blob: 83239c0a7cf277889c51fe882d4daaac43d34f05 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2018 Wave Computing, Inc.
// Written by:
// Chris Larsen
// Alexey Frunze (afrunze@wavecomp.com)
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_COMPLEX_MSA_H
#define EIGEN_COMPLEX_MSA_H
#include <iostream>
#include "../../InternalHeaderCheck.h"
namespace Eigen {
namespace internal {
//---------- float ----------
struct Packet2cf {
EIGEN_STRONG_INLINE Packet2cf() {
}
EIGEN_STRONG_INLINE explicit Packet2cf(const std::complex<float>& a,
const std::complex<float>& b) {
Packet4f t = { std::real(a), std::imag(a), std::real(b), std::imag(b) };
v = t;
}
EIGEN_STRONG_INLINE explicit Packet2cf(const Packet4f& a) : v(a) {
}
EIGEN_STRONG_INLINE Packet2cf(const Packet2cf& a) : v(a.v) {
}
EIGEN_STRONG_INLINE Packet2cf& operator=(const Packet2cf& b) {
v = b.v;
return *this;
}
EIGEN_STRONG_INLINE Packet2cf conjugate(void) const {
return Packet2cf((Packet4f)__builtin_msa_bnegi_d((v2u64)v, 63));
}
EIGEN_STRONG_INLINE Packet2cf& operator*=(const Packet2cf& b) {
Packet4f v1, v2;
// Get the real values of a | a1_re | a1_re | a2_re | a2_re |
v1 = (Packet4f)__builtin_msa_ilvev_w((v4i32)v, (v4i32)v);
// Get the imag values of a | a1_im | a1_im | a2_im | a2_im |
v2 = (Packet4f)__builtin_msa_ilvod_w((v4i32)v, (v4i32)v);
// Multiply the real a with b
v1 = pmul(v1, b.v);
// Multiply the imag a with b
v2 = pmul(v2, b.v);
// Conjugate v2
v2 = Packet2cf(v2).conjugate().v;
// Swap real/imag elements in v2.
v2 = (Packet4f)__builtin_msa_shf_w((v4i32)v2, EIGEN_MSA_SHF_I8(1, 0, 3, 2));
// Add and return the result
v = padd(v1, v2);
return *this;
}
EIGEN_STRONG_INLINE Packet2cf operator*(const Packet2cf& b) const {
return Packet2cf(*this) *= b;
}
EIGEN_STRONG_INLINE Packet2cf& operator+=(const Packet2cf& b) {
v = padd(v, b.v);
return *this;
}
EIGEN_STRONG_INLINE Packet2cf operator+(const Packet2cf& b) const {
return Packet2cf(*this) += b;
}
EIGEN_STRONG_INLINE Packet2cf& operator-=(const Packet2cf& b) {
v = psub(v, b.v);
return *this;
}
EIGEN_STRONG_INLINE Packet2cf operator-(const Packet2cf& b) const {
return Packet2cf(*this) -= b;
}
EIGEN_STRONG_INLINE Packet2cf operator/(const Packet2cf& b) const {
return pdiv_complex(Packet2cf(*this), b);
}
EIGEN_STRONG_INLINE Packet2cf& operator/=(const Packet2cf& b) {
*this = Packet2cf(*this) / b;
return *this;
}
EIGEN_STRONG_INLINE Packet2cf operator-(void) const {
return Packet2cf(pnegate(v));
}
Packet4f v;
};
inline std::ostream& operator<<(std::ostream& os, const Packet2cf& value) {
os << "[ (" << value.v[0] << ", " << value.v[1]
<< "i),"
" ("
<< value.v[2] << ", " << value.v[3] << "i) ]";
return os;
}
template <>
struct packet_traits<std::complex<float> > : default_packet_traits {
typedef Packet2cf type;
typedef Packet2cf half;
enum {
Vectorizable = 1,
AlignedOnScalar = 1,
size = 2,
HasAdd = 1,
HasSub = 1,
HasMul = 1,
HasDiv = 1,
HasNegate = 1,
HasAbs = 0,
HasAbs2 = 0,
HasMin = 0,
HasMax = 0,
HasSetLinear = 0,
HasBlend = 1
};
};
template <>
struct unpacket_traits<Packet2cf> {
typedef std::complex<float> type;
