blob: e24b5d5b3d0b4a431cb43dbcc202ea9de4200823 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2020 Everton Constantino (everton.constantino@ibm.com)
// Copyright (C) 2021 Chip Kerchner (chip.kerchner@ibm.com)
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_MATRIX_PRODUCT_ALTIVEC_H
#define EIGEN_MATRIX_PRODUCT_ALTIVEC_H
#ifndef EIGEN_ALTIVEC_USE_CUSTOM_PACK
#define EIGEN_ALTIVEC_USE_CUSTOM_PACK 1
#endif
#include "MatrixProductCommon.h"
#if !defined(EIGEN_ALTIVEC_DISABLE_MMA)
#define EIGEN_ALTIVEC_DISABLE_MMA 0
#endif
// Check for MMA builtin support.
#if !EIGEN_ALTIVEC_DISABLE_MMA && defined(__has_builtin)
#if __has_builtin(__builtin_mma_assemble_acc)
#define EIGEN_ALTIVEC_MMA_SUPPORT
#endif
#endif
// Check if and how we should actually use MMA if supported.
#if defined(EIGEN_ALTIVEC_MMA_SUPPORT)
#if !defined(EIGEN_ALTIVEC_ENABLE_MMA_DYNAMIC_DISPATCH)
#define EIGEN_ALTIVEC_ENABLE_MMA_DYNAMIC_DISPATCH 0
#endif
// Check if we want to enable dynamic dispatch. Not supported by LLVM.
#if EIGEN_ALTIVEC_ENABLE_MMA_DYNAMIC_DISPATCH && !EIGEN_COMP_LLVM
#define EIGEN_ALTIVEC_MMA_DYNAMIC_DISPATCH 1
// Otherwise, use MMA by default if available.
#elif defined(__MMA__)
#define EIGEN_ALTIVEC_MMA_ONLY 1
#endif
#endif // EIGEN_ALTIVEC_MMA_SUPPORT
#if defined(EIGEN_ALTIVEC_MMA_ONLY) || defined(EIGEN_ALTIVEC_MMA_DYNAMIC_DISPATCH)
#include "MatrixProductMMA.h"
#endif
/**************************************************************************************************
* TODO *
* - Check StorageOrder on dhs_pack (the innermost second loop seems unvectorized when it could). *
* - Check the possibility of transposing as GETREAL and GETIMAG when needed. *
**************************************************************************************************/
#include "../../InternalHeaderCheck.h"
namespace Eigen {
namespace internal {
/**************************
* Constants and typedefs *
**************************/
template<typename Scalar>
struct quad_traits
{
typedef typename packet_traits<Scalar>::type vectortype;
typedef PacketBlock<vectortype,4> type;
typedef vectortype rhstype;
enum
{
vectorsize = packet_traits<Scalar>::size,
size = 4,
rows = 4
};
};
template<>
struct quad_traits<double>
{
typedef Packet2d vectortype;
typedef PacketBlock<vectortype,4> type;
typedef PacketBlock<Packet2d,2> rhstype;
enum
{
vectorsize = packet_traits<double>::size,
size = 2,
rows = 4
};
};
// MatrixProduct decomposes real/imaginary vectors into a real vector and an imaginary vector, this turned out
// to be faster than Eigen's usual approach of having real/imaginary pairs on a single vector. This constants then
// are responsible to extract from convert between Eigen's and MatrixProduct approach.
const static Packet16uc p16uc_GETREAL32 = { 0, 1, 2, 3,
8, 9, 10, 11,
16, 17, 18, 19,
24, 25, 26, 27};
const static Packet16uc p16uc_GETIMAG32 = { 4, 5, 6, 7,
12, 13, 14, 15,
20, 21, 22, 23,
28, 29, 30, 31};
const static Packet16uc p16uc_GETREAL64 = { 0, 1, 2, 3, 4, 5, 6, 7,
16, 17, 18, 19, 20, 21, 22, 23};
//[a,ai],[b,bi] = [ai,bi]
const static Packet16uc p16uc_GETIMAG64 = { 8, 9, 10, 11, 12, 13, 14, 15,
24, 25, 26, 27, 28, 29, 30, 31};
/*********************************************
* Single precision real and complex packing *
* *******************************************/
/**
* Symm packing is related to packing of symmetric adjoint blocks, as expected the packing leaves
* the diagonal real, whatever is below it is copied from the respective upper diagonal element and
* conjugated. There's no PanelMode available for symm packing.
*
* Packing in general is supposed to leave the lhs block and the rhs block easy to be read by gemm using
* its respective rank-update instructions. The float32/64 versions are different because at this moment
* the size of the accumulator is fixed at 512-bits so you can't have a 4x4 accumulator of 64-bit elements.
*
* As mentioned earlier MatrixProduct breaks complex numbers into a real vector and a complex vector so packing has
* to take that into account, at the moment, we run pack the real part and then the imaginary part, this is the main
* reason why packing for complex is broken down into several different parts, also the reason why we endup having a
* float32/64 and complex float32/64 version.
**/
template<typename Scalar, typename Index, int StorageOrder>
EIGEN_ALWAYS_INLINE std::complex<Scalar> getAdjointVal(Index i, Index j, const_blas_data_mapper<std::complex<Scalar>, Index, StorageOrder>& dt)
{
std::complex<Scalar> v;
if(i < j)
{
v.real( dt(j,i).real());
v.imag(-dt(j,i).imag());
} else if(i > j)
{
v.real( dt(i,j).real());
v.imag( dt(i,j).imag());
} else {
v.real( dt(i,j).real());
v.imag((Scalar)0.0);
}
return v;
}
template<typename Scalar, typename Index, int StorageOrder, int N>
EIGEN_STRONG_INLINE void symm_pack_complex_rhs_helper(std::complex<Scalar>* blockB, const std::complex<Scalar>* _rhs, Index rhsStride, Index rows, Index cols, Index k2)
{
const Index depth = k2 + rows;
const_blas_data_mapper<std::complex<Scalar>, Index, StorageOrder> rhs(_rhs, rhsStride);
const Index vectorSize = N*quad_traits<Scalar>::vectorsize;
const Index vectorDelta = vectorSize * rows;
Scalar* blockBf = reinterpret_cast<Scalar *>(blockB);
Index rir = 0, rii, j = 0;
for(; j + vectorSize <= cols; j+=vectorSize)
{
rii = rir + vectorDelta;
for(Index i = k2; i < depth; i++)
{
for(Index k = 0; k < vectorSize; k++)
{
std::complex<Scalar> v = getAdjointVal<Scalar, Index, StorageOrder>(i, j + k, rhs);
blockBf[rir + k] = v.real();
blockBf[rii + k] = v.imag();
}
rir += vectorSize;
rii += vectorSize;
}
rir += vectorDelta;
}
for(; j < cols; j++)
{
rii = rir + rows;
for(Index i = k2; i < depth; i++)
{
std::complex<Scalar> v = getAdjointVal<Scalar, Index, StorageOrder>(i, j, rhs);
blockBf[rir] = v.real();
blockBf[rii] = v.imag();
rir += 1;
rii += 1;
}
rir += rows;
}
}
template<typename Scalar, typename Index, int StorageOrder>
EIGEN_STRONG_INLINE void symm_pack_complex_lhs_helper(std::complex<Scalar>* blockA, const std::complex<Scalar>* _lhs, Index lhsStride, Index cols, Index rows)
