| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2013 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| // This unit test cannot be easily written to work with EIGEN_DEFAULT_TO_ROW_MAJOR |
| #ifdef EIGEN_DEFAULT_TO_ROW_MAJOR |
| #undef EIGEN_DEFAULT_TO_ROW_MAJOR |
| #endif |
| |
| #define TEST_ENABLE_TEMPORARY_TRACKING |
| #define TEST_CHECK_STATIC_ASSERTIONS |
| #include "main.h" |
| |
| // test Ref.h |
| |
| // Deal with i387 extended precision |
| #if EIGEN_ARCH_i386 && !(EIGEN_ARCH_x86_64) |
| |
| #if EIGEN_COMP_GNUC_STRICT |
| #pragma GCC optimize ("-ffloat-store") |
| #else |
| #undef VERIFY_IS_EQUAL |
| #define VERIFY_IS_EQUAL(X,Y) VERIFY_IS_APPROX(X,Y) |
| #endif |
| |
| #endif |
| |
| template<typename MatrixType> void ref_matrix(const MatrixType& m) |
| { |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename MatrixType::RealScalar RealScalar; |
| typedef Matrix<Scalar,Dynamic,Dynamic,MatrixType::Options> DynMatrixType; |
| typedef Matrix<RealScalar,Dynamic,Dynamic,MatrixType::Options> RealDynMatrixType; |
| |
| typedef Ref<MatrixType> RefMat; |
| typedef Ref<DynMatrixType> RefDynMat; |
| typedef Ref<const DynMatrixType> ConstRefDynMat; |
| typedef Ref<RealDynMatrixType , 0, Stride<Dynamic,Dynamic> > RefRealMatWithStride; |
| |
| Index rows = m.rows(), cols = m.cols(); |
| |
| MatrixType m1 = MatrixType::Random(rows, cols), |
| m2 = m1; |
| |
| Index i = internal::random<Index>(0,rows-1); |
| Index j = internal::random<Index>(0,cols-1); |
| Index brows = internal::random<Index>(1,rows-i); |
| Index bcols = internal::random<Index>(1,cols-j); |
| |
| RefMat rm0 = m1; |
| VERIFY_IS_EQUAL(rm0, m1); |
| RefDynMat rm1 = m1; |
| VERIFY_IS_EQUAL(rm1, m1); |
| RefDynMat rm2 = m1.block(i,j,brows,bcols); |
| VERIFY_IS_EQUAL(rm2, m1.block(i,j,brows,bcols)); |
| rm2.setOnes(); |
| m2.block(i,j,brows,bcols).setOnes(); |
| VERIFY_IS_EQUAL(m1, m2); |
| |
| m2.block(i,j,brows,bcols).setRandom(); |
| rm2 = m2.block(i,j,brows,bcols); |
| VERIFY_IS_EQUAL(m1, m2); |
| |
| ConstRefDynMat rm3 = m1.block(i,j,brows,bcols); |
| m1.block(i,j,brows,bcols) *= 2; |
| m2.block(i,j,brows,bcols) *= 2; |
| VERIFY_IS_EQUAL(rm3, m2.block(i,j,brows,bcols)); |
| RefRealMatWithStride rm4 = m1.real(); |
| VERIFY_IS_EQUAL(rm4, m2.real()); |
| rm4.array() += 1; |
| m2.real().array() += 1; |
| VERIFY_IS_EQUAL(m1, m2); |
| } |
| |
| template<typename VectorType> void ref_vector(const VectorType& m) |
| { |
| typedef typename VectorType::Scalar Scalar; |
| typedef typename VectorType::RealScalar RealScalar; |
| typedef Matrix<Scalar,Dynamic,1,VectorType::Options> DynMatrixType; |
| typedef Matrix<Scalar,Dynamic,Dynamic,ColMajor> MatrixType; |