enum { size = 2, alignment = Aligned16, vectorizable=true, masked_load_available=false, masked_store_available=false };
typedef Packet2cf half;
};
template <>
EIGEN_STRONG_INLINE Packet2cf pset1<Packet2cf>(const std::complex<float>& from) {
EIGEN_MSA_DEBUG;
float f0 = from.real(), f1 = from.imag();
Packet4f v0 = { f0, f0, f0, f0 };
Packet4f v1 = { f1, f1, f1, f1 };
return Packet2cf((Packet4f)__builtin_msa_ilvr_w((Packet4i)v1, (Packet4i)v0));
}
template <>
EIGEN_STRONG_INLINE Packet2cf padd<Packet2cf>(const Packet2cf& a, const Packet2cf& b) {
EIGEN_MSA_DEBUG;
return a + b;
}
template <>
EIGEN_STRONG_INLINE Packet2cf psub<Packet2cf>(const Packet2cf& a, const Packet2cf& b) {
EIGEN_MSA_DEBUG;
return a - b;
}
template <>
EIGEN_STRONG_INLINE Packet2cf pnegate(const Packet2cf& a) {
EIGEN_MSA_DEBUG;
return -a;
}
template <>
EIGEN_STRONG_INLINE Packet2cf pconj(const Packet2cf& a) {
EIGEN_MSA_DEBUG;
return a.conjugate();
}
template <>
EIGEN_STRONG_INLINE Packet2cf pmul<Packet2cf>(const Packet2cf& a, const Packet2cf& b) {
EIGEN_MSA_DEBUG;
return a * b;
}
template <>
EIGEN_STRONG_INLINE Packet2cf pand<Packet2cf>(const Packet2cf& a, const Packet2cf& b) {
EIGEN_MSA_DEBUG;
return Packet2cf(pand(a.v, b.v));
}
template <>
EIGEN_STRONG_INLINE Packet2cf por<Packet2cf>(const Packet2cf& a, const Packet2cf& b) {
EIGEN_MSA_DEBUG;
return Packet2cf(por(a.v, b.v));
}
template <>
EIGEN_STRONG_INLINE Packet2cf pxor<Packet2cf>(const Packet2cf& a, const Packet2cf& b) {
EIGEN_MSA_DEBUG;
return Packet2cf(pxor(a.v, b.v));
}
template <>
EIGEN_STRONG_INLINE Packet2cf pandnot<Packet2cf>(const Packet2cf& a, const Packet2cf& b) {
EIGEN_MSA_DEBUG;
return Packet2cf(pandnot(a.v, b.v));
}
template <>
EIGEN_STRONG_INLINE Packet2cf pload<Packet2cf>(const std::complex<float>* from) {
EIGEN_MSA_DEBUG;
EIGEN_DEBUG_ALIGNED_LOAD return Packet2cf(pload<Packet4f>((const float*)from));
}
template <>
EIGEN_STRONG_INLINE Packet2cf ploadu<Packet2cf>(const std::complex<float>* from) {
EIGEN_MSA_DEBUG;
EIGEN_DEBUG_UNALIGNED_LOAD return Packet2cf(ploadu<Packet4f>((const float*)from));
}
template <>
EIGEN_STRONG_INLINE Packet2cf ploaddup<Packet2cf>(const std::complex<float>* from) {
EIGEN_MSA_DEBUG;
return pset1<Packet2cf>(*from);
}
template <>
EIGEN_STRONG_INLINE void pstore<std::complex<float> >(std::complex<float>* to,
const Packet2cf& from) {
EIGEN_MSA_DEBUG;
EIGEN_DEBUG_ALIGNED_STORE pstore<float>((float*)to, from.v);
}
template <>
EIGEN_STRONG_INLINE void pstoreu<std::complex<float> >(std::complex<float>* to,
const Packet2cf& from) {
EIGEN_MSA_DEBUG;
EIGEN_DEBUG_UNALIGNED_STORE pstoreu<float>((float*)to, from.v);
}
template <>
EIGEN_DEVICE_FUNC inline Packet2cf pgather<std::complex<float>, Packet2cf>(
const std::complex<float>* from, Index stride) {
EIGEN_MSA_DEBUG;
return Packet2cf(from[0 * stride], from[1 * stride]);
}
template <>
EIGEN_DEVICE_FUNC inline void pscatter<std::complex<float>, Packet2cf>(std::complex<float>* to,
const Packet2cf& from,
Index stride) {
EIGEN_MSA_DEBUG;
*to = std::complex<float>(from.v[0], from.v[1]);
to += stride;
*to = std::complex<float>(from.v[2], from.v[3]);
}
template <>