{
const Index depth = cols;
const_blas_data_mapper<std::complex<Scalar>, Index, StorageOrder> lhs(_lhs, lhsStride);
const Index vectorSize = quad_traits<Scalar>::vectorsize;
const Index vectorDelta = vectorSize * depth;
Scalar* blockAf = reinterpret_cast<Scalar *>(blockA);
Index rir = 0, rii, j = 0;
for(; j + vectorSize <= rows; j+=vectorSize)
{
rii = rir + vectorDelta;
for(Index i = 0; i < depth; i++)
{
for(Index k = 0; k < vectorSize; k++)
{
std::complex<Scalar> v = getAdjointVal<Scalar, Index, StorageOrder>(j+k, i, lhs);
blockAf[rir + k] = v.real();
blockAf[rii + k] = v.imag();
}
rir += vectorSize;
rii += vectorSize;
}
rir += vectorDelta;
}
if (j < rows)
{
rii = rir + ((rows - j) * depth);
for(Index i = 0; i < depth; i++)
{
Index k = j;
for(; k < rows; k++)
{
std::complex<Scalar> v = getAdjointVal<Scalar, Index, StorageOrder>(k, i, lhs);
blockAf[rir] = v.real();
blockAf[rii] = v.imag();
rir += 1;
rii += 1;
}
}
}
}
template<typename Scalar, typename Index, int StorageOrder, int N>
EIGEN_STRONG_INLINE void symm_pack_rhs_helper(Scalar* blockB, const Scalar* _rhs, Index rhsStride, Index rows, Index cols, Index k2)
{
const Index depth = k2 + rows;
const_blas_data_mapper<Scalar, Index, StorageOrder> rhs(_rhs, rhsStride);
const Index vectorSize = quad_traits<Scalar>::vectorsize;
Index ri = 0, j = 0;
for(; j + N*vectorSize <= cols; j+=N*vectorSize)
{
Index i = k2;
for(; i < depth; i++)
{
for(Index k = 0; k < N*vectorSize; k++)
{
if(i <= j+k)
blockB[ri + k] = rhs(j+k, i);
else
blockB[ri + k] = rhs(i, j+k);
}
ri += N*vectorSize;
}
}
for(; j < cols; j++)
{
for(Index i = k2; i < depth; i++)
{
if(j <= i)
blockB[ri] = rhs(i, j);
else
blockB[ri] = rhs(j, i);
ri += 1;
}
}
}
template<typename Scalar, typename Index, int StorageOrder>
EIGEN_STRONG_INLINE void symm_pack_lhs_helper(Scalar* blockA, const Scalar* _lhs, Index lhsStride, Index cols, Index rows)
{
const Index depth = cols;
const_blas_data_mapper<Scalar, Index, StorageOrder> lhs(_lhs, lhsStride);
const Index vectorSize = quad_traits<Scalar>::vectorsize;
Index ri = 0, j = 0;
for(; j + vectorSize <= rows; j+=vectorSize)
{
Index i = 0;
for(; i < depth; i++)
{
for(Index k = 0; k < vectorSize; k++)
{
if(i <= j+k)
blockA[ri + k] = lhs(j+k, i);
else
blockA[ri + k] = lhs(i, j+k);
}
ri += vectorSize;
}
}
if (j < rows)
{
for(Index i = 0; i < depth; i++)
{
Index k = j;
for(; k < rows; k++)
{
if(i <= k)
blockA[ri] = lhs(k, i);
else
blockA[ri] = lhs(i, k);
ri += 1;
}
}
}
}
template<typename Index, int nr, int StorageOrder>
struct symm_pack_rhs<std::complex<float>, Index, nr, StorageOrder>
{
void operator()(std::complex<float>* blockB, const std::complex<float>* _rhs, Index rhsStride, Index rows, Index cols, Index k2)
{
symm_pack_complex_rhs_helper<float, Index, StorageOrder, 1>(blockB, _rhs, rhsStride, rows, cols, k2);
}
};
template<typename Index, int Pack1, int Pack2_dummy, int StorageOrder>
struct symm_pack_lhs<std::complex<float>, Index, Pack1, Pack2_dummy, StorageOrder>
{
void operator()(std::complex<float>* blockA, const std::complex<float>* _lhs, Index lhsStride, Index cols, Index rows)
{
symm_pack_complex_lhs_helper<float, Index, StorageOrder>(blockA, _lhs, lhsStride, cols, rows);
}
};
// *********** symm_pack std::complex<float64> ***********
template<typename Index, int nr, int StorageOrder>
struct symm_pack_rhs<std::complex<double>, Index, nr, StorageOrder>
{
void operator()(std::complex<double>* blockB, const std::complex<double>* _rhs, Index rhsStride, Index rows, Index cols, Index k2)
{
symm_pack_complex_rhs_helper<double, Index, StorageOrder, 2>(blockB, _rhs, rhsStride, rows, cols, k2);
}
};
template<typename Index, int Pack1, int Pack2_dummy, int StorageOrder>
struct symm_pack_lhs<std::complex<double>, Index, Pack1, Pack2_dummy, StorageOrder>
{
void operator()(std::complex<double>* blockA, const std::complex<double>* _lhs, Index lhsStride, Index cols, Index rows)
{
symm_pack_complex_lhs_helper<double, Index, StorageOrder>(blockA, _lhs, lhsStride, cols, rows);
}
};
// *********** symm_pack float32 ***********
template<typename Index, int nr, int StorageOrder>
struct symm_pack_rhs<float, Index, nr, StorageOrder>
{
void operator()(float* blockB, const float* _rhs, Index rhsStride, Index rows, Index cols, Index k2)
{
symm_pack_rhs_helper<float, Index, StorageOrder, 1>(blockB, _rhs, rhsStride, rows, cols, k2);
}
};
template<typename Index, int Pack1, int Pack2_dummy, int StorageOrder>
struct symm_pack_lhs<float, Index, Pack1, Pack2_dummy, StorageOrder>
{
void operator()(float* blockA, const float* _lhs, Index lhsStride, Index cols, Index rows)
{
symm_pack_lhs_helper<float, Index, StorageOrder>(blockA, _lhs, lhsStride, cols, rows);
}
};
// *********** symm_pack float64 ***********
template<typename Index, int nr, int StorageOrder>
struct symm_pack_rhs<double, Index, nr, StorageOrder>
{
void operator()(double* blockB, const double* _rhs, Index rhsStride, Index rows, Index cols, Index k2)
{
symm_pack_rhs_helper<double, Index, StorageOrder, 2>(blockB, _rhs, rhsStride, rows, cols, k2);
}
};
template<typename Index, int Pack1, int Pack2_dummy, int StorageOrder>
struct symm_pack_lhs<double, Index, Pack1, Pack2_dummy, StorageOrder>
{
void operator()(double* blockA, const double* _lhs, Index lhsStride, Index cols, Index rows)
{
symm_pack_lhs_helper<double, Index, StorageOrder>(blockA, _lhs, lhsStride, cols, rows);
}
};
/**
* PanelMode
* Packing might be called several times before being multiplied by gebp_kernel, this happens because
* on special occasions it fills part of block with other parts of the matrix. Two variables control
* how PanelMode should behave: offset and stride. The idea is that those variables represent whatever
* is going to be the real offset and stride in the future and this is what you should obey. The process
* is to behave as you would with normal packing but leave the start of each part with the correct offset
* and the end as well respecting the real stride the block will have. Gebp is aware of both blocks stride
* and offset and behaves accordingly.