| typedef Matrix<RealScalar,Dynamic,1,VectorType::Options> RealDynMatrixType; |
| |
| typedef Ref<VectorType> RefMat; |
| typedef Ref<DynMatrixType> RefDynMat; |
| typedef Ref<const DynMatrixType> ConstRefDynMat; |
| typedef Ref<RealDynMatrixType , 0, InnerStride<> > RefRealMatWithStride; |
| typedef Ref<DynMatrixType , 0, InnerStride<> > RefMatWithStride; |
| |
| Index size = m.size(); |
| |
| VectorType v1 = VectorType::Random(size), |
| v2 = v1; |
| MatrixType mat1 = MatrixType::Random(size,size), |
| mat2 = mat1, |
| mat3 = MatrixType::Random(size,size); |
| |
| Index i = internal::random<Index>(0,size-1); |
| Index bsize = internal::random<Index>(1,size-i); |
| |
| { RefMat rm0 = v1; VERIFY_IS_EQUAL(rm0, v1); } |
| { RefMat rm0 = v1.block(0,0,size,1); VERIFY_IS_EQUAL(rm0, v1); } |
| { RefDynMat rv1 = v1; VERIFY_IS_EQUAL(rv1, v1); } |
| { RefDynMat rv1 = v1.block(0,0,size,1); VERIFY_IS_EQUAL(rv1, v1); } |
| |
| RefDynMat rv2 = v1.segment(i,bsize); |
| VERIFY_IS_EQUAL(rv2, v1.segment(i,bsize)); |
| rv2.setOnes(); |
| v2.segment(i,bsize).setOnes(); |
| VERIFY_IS_EQUAL(v1, v2); |
| |
| v2.segment(i,bsize).setRandom(); |
| rv2 = v2.segment(i,bsize); |
| VERIFY_IS_EQUAL(v1, v2); |
| |
| ConstRefDynMat rm3 = v1.segment(i,bsize); |
| v1.segment(i,bsize) *= 2; |
| v2.segment(i,bsize) *= 2; |
| VERIFY_IS_EQUAL(rm3, v2.segment(i,bsize)); |
| |
| RefRealMatWithStride rm4 = v1.real(); |
| VERIFY_IS_EQUAL(rm4, v2.real()); |
| rm4.array() += 1; |
| v2.real().array() += 1; |
| VERIFY_IS_EQUAL(v1, v2); |
| |
| RefMatWithStride rm5 = mat1.row(i).transpose(); |
| VERIFY_IS_EQUAL(rm5, mat1.row(i).transpose()); |
| rm5.array() += 1; |
| mat2.row(i).array() += 1; |
| VERIFY_IS_EQUAL(mat1, mat2); |
| rm5.noalias() = rm4.transpose() * mat3; |
| mat2.row(i) = v2.real().transpose() * mat3; |
| VERIFY_IS_APPROX(mat1, mat2); |
| } |
| |
| template<typename Scalar, int Rows, int Cols> |
| void ref_vector_fixed_sizes() |
| { |
| typedef Matrix<Scalar,Rows,Cols,RowMajor> RowMajorMatrixType; |
| typedef Matrix<Scalar,Rows,Cols,ColMajor> ColMajorMatrixType; |
| typedef Matrix<Scalar,1,Cols> RowVectorType; |
| typedef Matrix<Scalar,Rows,1> ColVectorType; |
| typedef Matrix<Scalar,Cols,1> RowVectorTransposeType; |
| typedef Matrix<Scalar,1,Rows> ColVectorTransposeType; |
| typedef Stride<Dynamic, Dynamic> DynamicStride; |
| |
| RowMajorMatrixType mr = RowMajorMatrixType::Random(); |
| ColMajorMatrixType mc = ColMajorMatrixType::Random(); |
| |
| Index i = internal::random<Index>(0,Rows-1); |
| Index j = internal::random<Index>(0,Cols-1); |
| |
| // Reference ith row. |
| Ref<RowVectorType, 0, DynamicStride> mr_ri = mr.row(i); |
| VERIFY_IS_EQUAL(mr_ri, mr.row(i)); |