EIGEN_STRONG_INLINE void prefetch<std::complex<float> >(const std::complex<float>* addr) {
EIGEN_MSA_DEBUG;
prefetch(reinterpret_cast<const float*>(addr));
}
template <>
EIGEN_STRONG_INLINE std::complex<float> pfirst<Packet2cf>(const Packet2cf& a) {
EIGEN_MSA_DEBUG;
return std::complex<float>(a.v[0], a.v[1]);
}
template <>
EIGEN_STRONG_INLINE Packet2cf preverse(const Packet2cf& a) {
EIGEN_MSA_DEBUG;
return Packet2cf((Packet4f)__builtin_msa_shf_w((v4i32)a.v, EIGEN_MSA_SHF_I8(2, 3, 0, 1)));
}
template <>
EIGEN_STRONG_INLINE Packet2cf pcplxflip<Packet2cf>(const Packet2cf& a) {
EIGEN_MSA_DEBUG;
return Packet2cf((Packet4f)__builtin_msa_shf_w((v4i32)a.v, EIGEN_MSA_SHF_I8(1, 0, 3, 2)));
}
template <>
EIGEN_STRONG_INLINE std::complex<float> predux<Packet2cf>(const Packet2cf& a) {
EIGEN_MSA_DEBUG;
Packet4f value = (Packet4f)preverse((Packet2d)a.v);
value += a.v;
return std::complex<float>(value[0], value[1]);
}
template <>
EIGEN_STRONG_INLINE std::complex<float> predux_mul<Packet2cf>(const Packet2cf& a) {
EIGEN_MSA_DEBUG;
return std::complex<float>((a.v[0] * a.v[2]) - (a.v[1] * a.v[3]),
(a.v[0] * a.v[3]) + (a.v[1] * a.v[2]));
}
EIGEN_MAKE_CONJ_HELPER_CPLX_REAL(Packet2cf, Packet4f)
template <>
EIGEN_STRONG_INLINE Packet2cf pdiv<Packet2cf>(const Packet2cf& a, const Packet2cf& b) {
EIGEN_MSA_DEBUG;
return a / b;
}
inline std::ostream& operator<<(std::ostream& os, const PacketBlock<Packet2cf, 2>& value) {
os << "[ " << value.packet[0] << ", " << std::endl << " " << value.packet[1] << " ]";
return os;
}
EIGEN_DEVICE_FUNC inline void ptranspose(PacketBlock<Packet2cf, 2>& kernel) {
EIGEN_MSA_DEBUG;
Packet4f tmp =
(Packet4f)__builtin_msa_ilvl_d((v2i64)kernel.packet[1].v, (v2i64)kernel.packet[0].v);
kernel.packet[0].v =
(Packet4f)__builtin_msa_ilvr_d((v2i64)kernel.packet[1].v, (v2i64)kernel.packet[0].v);
kernel.packet[1].v = tmp;
}
template <>
EIGEN_STRONG_INLINE Packet2cf pblend(const Selector<2>& ifPacket, const Packet2cf& thenPacket,
const Packet2cf& elsePacket) {
return (Packet2cf)(Packet4f)pblend<Packet2d>(ifPacket, (Packet2d)thenPacket.v,
(Packet2d)elsePacket.v);
}
//---------- double ----------
struct Packet1cd {
EIGEN_STRONG_INLINE Packet1cd() {
}
EIGEN_STRONG_INLINE explicit Packet1cd(const std::complex<double>& a) {
v[0] = std::real(a);
v[1] = std::imag(a);
}
EIGEN_STRONG_INLINE explicit Packet1cd(const Packet2d& a) : v(a) {
}
EIGEN_STRONG_INLINE Packet1cd(const Packet1cd& a) : v(a.v) {
}
EIGEN_STRONG_INLINE Packet1cd& operator=(const Packet1cd& b) {
v = b.v;
return *this;
}
EIGEN_STRONG_INLINE Packet1cd conjugate(void) const {
static const v2u64 p2ul_CONJ_XOR = { 0x0, 0x8000000000000000 };
return (Packet1cd)pxor(v, (Packet2d)p2ul_CONJ_XOR);
}
EIGEN_STRONG_INLINE Packet1cd& operator*=(const Packet1cd& b) {
Packet2d v1, v2;
// Get the real values of a | a1_re | a1_re
v1 = (Packet2d)__builtin_msa_ilvev_d((v2i64)v, (v2i64)v);
// Get the imag values of a | a1_im | a1_im
v2 = (Packet2d)__builtin_msa_ilvod_d((v2i64)v, (v2i64)v);
// Multiply the real a with b
v1 = pmul(v1, b.v);
// Multiply the imag a with b
v2 = pmul(v2, b.v);
// Conjugate v2
v2 = Packet1cd(v2).conjugate().v;
// Swap real/imag elements in v2.