**/
template<typename Scalar, typename Packet, typename Index, int N>
EIGEN_ALWAYS_INLINE void storeBlock(Scalar* to, PacketBlock<Packet,N>& block)
{
const Index size = 16 / sizeof(Scalar);
pstore<Scalar>(to + (0 * size), block.packet[0]);
pstore<Scalar>(to + (1 * size), block.packet[1]);
if (N > 2) {
pstore<Scalar>(to + (2 * size), block.packet[2]);
}
if (N > 3) {
pstore<Scalar>(to + (3 * size), block.packet[3]);
}
}
// General template for lhs & rhs complex packing.
template<typename Scalar, typename Index, typename DataMapper, typename Packet, typename PacketC, int StorageOrder, bool Conjugate, bool PanelMode, bool UseLhs>
struct dhs_cpack {
EIGEN_STRONG_INLINE void operator()(std::complex<Scalar>* blockA, const DataMapper& lhs, Index depth, Index rows, Index stride, Index offset)
{
const Index vectorSize = quad_traits<Scalar>::vectorsize;
const Index vectorDelta = vectorSize * ((PanelMode) ? stride : depth);
Index rir = ((PanelMode) ? (vectorSize*offset) : 0), rii;
Scalar* blockAt = reinterpret_cast<Scalar *>(blockA);
Index j = 0;
for(; j + vectorSize <= rows; j+=vectorSize)
{
Index i = 0;
rii = rir + vectorDelta;
for(; i + vectorSize <= depth; i+=vectorSize)
{
PacketBlock<Packet,4> blockr, blocki;
PacketBlock<PacketC,8> cblock;
if (UseLhs) {
bload<DataMapper, PacketC, Index, 2, StorageOrder, true, 4>(cblock, lhs, j, i);
} else {
bload<DataMapper, PacketC, Index, 2, StorageOrder, true, 4>(cblock, lhs, i, j);
}
blockr.packet[0] = vec_perm(cblock.packet[0].v, cblock.packet[4].v, p16uc_GETREAL32);
blockr.packet[1] = vec_perm(cblock.packet[1].v, cblock.packet[5].v, p16uc_GETREAL32);
blockr.packet[2] = vec_perm(cblock.packet[2].v, cblock.packet[6].v, p16uc_GETREAL32);
blockr.packet[3] = vec_perm(cblock.packet[3].v, cblock.packet[7].v, p16uc_GETREAL32);
blocki.packet[0] = vec_perm(cblock.packet[0].v, cblock.packet[4].v, p16uc_GETIMAG32);
blocki.packet[1] = vec_perm(cblock.packet[1].v, cblock.packet[5].v, p16uc_GETIMAG32);
blocki.packet[2] = vec_perm(cblock.packet[2].v, cblock.packet[6].v, p16uc_GETIMAG32);
blocki.packet[3] = vec_perm(cblock.packet[3].v, cblock.packet[7].v, p16uc_GETIMAG32);
if(Conjugate)
{
blocki.packet[0] = -blocki.packet[0];
blocki.packet[1] = -blocki.packet[1];
blocki.packet[2] = -blocki.packet[2];
blocki.packet[3] = -blocki.packet[3];
}
if(((StorageOrder == RowMajor) && UseLhs) || (((StorageOrder == ColMajor) && !UseLhs)))
{
ptranspose(blockr);
ptranspose(blocki);
}
storeBlock<Scalar, Packet, Index, 4>(blockAt + rir, blockr);
storeBlock<Scalar, Packet, Index, 4>(blockAt + rii, blocki);
rir += 4*vectorSize;
rii += 4*vectorSize;
}
for(; i < depth; i++)
{
PacketBlock<Packet,1> blockr, blocki;
PacketBlock<PacketC,2> cblock;
if(((StorageOrder == ColMajor) && UseLhs) || (((StorageOrder == RowMajor) && !UseLhs)))
{
if (UseLhs) {
cblock.packet[0] = lhs.template loadPacket<PacketC>(j + 0, i);
cblock.packet[1] = lhs.template loadPacket<PacketC>(j + 2, i);
} else {
cblock.packet[0] = lhs.template loadPacket<PacketC>(i, j + 0);
cblock.packet[1] = lhs.template loadPacket<PacketC>(i, j + 2);
}
} else {
if (UseLhs) {
cblock.packet[0] = pload2(lhs(j + 0, i), lhs(j + 1, i));
cblock.packet[1] = pload2(lhs(j + 2, i), lhs(j + 3, i));
} else {
cblock.packet[0] = pload2(lhs(i, j + 0), lhs(i, j + 1));
cblock.packet[1] = pload2(lhs(i, j + 2), lhs(i, j + 3));
}
}
blockr.packet[0] = vec_perm(cblock.packet[0].v, cblock.packet[1].v, p16uc_GETREAL32);
blocki.packet[0] = vec_perm(cblock.packet[0].v, cblock.packet[1].v, p16uc_GETIMAG32);
if(Conjugate)
{
blocki.packet[0] = -blocki.packet[0];
}
pstore<Scalar>(blockAt + rir, blockr.packet[0]);
pstore<Scalar>(blockAt + rii, blocki.packet[0]);
rir += vectorSize;
rii += vectorSize;
}
rir += ((PanelMode) ? (vectorSize*(2*stride - depth)) : vectorDelta);
}
if (!UseLhs)
{
if(PanelMode) rir -= (offset*(vectorSize - 1));
for(; j < rows; j++)
{
rii = rir + ((PanelMode) ? stride : depth);
for(Index i = 0; i < depth; i++)
{
blockAt[rir] = lhs(i, j).real();
if(Conjugate)
blockAt[rii] = -lhs(i, j).imag();
else
blockAt[rii] = lhs(i, j).imag();
rir += 1;
rii += 1;
}
rir += ((PanelMode) ? (2*stride - depth) : depth);
}
} else {
if (j < rows)
{
if(PanelMode) rir += (offset*(rows - j - vectorSize));
rii = rir + (((PanelMode) ? stride : depth) * (rows - j));
for(Index i = 0; i < depth; i++)
{
Index k = j;
for(; k < rows; k++)
{
blockAt[rir] = lhs(k, i).real();
if(Conjugate)
blockAt[rii] = -lhs(k, i).imag();
else
blockAt[rii] = lhs(k, i).imag();
rir += 1;
rii += 1;
}
}
}
}
}
};
// General template for lhs & rhs packing.
