf,Packet4f) |
| |
| template<> EIGEN_STRONG_INLINE Packet2cf pdiv<Packet2cf>(const Packet2cf& a, const Packet2cf& b) |
| { |
| return pdiv_complex(a, b); |
| } |
| |
| template<> EIGEN_STRONG_INLINE Packet2cf pcplxflip<Packet2cf>(const Packet2cf& x) |
| { |
| return Packet2cf(vec_perm(x.v, x.v, p16uc_COMPLEX32_REV)); |
| } |
| |
| EIGEN_STRONG_INLINE void ptranspose(PacketBlock<Packet2cf,2>& kernel) |
| { |
| #ifdef EIGEN_VECTORIZE_VSX |
| Packet4f tmp = reinterpret_cast<Packet4f>(vec_mergeh(reinterpret_cast<Packet2d>(kernel.packet[0].v), reinterpret_cast<Packet2d>(kernel.packet[1].v))); |
| kernel.packet[1].v = reinterpret_cast<Packet4f>(vec_mergel(reinterpret_cast<Packet2d>(kernel.packet[0].v), reinterpret_cast<Packet2d>(kernel.packet[1].v))); |
| #else |
| Packet4f tmp = vec_perm(kernel.packet[0].v, kernel.packet[1].v, p16uc_TRANSPOSE64_HI); |
| kernel.packet[1].v = vec_perm(kernel.packet[0].v, kernel.packet[1].v, p16uc_TRANSPOSE64_LO); |
| #endif |
| kernel.packet[0].v = tmp; |
| } |
| |
| template<> EIGEN_STRONG_INLINE Packet2cf pcmp_eq(const Packet2cf& a, const Packet2cf& b) { |
| Packet4f eq = reinterpret_cast<Packet4f>(vec_cmpeq(a.v,b.v)); |
| return Packet2cf(vec_and(eq, vec_perm(eq, eq, p16uc_COMPLEX32_REV))); |
| } |
| |
| #ifdef EIGEN_VECTORIZE_VSX |
| template<> EIGEN_STRONG_INLINE Packet2cf pblend(const Selector<2>& ifPacket, const Packet2cf& thenPacket, const Packet2cf& elsePacket) { |
| Packet2cf result; |
| result.v = reinterpret_cast<Packet4f>(pblend<Packet2d>(ifPacket, reinterpret_cast<Packet2d>(thenPacket.v), reinterpret_cast<Packet2d>(elsePacket.v))); |
| return result; |
| } |
| #endif |
| |
| template<> EIGEN_STRONG_INLINE Packet2cf psqrt<Packet2cf>(const Packet2cf& a) |
| { |
| return psqrt_complex<Packet2cf>(a); |
| } |
| |
| //---------- double ---------- |
| #ifdef EIGEN_VECTORIZE_VSX |
| struct Packet1cd |
| { |
| EIGEN_STRONG_INLINE Packet1cd() {} |
| EIGEN_STRONG_INLINE explicit Packet1cd(const Packet2d& a) : v(a) {} |
| |
| EIGEN_STRONG_INLINE Packet1cd pmul(const Packet1cd& a, const Packet1cd& b) |
| { |
| Packet2d a_re, a_im, v1, v2; |
| |
| // Permute and multiply the real parts of a and b |
| a_re = vec_perm(a.v, a.v, p16uc_PSET64_HI); |
| // Get the imaginary parts of a |
| a_im = vec_perm(a.v, a.v, p16uc_PSET64_LO); |
| // multiply a_re * b |
| v1 = vec_madd(a_re, b.v, p2d_ZERO); |
| // multiply a_im * b and get the conjugate result |
| v2 = vec_madd(a_im, b.v, p2d_ZERO); |
| v2 = reinterpret_cast<Packet2d>(vec_sld(reinterpret_cast<Packet4ui>(v2), reinterpret_cast<Packet4ui>(v2), 8)); |
| v2 = pxor(v2, reinterpret_cast<Packet2d>(p2ul_CONJ_XOR1)); |
| |
| return Packet1cd(padd<Packet2d>(v1, v2)); |
| } |
| |
| EIGEN_STRONG_INLINE Packet1cd& operator*=(const Packet1cd& b) { |
| v = pmul(Packet1cd(*this), b).v; |
| return *this; |
| } |
| EIGEN_STRONG_INLINE Packet1cd operator*(const Packet1cd& b) const { |
| return Packet1cd(*this) *= b; |
| } |
| |
| EIGEN_STRONG_INLINE Packet1cd& operator+=(const Packet1cd& b) { |
| v = padd(v, b.v); |
| return *this; |
| } |
| EIGEN_STRONG_INLINE Packet1cd operator+(const Packet1cd& b) const { |
| return Packet1cd(*this) += b; |
| } |
| EIGEN_STRONG_INLINE Packet1cd& operator-=(const Packet1cd& b) { |
| v = psub(v, b.v); |
| return *this; |
| } |
| EIGEN_STRONG_INLINE Packet1cd operator-(const Packet1cd& b) const { |
| return Packet1cd(*this) -= b; |
| } |
| EIGEN_STRONG_INLINE Packet1cd operator-(void) const { |