| Ref<RowVectorType, 0, DynamicStride> mc_ri = mc.row(i); |
| VERIFY_IS_EQUAL(mc_ri, mc.row(i)); |
| |
| // Reference jth col. |
| Ref<ColVectorType, 0, DynamicStride> mr_cj = mr.col(j); |
| VERIFY_IS_EQUAL(mr_cj, mr.col(j)); |
| Ref<ColVectorType, 0, DynamicStride> mc_cj = mc.col(j); |
| VERIFY_IS_EQUAL(mc_cj, mc.col(j)); |
| |
| // Reference the transpose of row i. |
| Ref<RowVectorTransposeType, 0, DynamicStride> mr_rit = mr.row(i); |
| VERIFY_IS_EQUAL(mr_rit, mr.row(i).transpose()); |
| Ref<RowVectorTransposeType, 0, DynamicStride> mc_rit = mc.row(i); |
| VERIFY_IS_EQUAL(mc_rit, mc.row(i).transpose()); |
| |
| // Reference the transpose of col j. |
| Ref<ColVectorTransposeType, 0, DynamicStride> mr_cjt = mr.col(j); |
| VERIFY_IS_EQUAL(mr_cjt, mr.col(j).transpose()); |
| Ref<ColVectorTransposeType, 0, DynamicStride> mc_cjt = mc.col(j); |
| VERIFY_IS_EQUAL(mc_cjt, mc.col(j).transpose()); |
| |
| // Const references without strides. |
| Ref<const RowVectorType> cmr_ri = mr.row(i); |
| VERIFY_IS_EQUAL(cmr_ri, mr.row(i)); |
| Ref<const RowVectorType> cmc_ri = mc.row(i); |
| VERIFY_IS_EQUAL(cmc_ri, mc.row(i)); |
| |
| Ref<const ColVectorType> cmr_cj = mr.col(j); |
| VERIFY_IS_EQUAL(cmr_cj, mr.col(j)); |
| Ref<const ColVectorType> cmc_cj = mc.col(j); |
| VERIFY_IS_EQUAL(cmc_cj, mc.col(j)); |
| |
| Ref<const RowVectorTransposeType> cmr_rit = mr.row(i); |
| VERIFY_IS_EQUAL(cmr_rit, mr.row(i).transpose()); |
| Ref<const RowVectorTransposeType> cmc_rit = mc.row(i); |
| VERIFY_IS_EQUAL(cmc_rit, mc.row(i).transpose()); |
| |
| Ref<const ColVectorTransposeType> cmr_cjt = mr.col(j); |
| VERIFY_IS_EQUAL(cmr_cjt, mr.col(j).transpose()); |
| Ref<const ColVectorTransposeType> cmc_cjt = mc.col(j); |
| VERIFY_IS_EQUAL(cmc_cjt, mc.col(j).transpose()); |
| } |
| |
| template<typename PlainObjectType> void check_const_correctness(const PlainObjectType&) |
| { |
| // verify that ref-to-const don't have LvalueBit |
| typedef std::add_const_t<PlainObjectType> ConstPlainObjectType; |
| VERIFY( !(internal::traits<Ref<ConstPlainObjectType> >::Flags & LvalueBit) ); |
| VERIFY( !(internal::traits<Ref<ConstPlainObjectType, Aligned> >::Flags & LvalueBit) ); |
| VERIFY( !(Ref<ConstPlainObjectType>::Flags & LvalueBit) ); |
| VERIFY( !(Ref<ConstPlainObjectType, Aligned>::Flags & LvalueBit) ); |
| } |
| |
| template<typename B> |
| EIGEN_DONT_INLINE void call_ref_1(Ref<VectorXf> a, const B &b) { VERIFY_IS_EQUAL(a,b); } |
| template<typename B> |
| EIGEN_DONT_INLINE void call_ref_2(const Ref<const VectorXf>& a, const B &b) { VERIFY_IS_EQUAL(a,b); } |
| template<typename B> |
| EIGEN_DONT_INLINE void call_ref_3(Ref<VectorXf,0,InnerStride<> > a, const B &b) { VERIFY_IS_EQUAL(a,b); } |