template<typename Scalar, typename Index, typename DataMapper, typename Packet, int StorageOrder, bool PanelMode, bool UseLhs>
struct dhs_pack{
EIGEN_STRONG_INLINE void operator()(Scalar* blockA, const DataMapper& lhs, Index depth, Index rows, Index stride, Index offset)
{
const Index vectorSize = quad_traits<Scalar>::vectorsize;
Index ri = 0, j = 0;
for(; j + vectorSize <= rows; j+=vectorSize)
{
Index i = 0;
if(PanelMode) ri += vectorSize*offset;
for(; i + vectorSize <= depth; i+=vectorSize)
{
PacketBlock<Packet,4> block;
if (UseLhs) {
bload<DataMapper, Packet, Index, 4, StorageOrder, false, 4>(block, lhs, j, i);
} else {
bload<DataMapper, Packet, Index, 4, StorageOrder, false, 4>(block, lhs, i, j);
}
if(((StorageOrder == RowMajor) && UseLhs) || ((StorageOrder == ColMajor) && !UseLhs))
{
ptranspose(block);
}
storeBlock<Scalar, Packet, Index, 4>(blockA + ri, block);
ri += 4*vectorSize;
}
for(; i < depth; i++)
{
if(((StorageOrder == RowMajor) && UseLhs) || ((StorageOrder == ColMajor) && !UseLhs))
{
if (UseLhs) {
blockA[ri+0] = lhs(j+0, i);
blockA[ri+1] = lhs(j+1, i);
blockA[ri+2] = lhs(j+2, i);
blockA[ri+3] = lhs(j+3, i);
} else {
blockA[ri+0] = lhs(i, j+0);
blockA[ri+1] = lhs(i, j+1);
blockA[ri+2] = lhs(i, j+2);
blockA[ri+3] = lhs(i, j+3);
}
} else {
Packet lhsV;
if (UseLhs) {
lhsV = lhs.template loadPacket<Packet>(j, i);
} else {
lhsV = lhs.template loadPacket<Packet>(i, j);
}
pstore<Scalar>(blockA + ri, lhsV);
}
ri += vectorSize;
}
if(PanelMode) ri += vectorSize*(stride - offset - depth);
}
if (!UseLhs)
{
if(PanelMode) ri += offset;
for(; j < rows; j++)
{
for(Index i = 0; i < depth; i++)
{
blockA[ri] = lhs(i, j);
ri += 1;
}
if(PanelMode) ri += stride - depth;
}
} else {
if (j < rows)
{
if(PanelMode) ri += offset*(rows - j);
for(Index i = 0; i < depth; i++)
{
Index k = j;
for(; k < rows; k++)
{
blockA[ri] = lhs(k, i);
ri += 1;
}
}
}
}
}
};
// General template for lhs packing, float64 specialization.
template<typename Index, typename DataMapper, int StorageOrder, bool PanelMode>
struct dhs_pack<double, Index, DataMapper, Packet2d, StorageOrder, PanelMode, true>
{
EIGEN_STRONG_INLINE void operator()(double* blockA, const DataMapper& lhs, Index depth, Index rows, Index stride, Index offset)
{
const Index vectorSize = quad_traits<double>::vectorsize;
Index ri = 0, j = 0;
for(; j + vectorSize <= rows; j+=vectorSize)
{
Index i = 0;
if(PanelMode) ri += vectorSize*offset;
for(; i + vectorSize <= depth; i+=vectorSize)
{
PacketBlock<Packet2d,2> block;
if(StorageOrder == RowMajor)
{
block.packet[0] = lhs.template loadPacket<Packet2d>(j + 0, i);
block.packet[1] = lhs.template loadPacket<Packet2d>(j + 1, i);
ptranspose(block);
} else {
block.packet[0] = lhs.template loadPacket<Packet2d>(j, i + 0);
block.packet[1] = lhs.template loadPacket<Packet2d>(j, i + 1);
}
storeBlock<double, Packet2d, Index, 2>(blockA + ri, block);
ri += 2*vectorSize;
}
for(; i < depth; i++)
{
if(StorageOrder == RowMajor)
{
blockA[ri+0] = lhs(j+0, i);
blockA[ri+1] = lhs(j+1, i);
} else {
Packet2d lhsV = lhs.template loadPacket<Packet2d>(j, i);
pstore<double>(blockA + ri, lhsV);
}
ri += vectorSize;
}
if(PanelMode) ri += vectorSize*(stride - offset - depth);
}
if (j < rows)
{
if(PanelMode) ri += offset*(rows - j);
for(Index i = 0; i < depth; i++)
{
Index k = j;
for(; k < rows; k++)
{
blockA[ri] = lhs(k, i);
ri += 1;
}
}
}
}
};
// General template for rhs packing, float64 specialization.
template<typename Index, typename DataMapper, int StorageOrder, bool PanelMode>
struct dhs_pack<double, Index, DataMapper, Packet2d, StorageOrder, PanelMode, false>
{
EIGEN_STRONG_INLINE void operator()(double* blockB, const DataMapper& rhs, Index depth, Index cols, Index stride, Index offset)
{
const Index vectorSize = quad_traits<double>::vectorsize;
Index ri = 0, j = 0;
for(; j + 2*vectorSize <= cols; j+=2*vectorSize)
{
Index i = 0;
if(PanelMode) ri += offset*(2*vectorSize);
for(; i + vectorSize <= depth; i+=vectorSize)
{
PacketBlock<Packet2d,4> block;
if(StorageOrder == ColMajor)
{
PacketBlock<Packet2d,2> block1, block2;
block1.packet[0] = rhs.template loadPacket<Packet2d>(i, j + 0);
block1.packet[1] = rhs.template loadPacket<Packet2d>(i, j + 1);
block2.packet[0] = rhs.template loadPacket<Packet2d>(i, j + 2);
block2.packet[1] = rhs.template loadPacket<Packet2d>(i, j + 3);
ptranspose(block1);
ptranspose(block2);
pstore<double>(blockB + ri , block1.packet[0]);
pstore<double>(blockB + ri + 2, block2.packet[0]);
pstore<double>(blockB + ri + 4, block1.packet[1]);
pstore<double>(blockB + ri + 6, block2.packet[1]);
} else {
block.packet[0] = rhs.template loadPacket<Packet2d>(i + 0, j + 0); //[a1 a2]
block.packet[1] = rhs.template loadPacket<Packet2d>(i + 0, j + 2); //[a3 a4]
block.packet[2] = rhs.template loadPacket<Packet2d>(i + 1, j + 0); //[b1 b2]
block.packet[3] = rhs.template loadPacket<Packet2d>(i + 1, j + 2); //[b3 b4]
storeBlock<double, Packet2d, Index, 4>(blockB + ri, block);
}
ri += 4*vectorSize;
}
for(; i < depth; i++)
{
if(StorageOrder == ColMajor)
{
blockB[ri+0] = rhs(i, j+0);
blockB[ri+1] = rhs(i, j+1);
ri += vectorSize;
blockB[ri+0] = rhs(i, j+2);
blockB[ri+1] = rhs(i, j+3);
} else {
Packet2d rhsV = rhs.template loadPacket<Packet2d>(i, j);
pstore<double>(blockB + ri, rhsV);
ri += vectorSize;
rhsV = rhs.template loadPacket<Packet2d>(i, j + 2);
pstore<double>(blockB + ri, rhsV);
}
ri += vectorSize;
}
if(PanelMode) ri += (2*vectorSize)*(stride - offset - depth);
}
if(PanelMode) ri += offset;
for(; j < cols; j++)
{
for(Index i = 0; i < depth; i++)
{
blockB[ri] = rhs(i, j);
ri += 1;
}
if(PanelMode) ri += stride - depth;
}
}
};
// General template for lhs complex packing, float64 specialization.
