blob: 53889fe91a2b418ab1c2794bdce232f2924459b6 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2017 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2014 yoco <peter.xiau@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_RESHAPED_H
#define EIGEN_RESHAPED_H
#include "./InternalHeaderCheck.h"
namespace Eigen {
/** \class Reshaped
* \ingroup Core_Module
*
* \brief Expression of a fixed-size or dynamic-size reshape
*
* \tparam XprType the type of the expression in which we are taking a reshape
* \tparam Rows the number of rows of the reshape we are taking at compile time (optional)
* \tparam Cols the number of columns of the reshape we are taking at compile time (optional)
* \tparam Order can be ColMajor or RowMajor, default is ColMajor.
*
* This class represents an expression of either a fixed-size or dynamic-size reshape.
* It is the return type of DenseBase::reshaped(NRowsType,NColsType) and
* most of the time this is the only way it is used.
*
* If you want to directly manipulate reshaped expressions,
* for instance if you want to write a function returning such an expression,
* it is advised to use the \em auto keyword for such use cases.
*
* Here is an example illustrating the dynamic case:
* \include class_Reshaped.cpp
* Output: \verbinclude class_Reshaped.out
*
* Here is an example illustrating the fixed-size case:
* \include class_FixedReshaped.cpp
* Output: \verbinclude class_FixedReshaped.out
*
* \sa DenseBase::reshaped(NRowsType,NColsType)
*/
namespace internal {
template<typename XprType, int Rows, int Cols, int Order>
struct traits<Reshaped<XprType, Rows, Cols, Order> > : traits<XprType>
{
typedef typename traits<XprType>::Scalar Scalar;
typedef typename traits<XprType>::StorageKind StorageKind;
typedef typename traits<XprType>::XprKind XprKind;
enum{
MatrixRows = traits<XprType>::RowsAtCompileTime,
MatrixCols = traits<XprType>::ColsAtCompileTime,
RowsAtCompileTime = Rows,
ColsAtCompileTime = Cols,
MaxRowsAtCompileTime = Rows,
MaxColsAtCompileTime = Cols,
XpxStorageOrder = ((int(traits<XprType>::Flags) & RowMajorBit) == RowMajorBit) ? RowMajor : ColMajor,
ReshapedStorageOrder = (RowsAtCompileTime == 1 && ColsAtCompileTime != 1) ? RowMajor
: (ColsAtCompileTime == 1 && RowsAtCompileTime != 1) ? ColMajor
: XpxStorageOrder,
HasSameStorageOrderAsXprType = (ReshapedStorageOrder == XpxStorageOrder),
InnerSize = (ReshapedStorageOrder==int(RowMajor)) ? int(ColsAtCompileTime) : int(RowsAtCompileTime),
InnerStrideAtCompileTime = HasSameStorageOrderAsXprType
? int(inner_stride_at_compile_time<XprType>::ret)
: Dynamic,
OuterStrideAtCompileTime = Dynamic,
HasDirectAccess = internal::has_direct_access<XprType>::ret
&& (Order==int(XpxStorageOrder))
&& ((evaluator<XprType>::Flags&LinearAccessBit)==LinearAccessBit),
MaskPacketAccessBit = (InnerSize == Dynamic || (InnerSize % packet_traits<Scalar>::size) == 0)
&& (InnerStrideAtCompileTime == 1)
? PacketAccessBit : 0,
//MaskAlignedBit = ((OuterStrideAtCompileTime!=Dynamic) && (((OuterStrideAtCompileTime * int(sizeof(Scalar))) % 16) == 0)) ? AlignedBit : 0,
FlagsLinearAccessBit = (RowsAtCompileTime == 1 || ColsAtCompileTime == 1) ? LinearAccessBit : 0,
FlagsLvalueBit = is_lvalue<XprType>::value ? LvalueBit : 0,
FlagsRowMajorBit = (ReshapedStorageOrder==int(RowMajor)) ? RowMajorBit : 0,
FlagsDirectAccessBit = HasDirectAccess ? DirectAccessBit : 0,
Flags0 = traits<XprType>::Flags & ( (HereditaryBits & ~RowMajorBit) | MaskPacketAccessBit),
Flags = (Flags0 | FlagsLinearAccessBit | FlagsLvalueBit | FlagsRowMajorBit | FlagsDirectAccessBit)
};
};
template<typename XprType, int Rows, int Cols, int Order, bool HasDirectAccess> class ReshapedImpl_dense;
} // end namespace internal
template<typename XprType, int Rows, int Cols, int Order, typename StorageKind> class ReshapedImpl;
template<typename XprType, int Rows, int Cols, int Order> class Reshaped
: public ReshapedImpl<XprType, Rows, Cols, Order, typename internal::traits<XprType>::StorageKind>
{
typedef ReshapedImpl<XprType, Rows, Cols, Order, typename internal::traits<XprType>::StorageKind> Impl;
public:
//typedef typename Impl::Base Base;
typedef Impl Base;
EIGEN_GENERIC_PUBLIC_INTERFACE(Reshaped)
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Reshaped)
/** Fixed-size constructor
*/
EIGEN_DEVICE_FUNC
inline Reshaped(XprType& xpr)
: Impl(xpr)
{
EIGEN_STATIC_ASSERT(RowsAtCompileTime!=Dynamic && ColsAtCompileTime!=Dynamic,THIS_METHOD_IS_ONLY_FOR_FIXED_SIZE)
eigen_assert(Rows * Cols == xpr.rows() * xpr.cols());
}
/** Dynamic-size constructor
*/
EIGEN_DEVICE_FUNC
inline Reshaped(XprType& xpr,
Index reshapeRows, Index reshapeCols)
: Impl(xpr, reshapeRows, reshapeCols)
{
eigen_assert((RowsAtCompileTime==Dynamic || RowsAtCompileTime==reshapeRows)
&& (ColsAtCompileTime==Dynamic || ColsAtCompileTime==reshapeCols));
eigen_assert(reshapeRows * reshapeCols == xpr.rows() * xpr.cols());
}
};
// The generic default implementation for dense reshape simply forward to the internal::ReshapedImpl_dense
// that must be specialized for direct and non-direct access...