| template<typename B> |
| EIGEN_DONT_INLINE void call_ref_4(const Ref<const VectorXf,0,InnerStride<> >& a, const B &b) { VERIFY_IS_EQUAL(a,b); } |
| template<typename B> |
| EIGEN_DONT_INLINE void call_ref_5(Ref<MatrixXf,0,OuterStride<> > a, const B &b) { VERIFY_IS_EQUAL(a,b); } |
| template<typename B> |
| EIGEN_DONT_INLINE void call_ref_6(const Ref<const MatrixXf,0,OuterStride<> >& a, const B &b) { VERIFY_IS_EQUAL(a,b); } |
| template<typename B> |
| EIGEN_DONT_INLINE void call_ref_7(Ref<Matrix<float,Dynamic,3> > a, const B &b) { VERIFY_IS_EQUAL(a,b); } |
| |
| void call_ref() |
| { |
| VectorXcf ca = VectorXcf::Random(10); |
| VectorXf a = VectorXf::Random(10); |
| RowVectorXf b = RowVectorXf::Random(10); |
| MatrixXf A = MatrixXf::Random(10,10); |
| RowVector3f c = RowVector3f::Random(); |
| const VectorXf& ac(a); |
| VectorBlock<VectorXf> ab(a,0,3); |
| const VectorBlock<VectorXf> abc(a,0,3); |
| |
| |
| VERIFY_EVALUATION_COUNT( call_ref_1(a,a), 0); |
| VERIFY_EVALUATION_COUNT( call_ref_1(b,b.transpose()), 0); |
| // call_ref_1(ac,a<c); // does not compile because ac is const |
| VERIFY_EVALUATION_COUNT( call_ref_1(ab,ab), 0); |
| VERIFY_EVALUATION_COUNT( call_ref_1(a.head(4),a.head(4)), 0); |
| VERIFY_EVALUATION_COUNT( call_ref_1(abc,abc), 0); |
| VERIFY_EVALUATION_COUNT( call_ref_1(A.col(3),A.col(3)), 0); |
| // call_ref_1(A.row(3),A.row(3)); // does not compile because innerstride!=1 |
| VERIFY_EVALUATION_COUNT( call_ref_3(A.row(3),A.row(3).transpose()), 0); |
| VERIFY_EVALUATION_COUNT( call_ref_4(A.row(3),A.row(3).transpose()), 0); |
| // call_ref_1(a+a, a+a); // does not compile for obvious reason |
| |
| MatrixXf tmp = A*A.col(1); |
| VERIFY_EVALUATION_COUNT( call_ref_2(A*A.col(1), tmp), 1); // evaluated into a temp |
| VERIFY_EVALUATION_COUNT( call_ref_2(ac.head(5),ac.head(5)), 0); |
| VERIFY_EVALUATION_COUNT( call_ref_2(ac,ac), 0); |
| VERIFY_EVALUATION_COUNT( call_ref_2(a,a), 0); |
| VERIFY_EVALUATION_COUNT( call_ref_2(ab,ab), 0); |
| VERIFY_EVALUATION_COUNT( call_ref_2(a.head(4),a.head(4)), 0); |
| tmp = a+a; |
| VERIFY_EVALUATION_COUNT( call_ref_2(a+a,tmp), 1); // evaluated into a temp |
| VERIFY_EVALUATION_COUNT( call_ref_2(ca.imag(),ca.imag()), 1); // evaluated into a temp |
| |
| VERIFY_EVALUATION_COUNT( call_ref_4(ac.head(5),ac.head(5)), 0); |
| tmp = a+a; |
| VERIFY_EVALUATION_COUNT( call_ref_4(a+a,tmp), 1); // evaluated into a temp |
| VERIFY_EVALUATION_COUNT( call_ref_4(ca.imag(),ca.imag()), 0); |
| |
| VERIFY_EVALUATION_COUNT( call_ref_5(a,a), 0); |
| VERIFY_EVALUATION_COUNT( call_ref_5(a.head(3),a.head(3)), 0); |
| VERIFY_EVALUATION_COUNT( call_ref_5(A,A), 0); |