v2 = (Packet2d)__builtin_msa_shf_w((v4i32)v2, EIGEN_MSA_SHF_I8(2, 3, 0, 1));
// Add and return the result
v = padd(v1, v2);
return *this;
}
EIGEN_STRONG_INLINE Packet1cd operator*(const Packet1cd& b) const {
return Packet1cd(*this) *= b;
}
EIGEN_STRONG_INLINE Packet1cd& operator+=(const Packet1cd& b) {
v = padd(v, b.v);
return *this;
}
EIGEN_STRONG_INLINE Packet1cd operator+(const Packet1cd& b) const {
return Packet1cd(*this) += b;
}
EIGEN_STRONG_INLINE Packet1cd& operator-=(const Packet1cd& b) {
v = psub(v, b.v);
return *this;
}
EIGEN_STRONG_INLINE Packet1cd operator-(const Packet1cd& b) const {
return Packet1cd(*this) -= b;
}
EIGEN_STRONG_INLINE Packet1cd& operator/=(const Packet1cd& b) {
*this *= b.conjugate();
Packet2d s = pmul<Packet2d>(b.v, b.v);
s = padd(s, preverse<Packet2d>(s));
v = pdiv(v, s);
return *this;
}
EIGEN_STRONG_INLINE Packet1cd operator/(const Packet1cd& b) const {
return Packet1cd(*this) /= b;
}
EIGEN_STRONG_INLINE Packet1cd operator-(void) const {
return Packet1cd(pnegate(v));
}
Packet2d v;
};
inline std::ostream& operator<<(std::ostream& os, const Packet1cd& value) {
os << "[ (" << value.v[0] << ", " << value.v[1] << "i) ]";
return os;
}
template <>
struct packet_traits<std::complex<double> > : default_packet_traits {
typedef Packet1cd type;
typedef Packet1cd half;
enum {
Vectorizable = 1,
AlignedOnScalar = 0,
size = 1,
HasAdd = 1,
HasSub = 1,
HasMul = 1,
HasDiv = 1,
HasNegate = 1,
HasAbs = 0,
HasAbs2 = 0,
HasMin = 0,
HasMax = 0,
HasSetLinear = 0
};
};
template <>
struct unpacket_traits<Packet1cd> {
typedef std::complex<double> type;
enum { size = 1, alignment = Aligned16, vectorizable=true, masked_load_available=false, masked_store_available=false };
typedef Packet1cd half;
};
template <>
EIGEN_STRONG_INLINE Packet1cd pload<Packet1cd>(const std::complex<double>* from) {
EIGEN_MSA_DEBUG;
EIGEN_DEBUG_ALIGNED_LOAD return Packet1cd(pload<Packet2d>((const double*)from));
}
template <>
EIGEN_STRONG_INLINE Packet1cd ploadu<Packet1cd>(const std::complex<double>* from) {
EIGEN_MSA_DEBUG;
EIGEN_DEBUG_UNALIGNED_LOAD return Packet1cd(ploadu<Packet2d>((const double*)from));
}
template <>
EIGEN_STRONG_INLINE Packet1cd pset1<Packet1cd>(const std::complex<double>& from) {
EIGEN_MSA_DEBUG;
return Packet1cd(from);
}
template <>
EIGEN_STRONG_INLINE Packet1cd padd<Packet1cd>(const Packet1cd& a, const Packet1cd& b) {
EIGEN_MSA_DEBUG;
return a + b;
}
template <>
EIGEN_STRONG_INLINE Packet1cd psub<Packet1cd>(const Packet1cd& a, const Packet1cd& b) {
EIGEN_MSA_DEBUG;
return a - b;
}
template <>
EIGEN_STRONG_INLINE Packet1cd pnegate(const Packet1cd& a) {
EIGEN_MSA_DEBUG;
return -a;
}
template <>
EIGEN_STRONG_INLINE Packet1cd pconj(const Packet1cd& a) {
EIGEN_MSA_DEBUG;
return a.conjugate();
}
template <>
EIGEN_STRONG_INLINE Packet1cd pmul<Packet1cd>(const Packet1cd& a, const Packet1cd& b) {
EIGEN_MSA_DEBUG;
return a * b;
}
template <>
EIGEN_STRONG_INLINE Packet1cd pand<Packet1cd>(const Packet1cd& a, const Packet1cd& b) {
EIGEN_MSA_DEBUG;
return Packet1cd(pand(a.v, b.v));
}
template <>
EIGEN_STRONG_INLINE Packet1cd por<Packet1cd>(const Packet1cd& a, const Packet1cd& b) {