| return Packet1cd(-v); |
| } |
| |
| Packet2d v; |
| }; |
| |
| template<> struct packet_traits<std::complex<double> > : default_packet_traits |
| { |
| typedef Packet1cd type; |
| typedef Packet1cd half; |
| typedef Packet2d as_real; |
| enum { |
| Vectorizable = 1, |
| AlignedOnScalar = 0, |
| size = 1, |
| |
| HasAdd = 1, |
| HasSub = 1, |
| HasMul = 1, |
| HasDiv = 1, |
| HasNegate = 1, |
| HasAbs = 0, |
| HasAbs2 = 0, |
| HasMin = 0, |
| HasMax = 0, |
| HasSqrt = 1, |
| HasSetLinear = 0 |
| }; |
| }; |
| |
| template<> struct unpacket_traits<Packet1cd> { typedef std::complex<double> type; enum {size=1, alignment=Aligned16, vectorizable=true, masked_load_available=false, masked_store_available=false}; typedef Packet1cd half; typedef Packet2d as_real; }; |
| |
| template<> EIGEN_STRONG_INLINE Packet1cd pload <Packet1cd>(const std::complex<double>* from) { return Packet1cd(pload<Packet2d>((const double*)from)); } |
| template<> EIGEN_STRONG_INLINE Packet1cd ploadu<Packet1cd>(const std::complex<double>* from) { return Packet1cd(ploadu<Packet2d>((const double*)from)); } |
| template<> EIGEN_ALWAYS_INLINE Packet1cd pload_partial<Packet1cd>(const std::complex<double>* from, const Index n, const Index offset) |
| { |
| return Packet1cd(pload_partial<Packet2d>((const double*)from, n * 2, offset * 2)); |
| } |
| template<> EIGEN_ALWAYS_INLINE Packet1cd ploadu_partial<Packet1cd>(const std::complex<double>* from, const Index n) |
| { |
| return Packet1cd(ploadu_partial<Packet2d>((const double*)from, n * 2)); |
| } |
| template<> EIGEN_STRONG_INLINE void pstore <std::complex<double> >(std::complex<double> * to, const Packet1cd& from) { pstore((double*)to, from.v); } |
| template<> EIGEN_STRONG_INLINE void pstoreu<std::complex<double> >(std::complex<double> * to, const Packet1cd& from) { pstoreu((double*)to, from.v); } |
| template<> EIGEN_ALWAYS_INLINE void pstore_partial <std::complex<double> >(std::complex<double> * to, const Packet1cd& from, const Index n, const Index offset) { pstore_partial((double*)to, from.v, n * 2, offset * 2); } |
| template<> EIGEN_ALWAYS_INLINE void pstoreu_partial<std::complex<double> >(std::complex<double> * to, const Packet1cd& from, const Index n) { pstoreu_partial((double*)to, from.v, n * 2); } |
| |
| template<> EIGEN_STRONG_INLINE Packet1cd pset1<Packet1cd>(const std::complex<double>& from) |
| { /* here we really have to use unaligned loads :( */ return ploadu<Packet1cd>(&from); } |
| |
| template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Packet1cd pgather<std::complex<double>, Packet1cd>(const std::complex<double>* from, Index) |
| { |
| return pload<Packet1cd>(from); |
| } |
| template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Packet1cd pgather_partial<std::complex<double>, Packet1cd>(const std::complex<double>* from, Index, const Index) |
| { |
| return pload<Packet1cd>(from); |
| } |
| template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void pscatter<std::complex<double>, Packet1cd>(std::complex<double>* to, const Packet1cd& from, Index) |
| { |
| pstore<std::complex<double> >(to, from); |
| } |
| template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void pscatter_partial<std::complex<double>, Packet1cd>(std::complex<double>* to, const Packet1cd& from, Index, const Index) |
| { |
| pstore<std::complex<double> >(to, from); |
| } |
| |