template<typename XprType, int Rows, int Cols, int Order>
class ReshapedImpl<XprType, Rows, Cols, Order, Dense>
: public internal::ReshapedImpl_dense<XprType, Rows, Cols, Order,internal::traits<Reshaped<XprType,Rows,Cols,Order> >::HasDirectAccess>
{
typedef internal::ReshapedImpl_dense<XprType, Rows, Cols, Order,internal::traits<Reshaped<XprType,Rows,Cols,Order> >::HasDirectAccess> Impl;
public:
typedef Impl Base;
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(ReshapedImpl)
EIGEN_DEVICE_FUNC inline ReshapedImpl(XprType& xpr) : Impl(xpr) {}
EIGEN_DEVICE_FUNC inline ReshapedImpl(XprType& xpr, Index reshapeRows, Index reshapeCols)
: Impl(xpr, reshapeRows, reshapeCols) {}
};
namespace internal {
/** \internal Internal implementation of dense Reshaped in the general case. */
template<typename XprType, int Rows, int Cols, int Order>
class ReshapedImpl_dense<XprType,Rows,Cols,Order,false>
: public internal::dense_xpr_base<Reshaped<XprType, Rows, Cols, Order> >::type
{
typedef Reshaped<XprType, Rows, Cols, Order> ReshapedType;
public:
typedef typename internal::dense_xpr_base<ReshapedType>::type Base;
EIGEN_DENSE_PUBLIC_INTERFACE(ReshapedType)
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(ReshapedImpl_dense)
typedef typename internal::ref_selector<XprType>::non_const_type MatrixTypeNested;
typedef internal::remove_all_t<XprType> NestedExpression;
class InnerIterator;
/** Fixed-size constructor
*/
EIGEN_DEVICE_FUNC
inline ReshapedImpl_dense(XprType& xpr)
: m_xpr(xpr), m_rows(Rows), m_cols(Cols)
{}
/** Dynamic-size constructor
*/
EIGEN_DEVICE_FUNC
inline ReshapedImpl_dense(XprType& xpr, Index nRows, Index nCols)
: m_xpr(xpr), m_rows(nRows), m_cols(nCols)
{}
EIGEN_DEVICE_FUNC Index rows() const { return m_rows; }
EIGEN_DEVICE_FUNC Index cols() const { return m_cols; }
#ifdef EIGEN_PARSED_BY_DOXYGEN
/** \sa MapBase::data() */
EIGEN_DEVICE_FUNC inline const Scalar* data() const;
EIGEN_DEVICE_FUNC inline Index innerStride() const;
EIGEN_DEVICE_FUNC inline Index outerStride() const;
#endif
/** \returns the nested expression */
EIGEN_DEVICE_FUNC
const internal::remove_all_t<XprType>&
nestedExpression() const { return m_xpr; }
/** \returns the nested expression */
EIGEN_DEVICE_FUNC
std::remove_reference_t<XprType>&
nestedExpression() { return m_xpr; }
protected:
MatrixTypeNested m_xpr;
const internal::variable_if_dynamic<Index, Rows> m_rows;
const internal::variable_if_dynamic<Index, Cols> m_cols;
};
/** \internal Internal implementation of dense Reshaped in the direct access case. */
template<typename XprType, int Rows, int Cols, int Order>
class ReshapedImpl_dense<XprType, Rows, Cols, Order, true>
: public MapBase<Reshaped<XprType, Rows, Cols, Order> >
{
typedef Reshaped<XprType, Rows, Cols, Order> ReshapedType;
typedef typename internal::ref_selector<XprType>::non_const_type XprTypeNested;
public:
typedef MapBase<ReshapedType> Base;
EIGEN_DENSE_PUBLIC_INTERFACE(ReshapedType)
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(ReshapedImpl_dense)
/** Fixed-size constructor
*/
EIGEN_DEVICE_FUNC
inline ReshapedImpl_dense(XprType& xpr)
: Base(xpr.data()), m_xpr(xpr)
{}
/** Dynamic-size constructor
*/
EIGEN_DEVICE_FUNC
inline ReshapedImpl_dense(XprType& xpr, Index nRows, Index nCols)
: Base(xpr.data(), nRows, nCols),
m_xpr(xpr)
{}
EIGEN_DEVICE_FUNC
const internal::remove_all_t<XprTypeNested>& nestedExpression() const
{
return m_xpr;
}
EIGEN_DEVICE_FUNC