EIGEN_MSA_DEBUG;
return Packet1cd(por(a.v, b.v));
}
template <>
EIGEN_STRONG_INLINE Packet1cd pxor<Packet1cd>(const Packet1cd& a, const Packet1cd& b) {
EIGEN_MSA_DEBUG;
return Packet1cd(pxor(a.v, b.v));
}
template <>
EIGEN_STRONG_INLINE Packet1cd pandnot<Packet1cd>(const Packet1cd& a, const Packet1cd& b) {
EIGEN_MSA_DEBUG;
return Packet1cd(pandnot(a.v, b.v));
}
template <>
EIGEN_STRONG_INLINE Packet1cd ploaddup<Packet1cd>(const std::complex<double>* from) {
EIGEN_MSA_DEBUG;
return pset1<Packet1cd>(*from);
}
template <>
EIGEN_STRONG_INLINE void pstore<std::complex<double> >(std::complex<double>* to,
const Packet1cd& from) {
EIGEN_MSA_DEBUG;
EIGEN_DEBUG_ALIGNED_STORE pstore<double>((double*)to, from.v);
}
template <>
EIGEN_STRONG_INLINE void pstoreu<std::complex<double> >(std::complex<double>* to,
const Packet1cd& from) {
EIGEN_MSA_DEBUG;
EIGEN_DEBUG_UNALIGNED_STORE pstoreu<double>((double*)to, from.v);
}
template <>
EIGEN_STRONG_INLINE void prefetch<std::complex<double> >(const std::complex<double>* addr) {
EIGEN_MSA_DEBUG;
prefetch(reinterpret_cast<const double*>(addr));
}
template <>
EIGEN_DEVICE_FUNC inline Packet1cd pgather<std::complex<double>, Packet1cd>(
const std::complex<double>* from, Index stride __attribute__((unused))) {
EIGEN_MSA_DEBUG;
Packet1cd res;
res.v[0] = std::real(from[0]);
res.v[1] = std::imag(from[0]);
return res;
}
template <>
EIGEN_DEVICE_FUNC inline void pscatter<std::complex<double>, Packet1cd>(std::complex<double>* to,
const Packet1cd& from,
Index stride
__attribute__((unused))) {
EIGEN_MSA_DEBUG;
pstore(to, from);
}
template <>
EIGEN_STRONG_INLINE std::complex<double> pfirst<Packet1cd>(const Packet1cd& a) {
EIGEN_MSA_DEBUG;
return std::complex<double>(a.v[0], a.v[1]);
}
template <>
EIGEN_STRONG_INLINE Packet1cd preverse(const Packet1cd& a) {
EIGEN_MSA_DEBUG;
return a;
}
template <>
EIGEN_STRONG_INLINE std::complex<double> predux<Packet1cd>(const Packet1cd& a) {
EIGEN_MSA_DEBUG;
return pfirst(a);
}
template <>
EIGEN_STRONG_INLINE std::complex<double> predux_mul<Packet1cd>(const Packet1cd& a) {
EIGEN_MSA_DEBUG;
return pfirst(a);
}
EIGEN_MAKE_CONJ_HELPER_CPLX_REAL(Packet1cd, Packet2d)
template <>
EIGEN_STRONG_INLINE Packet1cd pdiv<Packet1cd>(const Packet1cd& a, const Packet1cd& b) {
EIGEN_MSA_DEBUG;
return a / b;
}
EIGEN_STRONG_INLINE Packet1cd pcplxflip /*<Packet1cd>*/ (const Packet1cd& x) {
EIGEN_MSA_DEBUG;
return Packet1cd(preverse(Packet2d(x.v)));
}
inline std::ostream& operator<<(std::ostream& os, const PacketBlock<Packet1cd, 2>& value) {
os << "[ " << value.packet[0] << ", " << std::endl << " " << value.packet[1] << " ]";
return os;
}
EIGEN_STRONG_INLINE void ptranspose(PacketBlock<Packet1cd, 2>& kernel) {
EIGEN_MSA_DEBUG;
Packet2d v1, v2;
v1 = (Packet2d)__builtin_msa_ilvev_d((v2i64)kernel.packet[0].v, (v2i64)kernel.packet[1].v);
// Get the imag values of a
v2 = (Packet2d)__builtin_msa_ilvod_d((v2i64)kernel.packet[0].v, (v2i64)kernel.packet[1].v);
kernel.packet[0].v = v1;
kernel.packet[1].v = v2;
}
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_COMPLEX_MSA_H