template<typename Index, typename DataMapper, typename Packet, typename PacketC, int StorageOrder, bool Conjugate, bool PanelMode>
struct dhs_cpack<double, Index, DataMapper, Packet, PacketC, StorageOrder, Conjugate, PanelMode, true>
{
EIGEN_STRONG_INLINE void operator()(std::complex<double>* blockA, const DataMapper& lhs, Index depth, Index rows, Index stride, Index offset)
{
const Index vectorSize = quad_traits<double>::vectorsize;
const Index vectorDelta = vectorSize * ((PanelMode) ? stride : depth);
Index rir = ((PanelMode) ? (vectorSize*offset) : 0), rii;
double* blockAt = reinterpret_cast<double *>(blockA);
Index j = 0;
for(; j + vectorSize <= rows; j+=vectorSize)
{
Index i = 0;
rii = rir + vectorDelta;
for(; i + vectorSize <= depth; i+=vectorSize)
{
PacketBlock<Packet,2> blockr, blocki;
PacketBlock<PacketC,4> cblock;
if(StorageOrder == ColMajor)
{
cblock.packet[0] = lhs.template loadPacket<PacketC>(j, i + 0); //[a1 a1i]
cblock.packet[1] = lhs.template loadPacket<PacketC>(j, i + 1); //[b1 b1i]
cblock.packet[2] = lhs.template loadPacket<PacketC>(j + 1, i + 0); //[a2 a2i]
cblock.packet[3] = lhs.template loadPacket<PacketC>(j + 1, i + 1); //[b2 b2i]
blockr.packet[0] = vec_perm(cblock.packet[0].v, cblock.packet[2].v, p16uc_GETREAL64); //[a1 a2]
blockr.packet[1] = vec_perm(cblock.packet[1].v, cblock.packet[3].v, p16uc_GETREAL64); //[b1 b2]
blocki.packet[0] = vec_perm(cblock.packet[0].v, cblock.packet[2].v, p16uc_GETIMAG64);
blocki.packet[1] = vec_perm(cblock.packet[1].v, cblock.packet[3].v, p16uc_GETIMAG64);
} else {
cblock.packet[0] = lhs.template loadPacket<PacketC>(j + 0, i); //[a1 a1i]
cblock.packet[1] = lhs.template loadPacket<PacketC>(j + 1, i); //[a2 a2i]
cblock.packet[2] = lhs.template loadPacket<PacketC>(j + 0, i + 1); //[b1 b1i]
cblock.packet[3] = lhs.template loadPacket<PacketC>(j + 1, i + 1); //[b2 b2i
blockr.packet[0] = vec_perm(cblock.packet[0].v, cblock.packet[1].v, p16uc_GETREAL64); //[a1 a2]
blockr.packet[1] = vec_perm(cblock.packet[2].v, cblock.packet[3].v, p16uc_GETREAL64); //[b1 b2]
blocki.packet[0] = vec_perm(cblock.packet[0].v, cblock.packet[1].v, p16uc_GETIMAG64);
blocki.packet[1] = vec_perm(cblock.packet[2].v, cblock.packet[3].v, p16uc_GETIMAG64);
}
if(Conjugate)
{
blocki.packet[0] = -blocki.packet[0];
blocki.packet[1] = -blocki.packet[1];
}
storeBlock<double, Packet, Index, 2>(blockAt + rir, blockr);
storeBlock<double, Packet, Index, 2>(blockAt + rii, blocki);
rir += 2*vectorSize;
rii += 2*vectorSize;
}
for(; i < depth; i++)
{
PacketBlock<Packet,1> blockr, blocki;
PacketBlock<PacketC,2> cblock;
cblock.packet[0] = lhs.template loadPacket<PacketC>(j + 0, i);
cblock.packet[1] = lhs.template loadPacket<PacketC>(j + 1, i);
blockr.packet[0] = vec_perm(cblock.packet[0].v, cblock.packet[1].v, p16uc_GETREAL64);
blocki.packet[0] = vec_perm(cblock.packet[0].v, cblock.packet[1].v, p16uc_GETIMAG64);
if(Conjugate)
{
blocki.packet[0] = -blocki.packet[0];
}
pstore<double>(blockAt + rir, blockr.packet[0]);
pstore<double>(blockAt + rii, blocki.packet[0]);
rir += vectorSize;
rii += vectorSize;
}
rir += ((PanelMode) ? (vectorSize*(2*stride - depth)) : vectorDelta);
}
if (j < rows)
{
if(PanelMode) rir += (offset*(rows - j - vectorSize));
rii = rir + (((PanelMode) ? stride : depth) * (rows - j));
for(Index i = 0; i < depth; i++)
{
Index k = j;
for(; k < rows; k++)
{
blockAt[rir] = lhs(k, i).real();
if(Conjugate)
blockAt[rii] = -lhs(k, i).imag();
else
blockAt[rii] = lhs(k, i).imag();
rir += 1;
rii += 1;
}
}
}
}
};
// General template for rhs complex packing, float64 specialization.
template<typename Index, typename DataMapper, typename Packet, typename PacketC, int StorageOrder, bool Conjugate, bool PanelMode>
struct dhs_cpack<double, Index, DataMapper, Packet, PacketC, StorageOrder, Conjugate, PanelMode, false>
{
EIGEN_STRONG_INLINE void operator()(std::complex<double>* blockB, const DataMapper& rhs, Index depth, Index cols, Index stride, Index offset)
{
const Index vectorSize = quad_traits<double>::vectorsize;
const Index vectorDelta = 2*vectorSize * ((PanelMode) ? stride : depth);
Index rir = ((PanelMode) ? (2*vectorSize*offset) : 0), rii;
double* blockBt = reinterpret_cast<double *>(blockB);
Index j = 0;
for(; j + 2*vectorSize <= cols; j+=2*vectorSize)
{
Index i = 0;
rii = rir + vectorDelta;
for(; i < depth; i++)
{
PacketBlock<PacketC,4> cblock;
PacketBlock<Packet,2> blockr, blocki;
bload<DataMapper, PacketC, Index, 2, ColMajor, false, 4>(cblock, rhs, i, j);
blockr.packet[0] = vec_perm(cblock.packet[0].v, cblock.packet[1].v, p16uc_GETREAL64);
blockr.packet[1] = vec_perm(cblock.packet[2].v, cblock.packet[3].v, p16uc_GETREAL64);
blocki.packet[0] = vec_perm(cblock.packet[0].v, cblock.packet[1].v, p16uc_GETIMAG64);
blocki.packet[1] = vec_perm(cblock.packet[2].v, cblock.packet[3].v, p16uc_GETIMAG64);
if(Conjugate)
{
blocki.packet[0] = -blocki.packet[0];
blocki.packet[1] = -blocki.packet[1];
}
storeBlock<double, Packet, Index, 2>(blockBt + rir, blockr);
storeBlock<double, Packet, Index, 2>(blockBt + rii, blocki);
rir += 2*vectorSize;
rii += 2*vectorSize;
}
rir += ((PanelMode) ? (2*vectorSize*(2*stride - depth)) : vectorDelta);
}
if(PanelMode) rir -= (offset*(2*vectorSize - 1));
for(; j < cols; j++)
{
rii = rir + ((PanelMode) ? stride : depth);
for(Index i = 0; i < depth; i++)
{
blockBt[rir] = rhs(i, j).real();
if(Conjugate)
blockBt[rii] = -rhs(i, j).imag();
else
blockBt[rii] = rhs(i, j).imag();
rir += 1;
rii += 1;
}
rir += ((PanelMode) ? (2*stride - depth) : depth);
}
}
};
/**************
* GEMM utils *
**************/
// 512-bits rank1-update of acc. It can either positive or negative accumulate (useful for complex gemm).
