| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #include "main.h" |
| #include <Eigen/Geometry> |
| |
| template<typename Scalar,int Size> void homogeneous(void) |
| { |
| /* this test covers the following files: |
| Homogeneous.h |
| */ |
| |
| typedef Matrix<Scalar,Size,Size> MatrixType; |
| typedef Matrix<Scalar,Size,1, ColMajor> VectorType; |
| |
| typedef Matrix<Scalar,Size+1,Size> HMatrixType; |
| typedef Matrix<Scalar,Size+1,1> HVectorType; |
| |
| typedef Matrix<Scalar,Size,Size+1> T1MatrixType; |
| typedef Matrix<Scalar,Size+1,Size+1> T2MatrixType; |
| typedef Matrix<Scalar,Size+1,Size> T3MatrixType; |
| |
| VectorType v0 = VectorType::Random(), |
| ones = VectorType::Ones(); |
| |
| HVectorType hv0 = HVectorType::Random(); |
| |
| MatrixType m0 = MatrixType::Random(); |
| |
| HMatrixType hm0 = HMatrixType::Random(); |
| |
| hv0 << v0, 1; |
| VERIFY_IS_APPROX(v0.homogeneous(), hv0); |
| VERIFY_IS_APPROX(v0, hv0.hnormalized()); |
| |
| VERIFY_IS_APPROX(v0.homogeneous().sum(), hv0.sum()); |
| VERIFY_IS_APPROX(v0.homogeneous().minCoeff(), hv0.minCoeff()); |
| VERIFY_IS_APPROX(v0.homogeneous().maxCoeff(), hv0.maxCoeff()); |
| |
| hm0 << m0, ones.transpose(); |
| VERIFY_IS_APPROX(m0.colwise().homogeneous(), hm0); |
| VERIFY_IS_APPROX(m0, hm0.colwise().hnormalized()); |
| hm0.row(Size-1).setRandom(); |
| for(int j=0; j<Size; ++j) |
| m0.col(j) = hm0.col(j).head(Size) / hm0(Size,j); |
| VERIFY_IS_APPROX(m0, hm0.colwise().hnormalized()); |
| |
| T1MatrixType t1 = T1MatrixType::Random(); |
| VERIFY_IS_APPROX(t1 * (v0.homogeneous().eval()), t1 * v0.homogeneous()); |
| VERIFY_IS_APPROX(t1 * (m0.colwise().homogeneous().eval()), t1 * m0.colwise().homogeneous()); |
| |
| T2MatrixType t2 = T2MatrixType::Random(); |
| VERIFY_IS_APPROX(t2 * (v0.homogeneous().eval()), t2 * v0.homogeneous()); |
| VERIFY_IS_APPROX(t2 * (m0.colwise().homogeneous().eval()), t2 * m0.colwise().homogeneous()); |
| VERIFY_IS_APPROX(t2 * (v0.homogeneous().asDiagonal()), t2 * hv0.asDiagonal()); |
| VERIFY_IS_APPROX((v0.homogeneous().asDiagonal()) * t2, hv0.asDiagonal() * t2); |
| |
| VERIFY_IS_APPROX((v0.transpose().rowwise().homogeneous().eval()) * t2, |
| v0.transpose().rowwise().homogeneous() * t2); |
| VERIFY_IS_APPROX((m0.transpose().rowwise().homogeneous().eval()) * t2, |
| m0.transpose().rowwise().homogeneous() * t2); |
| |
| T3MatrixType t3 = T3MatrixType::Random(); |
| VERIFY_IS_APPROX((v0.transpose().rowwise().homogeneous().eval()) * t3, |
| v0.transpose().rowwise().homogeneous() * t3); |
| VERIFY_IS_APPROX((m0.transpose().rowwise().homogeneous().eval()) * t3, |
| m0.transpose().rowwise().homogeneous() * t3); |
| |
| // test product with a Transform object |
| Transform<Scalar, Size, Affine> aff; |
| Transform<Scalar, Size, AffineCompact> caff; |
| Transform<Scalar, Size, Projective> proj; |
| Matrix<Scalar, Size, Dynamic> pts; |
| Matrix<Scalar, Size+1, Dynamic> pts1, pts2; |
| |
| aff.affine().setRandom(); |
| proj = caff = aff; |
| pts.setRandom(Size,internal::random<int>(1,20)); |
| |
| pts1 = pts.colwise().homogeneous(); |
| VERIFY_IS_APPROX(aff * pts.colwise().homogeneous(), (aff * pts1).colwise().hnormalized()); |
| VERIFY_IS_APPROX(caff * pts.colwise().homogeneous(), (caff * pts1).colwise().hnormalized()); |
| VERIFY_IS_APPROX(proj * pts.colwise().homogeneous(), (proj * pts1)); |
| |
| VERIFY_IS_APPROX((aff * pts1).colwise().hnormalized(), aff * pts); |
| VERIFY_IS_APPROX((caff * pts1).colwise().hnormalized(), caff * pts); |
| |
| pts2 = pts1; |
| pts2.row(Size).setRandom(); |
| VERIFY_IS_APPROX((aff * pts2).colwise().hnormalized(), aff * pts2.colwise().hnormalized()); |
| VERIFY_IS_APPROX((caff * pts2).colwise().hnormalized(), caff * pts2.colwise().hnormalized()); |
| VERIFY_IS_APPROX((proj * pts2).colwise().hnormalized(), (proj * pts2.colwise().hnormalized().colwise().homogeneous()).colwise().hnormalized()); |
| |
| // Test combination of homogeneous |
| |
| VERIFY_IS_APPROX( (t2 * v0.homogeneous()).hnormalized(), |
| (t2.template topLeftCorner<Size,Size>() * v0 + t2.template topRightCorner<Size,1>()) |
| / ((t2.template bottomLeftCorner<1,Size>()*v0).value() + t2(Size,Size)) ); |
| |
| VERIFY_IS_APPROX( (t2 * pts.colwise().homogeneous()).colwise().hnormalized(), |
| (Matrix<Scalar, Size+1, Dynamic>(t2 * pts1).colwise().hnormalized()) ); |
| |
| VERIFY_IS_APPROX( (t2 .lazyProduct( v0.homogeneous() )).hnormalized(), (t2 * v0.homogeneous()).hnormalized() ); |
| VERIFY_IS_APPROX( (t2 .lazyProduct ( pts.colwise().homogeneous() )).colwise().hnormalized(), (t2 * pts1).colwise().hnormalized() ); |
| |
| VERIFY_IS_APPROX( (v0.transpose().homogeneous() .lazyProduct( t2 )).hnormalized(), (v0.transpose().homogeneous()*t2).hnormalized() ); |
| VERIFY_IS_APPROX( (pts.transpose().rowwise().homogeneous() .lazyProduct( t2 )).rowwise().hnormalized(), (pts1.transpose()*t2).rowwise().hnormalized() ); |
| |
| VERIFY_IS_APPROX( (t2.template triangularView<Lower>() * v0.homogeneous()).eval(), (t2.template triangularView<Lower>()*hv0) ); |
| } |
| |
| EIGEN_DECLARE_TEST(geo_homogeneous) |
| { |
| for(int i = 0; i < g_repeat; i++) { |
| CALL_SUBTEST_1(( homogeneous<float,1>() )); |
| CALL_SUBTEST_2(( homogeneous<double,3>() )); |
| CALL_SUBTEST_3(( homogeneous<double,8>() )); |
| } |
| } |