| template<> EIGEN_STRONG_INLINE Packet1cd padd<Packet1cd>(const Packet1cd& a, const Packet1cd& b) { return Packet1cd(a.v + b.v); } |
| template<> EIGEN_STRONG_INLINE Packet1cd psub<Packet1cd>(const Packet1cd& a, const Packet1cd& b) { return Packet1cd(a.v - b.v); } |
| template<> EIGEN_STRONG_INLINE Packet1cd pnegate(const Packet1cd& a) { return Packet1cd(pnegate(Packet2d(a.v))); } |
| template<> EIGEN_STRONG_INLINE Packet1cd pconj(const Packet1cd& a) { return Packet1cd(pxor(a.v, reinterpret_cast<Packet2d>(p2ul_CONJ_XOR2))); } |
| |
| template<> EIGEN_STRONG_INLINE Packet1cd pand <Packet1cd>(const Packet1cd& a, const Packet1cd& b) { return Packet1cd(pand(a.v,b.v)); } |
| template<> EIGEN_STRONG_INLINE Packet1cd por <Packet1cd>(const Packet1cd& a, const Packet1cd& b) { return Packet1cd(por(a.v,b.v)); } |
| template<> EIGEN_STRONG_INLINE Packet1cd pxor <Packet1cd>(const Packet1cd& a, const Packet1cd& b) { return Packet1cd(pxor(a.v,b.v)); } |
| template<> EIGEN_STRONG_INLINE Packet1cd pandnot<Packet1cd>(const Packet1cd& a, const Packet1cd& b) { return Packet1cd(pandnot(a.v, b.v)); } |
| |
| template<> EIGEN_STRONG_INLINE Packet1cd ploaddup<Packet1cd>(const std::complex<double>* from) { return pset1<Packet1cd>(*from); } |
| |
| template<> EIGEN_STRONG_INLINE void prefetch<std::complex<double> >(const std::complex<double> * addr) { EIGEN_PPC_PREFETCH(addr); } |
| |
| template<> EIGEN_STRONG_INLINE std::complex<double> pfirst<Packet1cd>(const Packet1cd& a) |
| { |
| EIGEN_ALIGN16 std::complex<double> res[1]; |
| pstore<std::complex<double> >(res, a); |
| |
| return res[0]; |
| } |
| |
| template<> EIGEN_STRONG_INLINE Packet1cd preverse(const Packet1cd& a) { return a; } |
| |
| template<> EIGEN_STRONG_INLINE std::complex<double> predux<Packet1cd>(const Packet1cd& a) { return pfirst(a); } |
| |
| template<> EIGEN_STRONG_INLINE std::complex<double> predux_mul<Packet1cd>(const Packet1cd& a) { return pfirst(a); } |
| |
| EIGEN_MAKE_CONJ_HELPER_CPLX_REAL(Packet1cd,Packet2d) |
| |
| template<> EIGEN_STRONG_INLINE Packet1cd pdiv<Packet1cd>(const Packet1cd& a, const Packet1cd& b) |
| { |
| return pdiv_complex(a, b); |
| } |
| |
| EIGEN_STRONG_INLINE Packet1cd pcplxflip/*<Packet1cd>*/(const Packet1cd& x) |
| { |
| return Packet1cd(preverse(Packet2d(x.v))); |
| } |
| |
| EIGEN_STRONG_INLINE void ptranspose(PacketBlock<Packet1cd,2>& kernel) |
| { |
| Packet2d tmp = vec_mergeh(kernel.packet[0].v, kernel.packet[1].v); |
| kernel.packet[1].v = vec_mergel(kernel.packet[0].v, kernel.packet[1].v); |
| kernel.packet[0].v = tmp; |
| } |
| |
| template<> EIGEN_STRONG_INLINE Packet1cd pcmp_eq(const Packet1cd& a, const Packet1cd& b) { |
| // Compare real and imaginary parts of a and b to get the mask vector: |
| // [re(a)==re(b), im(a)==im(b)] |
| Packet2d eq = reinterpret_cast<Packet2d>(vec_cmpeq(a.v,b.v)); |
| // Swap real/imag elements in the mask in to get: |
| // [im(a)==im(b), re(a)==re(b)] |
| Packet2d eq_swapped = reinterpret_cast<Packet2d>(vec_sld(reinterpret_cast<Packet4ui>(eq), reinterpret_cast<Packet4ui>(eq), 8)); |
| // Return re(a)==re(b) & im(a)==im(b) by computing bitwise AND of eq and eq_swapped |
| return Packet1cd(vec_and(eq, eq_swapped)); |
| } |
| |
| template<> EIGEN_STRONG_INLINE Packet1cd psqrt<Packet1cd>(const Packet1cd& a) |
| { |
| return psqrt_complex<Packet1cd>(a); |
| } |
| |
| #endif // __VSX__ |
| } // end namespace internal |
| |
| } // end namespace Eigen |
| |
| #endif // EIGEN_COMPLEX32_ALTIVEC_H |