template<typename Packet, bool NegativeAccumulate, int N>
EIGEN_ALWAYS_INLINE void pger_common(PacketBlock<Packet,N>* acc, const Packet& lhsV, const Packet* rhsV)
{
if(NegativeAccumulate)
{
for (int M = 0; M < N; M++) {
acc->packet[M] = vec_nmsub(lhsV, rhsV[M], acc->packet[M]);
}
} else {
for (int M = 0; M < N; M++) {
acc->packet[M] = vec_madd(lhsV, rhsV[M], acc->packet[M]);
}
}
}
template<int N, typename Scalar, typename Packet, bool NegativeAccumulate>
EIGEN_ALWAYS_INLINE void pger(PacketBlock<Packet,N>* acc, const Scalar* lhs, const Packet* rhsV)
{
Packet lhsV = pload<Packet>(lhs);
pger_common<Packet, NegativeAccumulate, N>(acc, lhsV, rhsV);
}
// 512-bits rank1-update of complex acc. It takes decoupled accumulators as entries. It also takes cares of mixed types real * complex and complex * real.
template<int N, typename Packet, bool ConjugateLhs, bool ConjugateRhs, bool LhsIsReal, bool RhsIsReal>
EIGEN_ALWAYS_INLINE void pgerc_common(PacketBlock<Packet,N>* accReal, PacketBlock<Packet,N>* accImag, const Packet &lhsV, Packet &lhsVi, const Packet* rhsV, const Packet* rhsVi)
{
pger_common<Packet, false, N>(accReal, lhsV, rhsV);
if(LhsIsReal)
{
pger_common<Packet, ConjugateRhs, N>(accImag, lhsV, rhsVi);
EIGEN_UNUSED_VARIABLE(lhsVi);
} else {
if (!RhsIsReal) {
pger_common<Packet, ConjugateLhs == ConjugateRhs, N>(accReal, lhsVi, rhsVi);
pger_common<Packet, ConjugateRhs, N>(accImag, lhsV, rhsVi);
} else {
EIGEN_UNUSED_VARIABLE(rhsVi);
}
pger_common<Packet, ConjugateLhs, N>(accImag, lhsVi, rhsV);
}
}
template<int N, typename Scalar, typename Packet, bool ConjugateLhs, bool ConjugateRhs, bool LhsIsReal, bool RhsIsReal>
EIGEN_ALWAYS_INLINE void pgerc(PacketBlock<Packet,N>* accReal, PacketBlock<Packet,N>* accImag, const Scalar* lhs_ptr, const Scalar* lhs_ptr_imag, const Packet* rhsV, const Packet* rhsVi)
{
Packet lhsV = ploadLhs<Packet>(lhs_ptr);
Packet lhsVi;
if(!LhsIsReal) lhsVi = ploadLhs<Packet>(lhs_ptr_imag);
else EIGEN_UNUSED_VARIABLE(lhs_ptr_imag);
pgerc_common<N, Packet, ConjugateLhs, ConjugateRhs, LhsIsReal, RhsIsReal>(accReal, accImag, lhsV, lhsVi, rhsV, rhsVi);
}
template<typename Packet>
EIGEN_ALWAYS_INLINE Packet ploadLhs(const __UNPACK_TYPE__(Packet)* lhs)
{
return ploadu<Packet>(lhs);
}
// Zero the accumulator on PacketBlock.
template<typename Packet, int N>
EIGEN_ALWAYS_INLINE void bsetzero(PacketBlock<Packet,N>& acc)
{
for (int M = 0; M < N; M++) {
acc.packet[M] = pset1<Packet>((__UNPACK_TYPE__(Packet))0);
}
}
template<typename Packet, int N>
EIGEN_ALWAYS_INLINE void bscalec_common(PacketBlock<Packet,N>& acc, PacketBlock<Packet,N>& accZ, const Packet& pAlpha)
{
for (int M = 0; M < N; M++) {
acc.packet[M] = vec_mul(accZ.packet[M], pAlpha);
}
}
template<typename Packet, int N>
EIGEN_ALWAYS_INLINE void band(PacketBlock<Packet,N>& acc, const Packet& pMask)
{
for (int M = 0; M < N; M++) {
acc.packet[M] = pand<Packet>(acc.packet[M], pMask);
}
}
// Complex version of PacketBlock scaling.
template<typename Packet, int N, bool mask>
EIGEN_ALWAYS_INLINE void bscalec(PacketBlock<Packet,N>& aReal, PacketBlock<Packet,N>& aImag, const Packet& bReal, const Packet& bImag, PacketBlock<Packet,N>& cReal, PacketBlock<Packet,N>& cImag, const Packet& pMask)
{
if (mask && (sizeof(__UNPACK_TYPE__(Packet)) == sizeof(float))) {
band<Packet, N>(aReal, pMask);
band<Packet, N>(aImag, pMask);
} else {
EIGEN_UNUSED_VARIABLE(pMask);
}
bscalec_common<Packet, N>(cReal, aReal, bReal);
bscalec_common<Packet, N>(cImag, aImag, bReal);
pger_common<Packet, true, N>(&cReal, bImag, aImag.packet);
pger_common<Packet, false, N>(&cImag, bImag, aReal.packet);
}
// Load a PacketBlock, the N parameters make tunning gemm easier so we can add more accumulators as needed.
//
// full = operate (load) on the entire PacketBlock or only half
template<typename DataMapper, typename Packet, typename Index, const Index accCols, int StorageOrder, bool Complex, int N, bool full>
EIGEN_ALWAYS_INLINE void bload(PacketBlock<Packet,N*(Complex?2:1)>& acc, const DataMapper& res, Index row, Index col)
{
if (StorageOrder == RowMajor) {
for (int M = 0; M < N; M++) {
acc.packet[M] = res.template loadPacket<Packet>(row + M, col);
}
if (Complex) {
for (int M = 0; M < N; M++) {
acc.packet[M+N] = res.template loadPacket<Packet>(row + M, col + accCols);
}
}
} else {
for (int M = 0; M < N; M++) {
acc.packet[M] = res.template loadPacket<Packet>(row, col + M);
}
if (Complex && full) {
for (int M = 0; M < N; M++) {
acc.packet[M+N] = res.template loadPacket<Packet>(row + accCols, col + M);
}
}
}
}
template<typename DataMapper, typename Packet, typename Index, int N>
EIGEN_ALWAYS_INLINE void bstore(PacketBlock<Packet,N>& acc, const DataMapper& res, Index row)
{
for (int M = 0; M < N; M++) {
res.template storePacket<Packet>(row, M, acc.packet[M]);
}
}
#ifdef _ARCH_PWR10
#define USE_P10_AND_PVIPR2_0 (EIGEN_COMP_LLVM || (__GNUC__ >= 11))
#else
#define USE_P10_AND_PVIPR2_0 0
#endif
#if !USE_P10_AND_PVIPR2_0
const static Packet4i mask4[4] = { { 0, 0, 0, 0 }, { -1, 0, 0, 0 }, { -1, -1, 0, 0 }, { -1, -1, -1, 0 } };
#endif
template<typename Packet, typename Index>
EIGEN_ALWAYS_INLINE Packet bmask(const Index remaining_rows)
{
#if USE_P10_AND_PVIPR2_0
#ifdef _BIG_ENDIAN
return Packet(vec_reve(vec_genwm((1 << remaining_rows) - 1)));
#else
return Packet(vec_genwm((1 << remaining_rows) - 1));
#endif
#else
return Packet(mask4[remaining_rows]);
#endif
}
template<>
EIGEN_ALWAYS_INLINE Packet2d bmask<Packet2d,Index>(const Index remaining_rows)
{
#if USE_P10_AND_PVIPR2_0
Packet2d mask2 = Packet2d(vec_gendm(remaining_rows));
#ifdef _BIG_ENDIAN
return preverse(mask2);
#else
return mask2;
#endif
#else
Packet2l ret = { -remaining_rows, 0 };
return Packet2d(ret);
#endif
}
// Scale the PacketBlock vectors by alpha.