| // call_ref_5(A.transpose(),A.transpose()); // does not compile because storage order does not match |
| VERIFY_EVALUATION_COUNT( call_ref_5(A.block(1,1,2,2),A.block(1,1,2,2)), 0); |
| VERIFY_EVALUATION_COUNT( call_ref_5(b,b), 0); // storage order do not match, but this is a degenerate case that should work |
| VERIFY_EVALUATION_COUNT( call_ref_5(a.row(3),a.row(3)), 0); |
| |
| VERIFY_EVALUATION_COUNT( call_ref_6(a,a), 0); |
| VERIFY_EVALUATION_COUNT( call_ref_6(a.head(3),a.head(3)), 0); |
| VERIFY_EVALUATION_COUNT( call_ref_6(A.row(3),A.row(3)), 1); // evaluated into a temp thouth it could be avoided by viewing it as a 1xn matrix |
| tmp = A+A; |
| VERIFY_EVALUATION_COUNT( call_ref_6(A+A,tmp), 1); // evaluated into a temp |
| VERIFY_EVALUATION_COUNT( call_ref_6(A,A), 0); |
| VERIFY_EVALUATION_COUNT( call_ref_6(A.transpose(),A.transpose()), 1); // evaluated into a temp because the storage orders do not match |
| VERIFY_EVALUATION_COUNT( call_ref_6(A.block(1,1,2,2),A.block(1,1,2,2)), 0); |
| |
| VERIFY_EVALUATION_COUNT( call_ref_7(c,c), 0); |
| } |
| |
| typedef Matrix<double,Dynamic,Dynamic,RowMajor> RowMatrixXd; |
| int test_ref_overload_fun1(Ref<MatrixXd> ) { return 1; } |
| int test_ref_overload_fun1(Ref<RowMatrixXd> ) { return 2; } |
| int test_ref_overload_fun1(Ref<MatrixXf> ) { return 3; } |
| |
| int test_ref_overload_fun2(Ref<const MatrixXd> ) { return 4; } |
| int test_ref_overload_fun2(Ref<const MatrixXf> ) { return 5; } |
| |
| void test_ref_ambiguous(const Ref<const ArrayXd> &A, Ref<ArrayXd> B) |
| { |
| B = A; |
| B = A - A; |
| } |
| |
| // See also bug 969 |
| void test_ref_overloads() |
| { |
| MatrixXd Ad, Bd; |
| RowMatrixXd rAd, rBd; |
| VERIFY( test_ref_overload_fun1(Ad)==1 ); |
| VERIFY( test_ref_overload_fun1(rAd)==2 ); |
| |
| MatrixXf Af, Bf; |
| VERIFY( test_ref_overload_fun2(Ad)==4 ); |
| VERIFY( test_ref_overload_fun2(Ad+Bd)==4 ); |
| VERIFY( test_ref_overload_fun2(Af+Bf)==5 ); |
| |
| ArrayXd A, B; |
| test_ref_ambiguous(A, B); |
| } |
| |
| template<typename Ref_> |
| struct RefDerived |
| : Ref_ |
| { |
| using Ref_::m_object; |
| }; |
| |
| template <typename MatrixType, typename Derived> void test_cref_move_ctor(const DenseBase<Derived> &expr) { |
| typedef Ref<const MatrixType> CRef; |
| typedef RefDerived<CRef> CRefDerived; |
| |
| const bool owns_data = !bool(internal::traits<CRef>::template match<Derived>::type::value); |
| CRef cref1(expr); |
| const double *data1 = cref1.data(), |
| *obj_data1 = static_cast<CRefDerived &>(cref1).m_object.data(); |
| VERIFY(test_is_equal(data1, obj_data1, owns_data)); |
| CRef cref2(std::move(cref1)); |
| VERIFY_IS_EQUAL(data1, cref1.data()); |
| const double *data2 = cref2.data(), |