XprType& nestedExpression() { return m_xpr; }
/** \sa MapBase::innerStride() */
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
inline Index innerStride() const
{
return m_xpr.innerStride();
}
/** \sa MapBase::outerStride() */
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
inline Index outerStride() const
{
return ((Flags&RowMajorBit)==RowMajorBit) ? this->cols() : this->rows();
}
protected:
XprTypeNested m_xpr;
};
// Evaluators
template<typename ArgType, int Rows, int Cols, int Order, bool HasDirectAccess> struct reshaped_evaluator;
template<typename ArgType, int Rows, int Cols, int Order>
struct evaluator<Reshaped<ArgType, Rows, Cols, Order> >
: reshaped_evaluator<ArgType, Rows, Cols, Order, traits<Reshaped<ArgType,Rows,Cols,Order> >::HasDirectAccess>
{
typedef Reshaped<ArgType, Rows, Cols, Order> XprType;
typedef typename XprType::Scalar Scalar;
// TODO: should check for smaller packet types
typedef typename packet_traits<Scalar>::type PacketScalar;
enum {
CoeffReadCost = evaluator<ArgType>::CoeffReadCost,
HasDirectAccess = traits<XprType>::HasDirectAccess,
// RowsAtCompileTime = traits<XprType>::RowsAtCompileTime,
// ColsAtCompileTime = traits<XprType>::ColsAtCompileTime,
// MaxRowsAtCompileTime = traits<XprType>::MaxRowsAtCompileTime,
// MaxColsAtCompileTime = traits<XprType>::MaxColsAtCompileTime,
//
// InnerStrideAtCompileTime = traits<XprType>::HasSameStorageOrderAsXprType
// ? int(inner_stride_at_compile_time<ArgType>::ret)
// : Dynamic,
// OuterStrideAtCompileTime = Dynamic,
FlagsLinearAccessBit = (traits<XprType>::RowsAtCompileTime == 1 || traits<XprType>::ColsAtCompileTime == 1 || HasDirectAccess) ? LinearAccessBit : 0,
FlagsRowMajorBit = (traits<XprType>::ReshapedStorageOrder==int(RowMajor)) ? RowMajorBit : 0,
FlagsDirectAccessBit = HasDirectAccess ? DirectAccessBit : 0,
Flags0 = evaluator<ArgType>::Flags & (HereditaryBits & ~RowMajorBit),
Flags = Flags0 | FlagsLinearAccessBit | FlagsRowMajorBit | FlagsDirectAccessBit,
PacketAlignment = unpacket_traits<PacketScalar>::alignment,
Alignment = evaluator<ArgType>::Alignment
};
typedef reshaped_evaluator<ArgType, Rows, Cols, Order, HasDirectAccess> reshaped_evaluator_type;
EIGEN_DEVICE_FUNC explicit evaluator(const XprType& xpr) : reshaped_evaluator_type(xpr)
{
EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost);
}
};
template<typename ArgType, int Rows, int Cols, int Order>
struct reshaped_evaluator<ArgType, Rows, Cols, Order, /* HasDirectAccess */ false>
: evaluator_base<Reshaped<ArgType, Rows, Cols, Order> >
{
typedef Reshaped<ArgType, Rows, Cols, Order> XprType;
enum {
CoeffReadCost = evaluator<ArgType>::CoeffReadCost /* TODO + cost of index computations */,
Flags = (evaluator<ArgType>::Flags & (HereditaryBits /*| LinearAccessBit | DirectAccessBit*/)),
Alignment = 0
};
EIGEN_DEVICE_FUNC explicit reshaped_evaluator(const XprType& xpr) : m_argImpl(xpr.nestedExpression()), m_xpr(xpr)
{
EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost);
}
typedef typename XprType::Scalar Scalar;
typedef typename XprType::CoeffReturnType CoeffReturnType;
typedef std::pair<Index, Index> RowCol;
inline RowCol index_remap(Index rowId, Index colId) const
{
if(Order==ColMajor)
{
const Index nth_elem_idx = colId * m_xpr.rows() + rowId;
return RowCol(nth_elem_idx % m_xpr.nestedExpression().rows(),
nth_elem_idx / m_xpr.nestedExpression().rows());
}
else
{