template<typename Packet, int N, bool mask>
EIGEN_ALWAYS_INLINE void bscale(PacketBlock<Packet,N>& acc, PacketBlock<Packet,N>& accZ, const Packet& pAlpha, const Packet& pMask)
{
if (mask) {
band<Packet, N>(accZ, pMask);
} else {
EIGEN_UNUSED_VARIABLE(pMask);
}
for (int M = 0; M < N; M++) {
acc.packet[M] = pmadd<Packet>(pAlpha, accZ.packet[M], acc.packet[M]);
}
}
template<typename Packet, int N, bool real>
EIGEN_ALWAYS_INLINE void pbroadcastN(const __UNPACK_TYPE__(Packet) *ap0,
const __UNPACK_TYPE__(Packet) *ap1, const __UNPACK_TYPE__(Packet) *ap2,
Packet& a0, Packet& a1, Packet& a2, Packet& a3)
{
a0 = pset1<Packet>(ap0[0]);
if (N == 4) {
a1 = pset1<Packet>(ap0[1]);
a2 = pset1<Packet>(ap0[2]);
a3 = pset1<Packet>(ap0[3]);
EIGEN_UNUSED_VARIABLE(ap1);
EIGEN_UNUSED_VARIABLE(ap2);
} else {
if (N > 1) {
a1 = pset1<Packet>(ap1[0]);
} else {
EIGEN_UNUSED_VARIABLE(a1);
EIGEN_UNUSED_VARIABLE(ap1);
}
if (N > 2) {
a2 = pset1<Packet>(ap2[0]);
} else {
EIGEN_UNUSED_VARIABLE(a2);
EIGEN_UNUSED_VARIABLE(ap2);
}
}
}
template<> EIGEN_ALWAYS_INLINE void
pbroadcastN<Packet4f,4,true>(const float *ap0, const float *, const float *,
Packet4f& a0, Packet4f& a1, Packet4f& a2, Packet4f& a3)
{
pbroadcast4<Packet4f>(ap0, a0, a1, a2, a3);
}
template<> EIGEN_ALWAYS_INLINE void
pbroadcastN<Packet4f,4,false>(const float *ap0, const float *ap1, const float *ap2,
Packet4f& a0, Packet4f& a1, Packet4f& a2, Packet4f& a3)
{
pbroadcastN<Packet4f,4,true>(ap0, ap1, ap2, a0, a1, a2, a3);
}
template<>
EIGEN_ALWAYS_INLINE void pbroadcastN<Packet2d,4,false>(const double* ap0, const double *,
const double *, Packet2d& a0, Packet2d& a1, Packet2d& a2, Packet2d& a3)
{
a1 = pload<Packet2d>(ap0);
a3 = pload<Packet2d>(ap0 + 2);
a0 = vec_splat(a1, 0);
a1 = vec_splat(a1, 1);
a2 = vec_splat(a3, 0);
a3 = vec_splat(a3, 1);
}
// Grab two decouples real/imaginary PacketBlocks and return two coupled (real/imaginary pairs) PacketBlocks.
template<typename Packet, typename Packetc, int N, bool full>
EIGEN_ALWAYS_INLINE void bcouple_common(PacketBlock<Packet,N>& taccReal, PacketBlock<Packet,N>& taccImag, PacketBlock<Packetc, N>& acc1, PacketBlock<Packetc, N>& acc2)
{
for (int M = 0; M < N; M++) {
acc1.packet[M].v = vec_mergeh(taccReal.packet[M], taccImag.packet[M]);
}
if (full) {
for (int M = 0; M < N; M++) {
acc2.packet[M].v = vec_mergel(taccReal.packet[M], taccImag.packet[M]);
}
}
}
template<typename Packet, typename Packetc, int N, bool full>
EIGEN_ALWAYS_INLINE void bcouple(PacketBlock<Packet,N>& taccReal, PacketBlock<Packet,N>& taccImag, PacketBlock<Packetc,N*2>& tRes, PacketBlock<Packetc, N>& acc1, PacketBlock<Packetc, N>& acc2)
{
bcouple_common<Packet, Packetc, N, full>(taccReal, taccImag, acc1, acc2);
for (int M = 0; M < N; M++) {
acc1.packet[M] = padd<Packetc>(tRes.packet[M], acc1.packet[M]);
}
if (full) {
for (int M = 0; M < N; M++) {
acc2.packet[M] = padd<Packetc>(tRes.packet[M+N], acc2.packet[M]);
}
}
}
// PEEL loop factor.
