| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2009 Hauke Heibel <hauke.heibel@gmail.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #include "main.h" |
| |
| #include <Eigen/Core> |
| #include <Eigen/Geometry> |
| |
| #include <Eigen/LU> // required for MatrixBase::determinant |
| #include <Eigen/SVD> // required for SVD |
| |
| using namespace Eigen; |
| |
| // Constructs a random matrix from the unitary group U(size). |
| template <typename T> |
| Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic> randMatrixUnitary(int size) |
| { |
| typedef T Scalar; |
| typedef Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic> MatrixType; |
| |
| MatrixType Q; |
| |
| int max_tries = 40; |
| bool is_unitary = false; |
| |
| while (!is_unitary && max_tries > 0) |
| { |
| // initialize random matrix |
| Q = MatrixType::Random(size, size); |
| |
| // orthogonalize columns using the Gram-Schmidt algorithm |
| for (int col = 0; col < size; ++col) |
| { |
| typename MatrixType::ColXpr colVec = Q.col(col); |
| for (int prevCol = 0; prevCol < col; ++prevCol) |
| { |
| typename MatrixType::ColXpr prevColVec = Q.col(prevCol); |
| colVec -= colVec.dot(prevColVec)*prevColVec; |
| } |
| Q.col(col) = colVec.normalized(); |
| } |
| |
| // this additional orthogonalization is not necessary in theory but should enhance |
| // the numerical orthogonality of the matrix |
| for (int row = 0; row < size; ++row) |
| { |
| typename MatrixType::RowXpr rowVec = Q.row(row); |
| for (int prevRow = 0; prevRow < row; ++prevRow) |
| { |
| typename MatrixType::RowXpr prevRowVec = Q.row(prevRow); |
| rowVec -= rowVec.dot(prevRowVec)*prevRowVec; |
| } |
| Q.row(row) = rowVec.normalized(); |
| } |
| |
| // final check |
| is_unitary = Q.isUnitary(); |
| --max_tries; |
| } |
| |
| if (max_tries == 0) |
| eigen_assert(false && "randMatrixUnitary: Could not construct unitary matrix!"); |
| |
| return Q; |
| } |
| |
| // Constructs a random matrix from the special unitary group SU(size). |
| template <typename T> |
| Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic> randMatrixSpecialUnitary(int size) |
| { |
| typedef T Scalar; |
| |
| typedef Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic> MatrixType; |
| |
| // initialize unitary matrix |
| MatrixType Q = randMatrixUnitary<Scalar>(size); |
| |
| // tweak the first column to make the determinant be 1 |
| Q.col(0) *= numext::conj(Q.determinant()); |
| |
| return Q; |
| } |
| |
| template <typename MatrixType> |
| void run_test(int dim, int num_elements) |
| { |
| using std::abs; |
| typedef typename internal::traits<MatrixType>::Scalar Scalar; |
| typedef Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic> MatrixX; |
| typedef Matrix<Scalar, Eigen::Dynamic, 1> VectorX; |
| |
| // MUST be positive because in any other case det(cR_t) may become negative for |
| // odd dimensions! |
| const Scalar c = abs(internal::random<Scalar>()); |
| |
| MatrixX R = randMatrixSpecialUnitary<Scalar>(dim); |
| VectorX t = Scalar(50)*VectorX::Random(dim,1); |
| |
| MatrixX cR_t = MatrixX::Identity(dim+1,dim+1); |
| cR_t.block(0,0,dim,dim) = c*R; |
| cR_t.block(0,dim,dim,1) = t; |
| |
| MatrixX src = MatrixX::Random(dim+1, num_elements); |
| src.row(dim) = Matrix<Scalar, 1, Dynamic>::Constant(num_elements, Scalar(1)); |
| |
| MatrixX dst = cR_t*src; |
| |
| MatrixX cR_t_umeyama = umeyama(src.block(0,0,dim,num_elements), dst.block(0,0,dim,num_elements)); |
| |
| const Scalar error = ( cR_t_umeyama*src - dst ).norm() / dst.norm(); |
| VERIFY(error < Scalar(40)*std::numeric_limits<Scalar>::epsilon()); |
| } |
| |
| template<typename Scalar, int Dimension> |
| void run_fixed_size_test(int num_elements) |
| { |
| using std::abs; |
| typedef Matrix<Scalar, Dimension+1, Dynamic> MatrixX; |
| typedef Matrix<Scalar, Dimension+1, Dimension+1> HomMatrix; |
| typedef Matrix<Scalar, Dimension, Dimension> FixedMatrix; |
| typedef Matrix<Scalar, Dimension, 1> FixedVector; |
| |
| const int dim = Dimension; |
| |
| // MUST be positive because in any other case det(cR_t) may become negative for |
| // odd dimensions! |
| // Also if c is to small compared to t.norm(), problem is ill-posed (cf. Bug 744) |
| const Scalar c = internal::random<Scalar>(0.5, 2.0); |
| |
| FixedMatrix R = randMatrixSpecialUnitary<Scalar>(dim); |
| FixedVector t = Scalar(32)*FixedVector::Random(dim,1); |
| |
| HomMatrix cR_t = HomMatrix::Identity(dim+1,dim+1); |
| cR_t.block(0,0,dim,dim) = c*R; |
| cR_t.block(0,dim,dim,1) = t; |
| |
| MatrixX src = MatrixX::Random(dim+1, num_elements); |
| src.row(dim) = Matrix<Scalar, 1, Dynamic>::Constant(num_elements, Scalar(1)); |
| |
| MatrixX dst = cR_t*src; |
| |
| Block<MatrixX, Dimension, Dynamic> src_block(src,0,0,dim,num_elements); |
| Block<MatrixX, Dimension, Dynamic> dst_block(dst,0,0,dim,num_elements); |
| |
| HomMatrix cR_t_umeyama = umeyama(src_block, dst_block); |
| |
| const Scalar error = ( cR_t_umeyama*src - dst ).squaredNorm(); |
| |
| VERIFY(error < Scalar(16)*std::numeric_limits<Scalar>::epsilon()); |
| } |
| |
| EIGEN_DECLARE_TEST(umeyama) |
| { |
| for (int i=0; i<g_repeat; ++i) |
| { |
| const int num_elements = internal::random<int>(40,500); |
| |
| // works also for dimensions bigger than 3... |
| for (int dim=2; dim<8; ++dim) |
| { |
| CALL_SUBTEST_1(run_test<MatrixXd>(dim, num_elements)); |
| CALL_SUBTEST_2(run_test<MatrixXf>(dim, num_elements)); |
| } |
| |
| CALL_SUBTEST_3((run_fixed_size_test<float, 2>(num_elements))); |
| CALL_SUBTEST_4((run_fixed_size_test<float, 3>(num_elements))); |
| CALL_SUBTEST_5((run_fixed_size_test<float, 4>(num_elements))); |
| |
| CALL_SUBTEST_6((run_fixed_size_test<double, 2>(num_elements))); |
| CALL_SUBTEST_7((run_fixed_size_test<double, 3>(num_elements))); |
| CALL_SUBTEST_8((run_fixed_size_test<double, 4>(num_elements))); |
| } |
| |
| // Those two calls don't compile and result in meaningful error messages! |
| // umeyama(MatrixXcf(),MatrixXcf()); |
| // umeyama(MatrixXcd(),MatrixXcd()); |
| } |