const Index nth_elem_idx = colId + rowId * m_xpr.cols();
return RowCol(nth_elem_idx / m_xpr.nestedExpression().cols(),
nth_elem_idx % m_xpr.nestedExpression().cols());
}
}
EIGEN_DEVICE_FUNC
inline Scalar& coeffRef(Index rowId, Index colId)
{
EIGEN_STATIC_ASSERT_LVALUE(XprType)
const RowCol row_col = index_remap(rowId, colId);
return m_argImpl.coeffRef(row_col.first, row_col.second);
}
EIGEN_DEVICE_FUNC
inline const Scalar& coeffRef(Index rowId, Index colId) const
{
const RowCol row_col = index_remap(rowId, colId);
return m_argImpl.coeffRef(row_col.first, row_col.second);
}
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE const CoeffReturnType coeff(Index rowId, Index colId) const
{
const RowCol row_col = index_remap(rowId, colId);
return m_argImpl.coeff(row_col.first, row_col.second);
}
EIGEN_DEVICE_FUNC
inline Scalar& coeffRef(Index index)
{
EIGEN_STATIC_ASSERT_LVALUE(XprType)
const RowCol row_col = index_remap(Rows == 1 ? 0 : index,
Rows == 1 ? index : 0);
return m_argImpl.coeffRef(row_col.first, row_col.second);
}
EIGEN_DEVICE_FUNC
inline const Scalar& coeffRef(Index index) const
{
const RowCol row_col = index_remap(Rows == 1 ? 0 : index,
Rows == 1 ? index : 0);
return m_argImpl.coeffRef(row_col.first, row_col.second);
}
EIGEN_DEVICE_FUNC
inline const CoeffReturnType coeff(Index index) const
{
const RowCol row_col = index_remap(Rows == 1 ? 0 : index,
Rows == 1 ? index : 0);
return m_argImpl.coeff(row_col.first, row_col.second);
}
#if 0
EIGEN_DEVICE_FUNC
template<int LoadMode>
inline PacketScalar packet(Index rowId, Index colId) const
{
const RowCol row_col = index_remap(rowId, colId);
return m_argImpl.template packet<Unaligned>(row_col.first, row_col.second);
}
template<int LoadMode>
EIGEN_DEVICE_FUNC
inline void writePacket(Index rowId, Index colId, const PacketScalar& val)
{
const RowCol row_col = index_remap(rowId, colId);
m_argImpl.const_cast_derived().template writePacket<Unaligned>
(row_col.first, row_col.second, val);
}
template<int LoadMode>
EIGEN_DEVICE_FUNC
inline PacketScalar packet(Index index) const
{
const RowCol row_col = index_remap(RowsAtCompileTime == 1 ? 0 : index,
RowsAtCompileTime == 1 ? index : 0);
return m_argImpl.template packet<Unaligned>(row_col.first, row_col.second);
}
template<int LoadMode>
EIGEN_DEVICE_FUNC
inline void writePacket(Index index, const PacketScalar& val)
{
const RowCol row_col = index_remap(RowsAtCompileTime == 1 ? 0 : index,
RowsAtCompileTime == 1 ? index : 0);
return m_argImpl.template packet<Unaligned>(row_col.first, row_col.second, val);
}
#endif
protected:
evaluator<ArgType> m_argImpl;
const XprType& m_xpr;
};
template<typename ArgType, int Rows, int Cols, int Order>
struct reshaped_evaluator<ArgType, Rows, Cols, Order, /* HasDirectAccess */ true>
: mapbase_evaluator<Reshaped<ArgType, Rows, Cols, Order>,
typename Reshaped<ArgType, Rows, Cols, Order>::PlainObject>
{
typedef Reshaped<ArgType, Rows, Cols, Order> XprType;
typedef typename XprType::Scalar Scalar;
EIGEN_DEVICE_FUNC explicit reshaped_evaluator(const XprType& xpr)
: mapbase_evaluator<XprType, typename XprType::PlainObject>(xpr)
{
// TODO: for the 3.4 release, this should be turned to an internal assertion, but let's keep it as is for the beta lifetime
eigen_assert(((internal::UIntPtr(xpr.data()) % plain_enum_max(1, evaluator<XprType>::Alignment)) == 0) && "data is not aligned");
}
};
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_RESHAPED_H