| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> | 
 | // | 
 | // This Source Code Form is subject to the terms of the Mozilla | 
 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
 |  | 
 |  | 
 | #define EIGEN_TEST_NO_LONGDOUBLE | 
 |  | 
 | #define EIGEN_USE_GPU | 
 |  | 
 | #include "main.h" | 
 | #include <unsupported/Eigen/CXX11/Tensor> | 
 |  | 
 | #include <unsupported/Eigen/CXX11/src/Tensor/TensorGpuHipCudaDefines.h> | 
 |  | 
 | using Eigen::Tensor; | 
 |  | 
 | template <int Layout> | 
 | void test_gpu_simple_argmax() | 
 | { | 
 |   Tensor<double, 3, Layout> in(Eigen::array<DenseIndex, 3>(72,53,97)); | 
 |   Tensor<DenseIndex, 1, Layout> out_max(Eigen::array<DenseIndex, 1>(1)); | 
 |   Tensor<DenseIndex, 1, Layout> out_min(Eigen::array<DenseIndex, 1>(1)); | 
 |   in.setRandom(); | 
 |   in *= in.constant(100.0); | 
 |   in(0, 0, 0) = -1000.0; | 
 |   in(71, 52, 96) = 1000.0; | 
 |  | 
 |   std::size_t in_bytes = in.size() * sizeof(double); | 
 |   std::size_t out_bytes = out_max.size() * sizeof(DenseIndex); | 
 |  | 
 |   double* d_in; | 
 |   DenseIndex* d_out_max; | 
 |   DenseIndex* d_out_min; | 
 |   gpuMalloc((void**)(&d_in), in_bytes); | 
 |   gpuMalloc((void**)(&d_out_max), out_bytes); | 
 |   gpuMalloc((void**)(&d_out_min), out_bytes); | 
 |  | 
 |   gpuMemcpy(d_in, in.data(), in_bytes, gpuMemcpyHostToDevice); | 
 |  | 
 |   Eigen::GpuStreamDevice stream; | 
 |   Eigen::GpuDevice gpu_device(&stream); | 
 |  | 
 |   Eigen::TensorMap<Eigen::Tensor<double, 3, Layout>, Aligned > gpu_in(d_in, Eigen::array<DenseIndex, 3>(72,53,97)); | 
 |   Eigen::TensorMap<Eigen::Tensor<DenseIndex, 1, Layout>, Aligned > gpu_out_max(d_out_max, Eigen::array<DenseIndex, 1>(1)); | 
 |   Eigen::TensorMap<Eigen::Tensor<DenseIndex, 1, Layout>, Aligned > gpu_out_min(d_out_min, Eigen::array<DenseIndex, 1>(1)); | 
 |  | 
 |   gpu_out_max.device(gpu_device) = gpu_in.argmax(); | 
 |   gpu_out_min.device(gpu_device) = gpu_in.argmin(); | 
 |  | 
 |   assert(gpuMemcpyAsync(out_max.data(), d_out_max, out_bytes, gpuMemcpyDeviceToHost, gpu_device.stream()) == gpuSuccess); | 
 |   assert(gpuMemcpyAsync(out_min.data(), d_out_min, out_bytes, gpuMemcpyDeviceToHost, gpu_device.stream()) == gpuSuccess); | 
 |   assert(gpuStreamSynchronize(gpu_device.stream()) == gpuSuccess); | 
 |  | 
 |   VERIFY_IS_EQUAL(out_max(Eigen::array<DenseIndex, 1>(0)), 72*53*97 - 1); | 
 |   VERIFY_IS_EQUAL(out_min(Eigen::array<DenseIndex, 1>(0)), 0); | 
 |  | 
 |   gpuFree(d_in); | 
 |   gpuFree(d_out_max); | 
 |   gpuFree(d_out_min); | 
 | } | 
 |  | 
 | template <int DataLayout> | 
 | void test_gpu_argmax_dim() | 
 | { | 
 |   Tensor<float, 4, DataLayout> tensor(2,3,5,7); | 
 |   std::vector<int> dims; | 
 |   dims.push_back(2); dims.push_back(3); dims.push_back(5); dims.push_back(7); | 
 |  | 
 |   for (int dim = 0; dim < 4; ++dim) { | 
 |     tensor.setRandom(); | 
 |     tensor = (tensor + tensor.constant(0.5)).log(); | 
 |  | 
 |     array<DenseIndex, 3> out_shape; | 
 |     for (int d = 0; d < 3; ++d) out_shape[d] = (d < dim) ? dims[d] : dims[d+1]; | 
 |  | 
 |     Tensor<DenseIndex, 3, DataLayout> tensor_arg(out_shape); | 
 |  | 
 |     array<DenseIndex, 4> ix; | 
 |     for (int i = 0; i < 2; ++i) { | 
 |       for (int j = 0; j < 3; ++j) { | 
 |         for (int k = 0; k < 5; ++k) { | 
 |           for (int l = 0; l < 7; ++l) { | 