| *obj_data2 = static_cast<CRefDerived &>(cref2).m_object.data(); |
| VERIFY(test_is_equal(data1, data2, MatrixType::MaxSizeAtCompileTime == Dynamic || !owns_data)); |
| VERIFY(test_is_equal(data1, obj_data2, MatrixType::MaxSizeAtCompileTime == Dynamic && owns_data)); |
| } |
| |
| template <typename MatrixType> |
| void test_contiguous_ref_no_copy(const PlainObjectBase<MatrixType> &obj) { |
| typedef Ref<MatrixType, Unaligned, Stride<0, 0>> Ref_; |
| typedef Ref<const MatrixType, Unaligned, Stride<0, 0>> CRef_; |
| MatrixType m(obj); |
| Ref_ ref(m); |
| VERIFY(test_is_equal(ref.data(), m.data(), true)); |
| CRef_ cref(m); |
| VERIFY(test_is_equal(cref.data(), m.data(), true)); |
| } |
| |
| EIGEN_DECLARE_TEST(ref) |
| { |
| for(int i = 0; i < g_repeat; i++) { |
| CALL_SUBTEST_1( ref_vector(Matrix<float, 1, 1>()) ); |
| CALL_SUBTEST_1( check_const_correctness(Matrix<float, 1, 1>()) ); |
| CALL_SUBTEST_2( ref_vector(Vector4d()) ); |
| CALL_SUBTEST_2( check_const_correctness(Matrix4d()) ); |
| CALL_SUBTEST_3( ref_vector(Vector4cf()) ); |
| CALL_SUBTEST_4( ref_vector(VectorXcf(8)) ); |
| CALL_SUBTEST_5( ref_vector(VectorXi(12)) ); |
| CALL_SUBTEST_5( check_const_correctness(VectorXi(12)) ); |
| |
| CALL_SUBTEST_1( ref_matrix(Matrix<float, 1, 1>()) ); |
| CALL_SUBTEST_2( ref_matrix(Matrix4d()) ); |
| CALL_SUBTEST_1( ref_matrix(Matrix<float,3,5>()) ); |
| CALL_SUBTEST_4( ref_matrix(MatrixXcf(internal::random<int>(1,10),internal::random<int>(1,10))) ); |
| CALL_SUBTEST_4( ref_matrix(Matrix<std::complex<double>,10,15>()) ); |
| CALL_SUBTEST_5( ref_matrix(MatrixXi(internal::random<int>(1,10),internal::random<int>(1,10))) ); |
| CALL_SUBTEST_6( call_ref() ); |
| |
| CALL_SUBTEST_8( (ref_vector_fixed_sizes<float,3,5>()) ); |
| CALL_SUBTEST_8( (ref_vector_fixed_sizes<float,15,10>()) ); |
| } |
| |
| CALL_SUBTEST_7( test_ref_overloads() ); |
| |
| CALL_SUBTEST_9( test_cref_move_ctor<VectorXd>(VectorXd::Ones(9)) ); |
| CALL_SUBTEST_9( test_cref_move_ctor<VectorXd>(VectorXd(9)) ); |
| CALL_SUBTEST_9( test_cref_move_ctor<Vector3d>(Vector3d::Ones()) ); |
| CALL_SUBTEST_9( test_cref_move_ctor<Vector3d>(Vector3d()) ); |
| CALL_SUBTEST_9( test_cref_move_ctor<MatrixXd>(MatrixXd::Ones(9, 5)) ); |
| CALL_SUBTEST_9( test_cref_move_ctor<MatrixXd>(MatrixXd(9, 5)) ); |
| CALL_SUBTEST_9( test_cref_move_ctor<Matrix3d>(Matrix3d::Ones()) ); |
| CALL_SUBTEST_9( test_cref_move_ctor<Matrix3d>(Matrix3d()) ); |
| CALL_SUBTEST_10(test_contiguous_ref_no_copy(VectorXd(9))); |
| CALL_SUBTEST_10(test_contiguous_ref_no_copy(Vector3d())); |
| CALL_SUBTEST_10(test_contiguous_ref_no_copy(MatrixXd(9, 5))); |
| CALL_SUBTEST_10(test_contiguous_ref_no_copy(Matrix3d())); |
| } |