 |             ix[0] = i; ix[1] = j; ix[2] = k; ix[3] = l; | 
 |             if (ix[dim] != 0) continue; | 
 |             // suppose dim == 1, then for all i, k, l, set tensor(i, 0, k, l) = 10.0 | 
 |             tensor(ix) = 10.0; | 
 |           } | 
 |         } | 
 |       } | 
 |     } | 
 |  | 
 |     std::size_t in_bytes = tensor.size() * sizeof(float); | 
 |     std::size_t out_bytes = tensor_arg.size() * sizeof(DenseIndex); | 
 |  | 
 |     float* d_in; | 
 |     DenseIndex* d_out; | 
 |     gpuMalloc((void**)(&d_in), in_bytes); | 
 |     gpuMalloc((void**)(&d_out), out_bytes); | 
 |  | 
 |     gpuMemcpy(d_in, tensor.data(), in_bytes, gpuMemcpyHostToDevice); | 
 |  | 
 |     Eigen::GpuStreamDevice stream; | 
 |     Eigen::GpuDevice gpu_device(&stream); | 
 |  | 
 |     Eigen::TensorMap<Eigen::Tensor<float, 4, DataLayout>, Aligned > gpu_in(d_in, Eigen::array<DenseIndex, 4>(2, 3, 5, 7)); | 
 |     Eigen::TensorMap<Eigen::Tensor<DenseIndex, 3, DataLayout>, Aligned > gpu_out(d_out, out_shape); | 
 |  | 
 |     gpu_out.device(gpu_device) = gpu_in.argmax(dim); | 
 |  | 
 |     assert(gpuMemcpyAsync(tensor_arg.data(), d_out, out_bytes, gpuMemcpyDeviceToHost, gpu_device.stream()) == gpuSuccess); | 
 |     assert(gpuStreamSynchronize(gpu_device.stream()) == gpuSuccess); | 
 |  | 
 |     VERIFY_IS_EQUAL(tensor_arg.size(), | 
 |                     size_t(2*3*5*7 / tensor.dimension(dim))); | 
 |  | 
 |     for (DenseIndex n = 0; n < tensor_arg.size(); ++n) { | 
 |       // Expect max to be in the first index of the reduced dimension | 
 |       VERIFY_IS_EQUAL(tensor_arg.data()[n], 0); | 
 |     } | 
 |  | 
 |     for (int i = 0; i < 2; ++i) { | 
 |       for (int j = 0; j < 3; ++j) { | 
 |         for (int k = 0; k < 5; ++k) { | 
 |           for (int l = 0; l < 7; ++l) { | 
 |             ix[0] = i; ix[1] = j; ix[2] = k; ix[3] = l; | 
 |             if (ix[dim] != tensor.dimension(dim) - 1) continue; | 
 |             // suppose dim == 1, then for all i, k, l, set tensor(i, 2, k, l) = 20.0 | 
 |             tensor(ix) = 20.0; | 
 |           } | 
 |         } | 
 |       } | 
 |     } | 
 |  | 
 |     gpuMemcpy(d_in, tensor.data(), in_bytes, gpuMemcpyHostToDevice); | 
 |  | 
 |     gpu_out.device(gpu_device) = gpu_in.argmax(dim); | 
 |  | 
 |     assert(gpuMemcpyAsync(tensor_arg.data(), d_out, out_bytes, gpuMemcpyDeviceToHost, gpu_device.stream()) == gpuSuccess); | 
 |     assert(gpuStreamSynchronize(gpu_device.stream()) == gpuSuccess); | 
 |  | 
 |     for (DenseIndex n = 0; n < tensor_arg.size(); ++n) { | 
 |       // Expect max to be in the last index of the reduced dimension | 
 |       VERIFY_IS_EQUAL(tensor_arg.data()[n], tensor.dimension(dim) - 1); | 
 |     } | 
 |  | 
 |     gpuFree(d_in); | 
 |     gpuFree(d_out); | 
 |   } | 
 | } | 
 |  | 
 | template <int DataLayout> | 
 | void test_gpu_argmin_dim() | 
 | { | 
 |   Tensor<float, 4, DataLayout> tensor(2,3,5,7); | 
 |   std::vector<int> dims; | 
 |   dims.push_back(2); dims.push_back(3); dims.push_back(5); dims.push_back(7); | 
 |  | 
 |   for (int dim = 0; dim < 4; ++dim) { | 
 |     tensor.setRandom(); | 
 |     tensor = (tensor + tensor.constant(0.5)).log(); | 
 |  | 
 |     array<DenseIndex, 3> out_shape; | 
 |     for (int d = 0; d < 3; ++d) out_shape[d] = (d < dim) ? dims[d] : dims[d+1]; | 
 |  | 
 |     Tensor<DenseIndex, 3, DataLayout> tensor_arg(out_shape); | 
 |  | 
 |     array<DenseIndex, 4> ix; | 
 |     for (int i = 0; i < 2; ++i) { | 
 |       for (int j = 0; j < 3; ++j) { | 
 |         for (int k = 0; k < 5; ++k) { | 
 |           for (int l = 0; l < 7; ++l) { | 
 |             ix[0] = i; ix[1] = j; ix[2] = k; ix[3] = l; | 
 |             if (ix[dim] != 0) continue; | 
 |             // suppose dim == 1, then for all i, k, l, set tensor(i, 0, k, l) = 10.0 | 
 |             tensor(ix) = -10.0; | 
 |           } | 
 |         } | 
 |       } | 
 |     } | 
 |  | 
 |     std::size_t in_bytes = tensor.size() * sizeof(float); | 
 |     std::size_t out_bytes = tensor_arg.size() * sizeof(DenseIndex); | 
 |  | 
 |     float* d_in; | 
 |     DenseIndex* d_out; | 
 |     gpuMalloc((void**)(&d_in), in_bytes); | 
 |     gpuMalloc((void**)(&d_out), out_bytes); | 
 |  | 
 |     gpuMemcpy(d_in, tensor.data(), in_bytes, gpuMemcpyHostToDevice); | 
 |  | 
 |     Eigen::GpuStreamDevice stream; | 
 |     Eigen::GpuDevice gpu_device(&stream); | 
 |  | 
 |     Eigen::TensorMap<Eigen::Tensor<float, 4, DataLayout>, Aligned > gpu_in(d_in, Eigen::array<DenseIndex, 4>(2, 3, 5, 7)); | 
 |     Eigen::TensorMap<Eigen::Tensor<DenseIndex, 3, DataLayout>, Aligned > gpu_out(d_out, out_shape); | 
 |  | 
 |     gpu_out.device(gpu_device) = gpu_in.argmin(dim); | 
 |  | 
 |     assert(gpuMemcpyAsync(tensor_arg.data(), d_out, out_bytes, gpuMemcpyDeviceToHost, gpu_device.stream()) == gpuSuccess); | 
 |     assert(gpuStreamSynchronize(gpu_device.stream()) == gpuSuccess); | 
 |  | 
 |     VERIFY_IS_EQUAL(tensor_arg.size(), | 
 |                     2*3*5*7 / tensor.dimension(dim)); | 
 |  | 
 |     for (DenseIndex n = 0; n < tensor_arg.size(); ++n) { | 
 |       // Expect min to be in the first index of the reduced dimension | 
 |       VERIFY_IS_EQUAL(tensor_arg.data()[n], 0); | 
 |     } | 
 |  | 
 |     for (int i = 0; i < 2; ++i) { | 
 |       for (int j = 0; j < 3; ++j) { | 
 |         for (int k = 0; k < 5; ++k) { | 
 |           for (int l = 0; l < 7; ++l) { | 
 |             ix[0] = i; ix[1] = j; ix[2] = k; ix[3] = l; | 
 |             if (ix[dim] != tensor.dimension(dim) - 1) continue; | 
 |             // suppose dim == 1, then for all i, k, l, set tensor(i, 2, k, l) = 20.0 | 
 |             tensor(ix) = -20.0; | 
 |           } | 
 |         } | 
 |       } | 
 |     } | 
 |  | 
 |     gpuMemcpy(d_in, tensor.data(), in_bytes, gpuMemcpyHostToDevice); | 
 |  | 
 |     gpu_out.device(gpu_device) = gpu_in.argmin(dim); | 
 |  | 
 |     assert(gpuMemcpyAsync(tensor_arg.data(), d_out, out_bytes, gpuMemcpyDeviceToHost, gpu_device.stream()) == gpuSuccess); | 
 |     assert(gpuStreamSynchronize(gpu_device.stream()) == gpuSuccess); | 
 |  | 
 |     for (DenseIndex n = 0; n < tensor_arg.size(); ++n) { | 
 |       // Expect max to be in the last index of the reduced dimension | 
 |       VERIFY_IS_EQUAL(tensor_arg.data()[n], tensor.dimension(dim) - 1); | 
 |     } | 
 |  | 
 |     gpuFree(d_in); | 
 |     gpuFree(d_out); | 
 |   } | 
 | } | 
 |  | 
 | EIGEN_DECLARE_TEST(cxx11_tensor_argmax_gpu) | 
 | { | 
 |   CALL_SUBTEST_1(test_gpu_simple_argmax<RowMajor>()); | 
 |   CALL_SUBTEST_1(test_gpu_simple_argmax<ColMajor>()); | 
 |   CALL_SUBTEST_2(test_gpu_argmax_dim<RowMajor>()); | 
 |   CALL_SUBTEST_2(test_gpu_argmax_dim<ColMajor>()); | 
 |   CALL_SUBTEST_3(test_gpu_argmin_dim<RowMajor>()); | 
 |   CALL_SUBTEST_3(test_gpu_argmin_dim<ColMajor>()); | 
 | } |