#define PEEL 7
#define PEEL_ROW 7
#define MICRO_UNROLL(func) \
func(0) func(1) func(2) func(3) func(4) func(5) func(6) func(7)
#define MICRO_NORMAL_ROWS \
accRows == quad_traits<Scalar>::rows || accRows == 1
#define MICRO_NEW_ROWS ((MICRO_NORMAL_ROWS) ? accRows : 1)
#define MICRO_RHS(ptr, N) rhs_##ptr##N
#define MICRO_ZERO_PEEL(peel) \
if ((PEEL_ROW > peel) && (peel != 0)) { \
bsetzero<Packet, accRows>(accZero##peel); \
} else { \
EIGEN_UNUSED_VARIABLE(accZero##peel); \
}
#define MICRO_ADD(ptr, N) \
if (MICRO_NORMAL_ROWS) { \
MICRO_RHS(ptr,0) += (accRows * N); \
} else { \
MICRO_RHS(ptr,0) += N; \
MICRO_RHS(ptr,1) += N; \
if (accRows == 3) { \
MICRO_RHS(ptr,2) += N; \
} \
}
#define MICRO_ADD_ROWS(N) MICRO_ADD(ptr, N)
#define MICRO_BROADCAST1(peel, ptr, rhsV, real) \
if (MICRO_NORMAL_ROWS) { \
pbroadcastN<Packet,accRows,real>(MICRO_RHS(ptr,0) + (accRows * peel), MICRO_RHS(ptr,0), MICRO_RHS(ptr,0), rhsV##peel[0], rhsV##peel[1], rhsV##peel[2], rhsV##peel[3]); \
} else { \
pbroadcastN<Packet,accRows,real>(MICRO_RHS(ptr,0) + peel, MICRO_RHS(ptr,1) + peel, MICRO_RHS(ptr,2) + peel, rhsV##peel[0], rhsV##peel[1], rhsV##peel[2], rhsV##peel[3]); \
}
#define MICRO_BROADCAST(peel) MICRO_BROADCAST1(peel, ptr, rhsV, true)
#define MICRO_BROADCAST_EXTRA1(ptr, rhsV, real) \
pbroadcastN<Packet,accRows,real>(MICRO_RHS(ptr,0), MICRO_RHS(ptr,1), MICRO_RHS(ptr,2), rhsV[0], rhsV[1], rhsV[2], rhsV[3]);
#define MICRO_BROADCAST_EXTRA \
Packet rhsV[4]; \
MICRO_BROADCAST_EXTRA1(ptr, rhsV, true) \
MICRO_ADD_ROWS(1)
#define MICRO_SRC2(ptr, N, M) \
if (MICRO_NORMAL_ROWS) { \
EIGEN_UNUSED_VARIABLE(strideB); \
EIGEN_UNUSED_VARIABLE(MICRO_RHS(ptr,1)); \
EIGEN_UNUSED_VARIABLE(MICRO_RHS(ptr,2)); \
} else { \
MICRO_RHS(ptr,1) = rhs_base + N + M; \
if (accRows == 3) { \
MICRO_RHS(ptr,2) = rhs_base + N*2 + M; \
} else { \
EIGEN_UNUSED_VARIABLE(MICRO_RHS(ptr,2)); \
} \
}
#define MICRO_SRC2_PTR MICRO_SRC2(ptr, strideB, 0)
#define MICRO_ZERO_PEEL_ROW MICRO_UNROLL(MICRO_ZERO_PEEL)
#define MICRO_WORK_PEEL(peel) \
if (PEEL_ROW > peel) { \
MICRO_BROADCAST(peel) \
pger<accRows, Scalar, Packet, false>(&accZero##peel, lhs_ptr + (remaining_rows * peel), rhsV##peel); \
} else { \
EIGEN_UNUSED_VARIABLE(rhsV##peel); \
}
#define MICRO_WORK_PEEL_ROW \
Packet rhsV0[4], rhsV1[4], rhsV2[4], rhsV3[4], rhsV4[4], rhsV5[4], rhsV6[4], rhsV7[4]; \
MICRO_UNROLL(MICRO_WORK_PEEL) \
lhs_ptr += (remaining_rows * PEEL_ROW); \
MICRO_ADD_ROWS(PEEL_ROW)
#define MICRO_ADD_PEEL(peel, sum) \
if (PEEL_ROW > peel) { \
for (Index i = 0; i < accRows; i++) { \
accZero##sum.packet[i] += accZero##peel.packet[i]; \
} \
}
#define MICRO_ADD_PEEL_ROW \
MICRO_ADD_PEEL(4, 0) MICRO_ADD_PEEL(5, 1) MICRO_ADD_PEEL(6, 2) MICRO_ADD_PEEL(7, 3) \
MICRO_ADD_PEEL(2, 0) MICRO_ADD_PEEL(3, 1) MICRO_ADD_PEEL(1, 0)
#define MICRO_PREFETCHN1(ptr, N) \
EIGEN_POWER_PREFETCH(MICRO_RHS(ptr,0)); \
if (N == 2 || N == 3) { \
EIGEN_POWER_PREFETCH(MICRO_RHS(ptr,1)); \
if (N == 3) { \
EIGEN_POWER_PREFETCH(MICRO_RHS(ptr,2)); \
} \
}
#define MICRO_PREFETCHN(N) MICRO_PREFETCHN1(ptr, N)
#define MICRO_COMPLEX_PREFETCHN(N) \
MICRO_PREFETCHN1(ptr_real, N); \
if(!RhsIsReal) { \
MICRO_PREFETCHN1(ptr_imag, N); \
}
template<typename Scalar, typename Packet, typename Index, const Index accRows, const Index remaining_rows>
EIGEN_ALWAYS_INLINE void MICRO_EXTRA_ROW(
const Scalar* &lhs_ptr,
const Scalar* &rhs_ptr0,
const Scalar* &rhs_ptr1,
const Scalar* &rhs_ptr2,
PacketBlock<Packet,accRows> &accZero)
{
MICRO_BROADCAST_EXTRA
pger<accRows, Scalar, Packet, false>(&accZero, lhs_ptr, rhsV);
lhs_ptr += remaining_rows;
}
template<typename Scalar, typename Packet, typename DataMapper, typename Index, const Index accRows, const Index accCols, const Index remaining_rows>
EIGEN_ALWAYS_INLINE void gemm_unrolled_row_iteration(
const DataMapper& res,
const Scalar* lhs_base,
const Scalar* rhs_base,
Index depth,
Index strideA,
Index offsetA,
Index strideB,
Index row,
Index rows,
const Packet& pAlpha,
const Packet& pMask)
{
const Scalar* rhs_ptr0 = rhs_base, * rhs_ptr1 = NULL, * rhs_ptr2 = NULL;
const Scalar* lhs_ptr = lhs_base + row*strideA + remaining_rows*offsetA;
PacketBlock<Packet,accRows> accZero0, accZero1, accZero2, accZero3, accZero4, accZero5, accZero6, accZero7, acc;
MICRO_SRC2_PTR
bsetzero<Packet, accRows>(accZero0);
Index remaining_depth = depth & -quad_traits<Scalar>::rows;
Index k = 0;
if (remaining_depth >= PEEL_ROW) {
MICRO_ZERO_PEEL_ROW
do
{
MICRO_PREFETCHN(accRows)
EIGEN_POWER_PREFETCH(lhs_ptr);
MICRO_WORK_PEEL_ROW
} while ((k += PEEL_ROW) + PEEL_ROW <= remaining_depth);
MICRO_ADD_PEEL_ROW
}
for(; k < depth; k++)
{
MICRO_EXTRA_ROW<Scalar, Packet, Index, accRows, remaining_rows>(lhs_ptr, rhs_ptr0, rhs_ptr1, rhs_ptr2, accZero0);
}
bload<DataMapper, Packet, Index, 0, ColMajor, false, accRows>(acc, res, row, 0);
if ((accRows == 1) || (rows >= accCols))
{
bscale<Packet,accRows,true>(acc, accZero0, pAlpha, pMask);
bstore<DataMapper, Packet, Index, accRows>(acc, res, row);
} else {
bscale<Packet,accRows,false>(acc, accZero0, pAlpha, pMask);
for(Index j = 0; j < accRows; j++) {
for(Index i = 0; i < remaining_rows; i++) {
res(row + i, j) = acc.packet[j][i];
}
}
}
}
#define MICRO_EXTRA(MICRO_EXTRA_UNROLL, value, is_col) \
switch(value) { \
default: \
MICRO_EXTRA_UNROLL(1) \
break; \
case 2: \
if (is_col || (sizeof(Scalar) == sizeof(float))) { \
MICRO_EXTRA_UNROLL(2) \
} \
break; \
case 3: \
if (is_col || (sizeof(Scalar) == sizeof(float))) { \
MICRO_EXTRA_UNROLL(3) \
} \
break; \
}
#define MICRO_EXTRA_ROWS(N) \
gemm_unrolled_row_iteration<Scalar, Packet, DataMapper, Index, accRows, accCols, N>(res, lhs_base, rhs_base, depth, strideA, offsetA, strideB, row, rows, pAlpha, pMask);
template<typename Scalar, typename Packet, typename DataMapper, typename Index, const Index accRows, const Index accCols>
EIGEN_ALWAYS_INLINE void gemm_extra_row(
const DataMapper& res,
const Scalar* lhs_base,
const Scalar* rhs_base,
Index depth,
Index strideA,
Index offsetA,
Index strideB,
Index row,
Index rows,
Index remaining_rows,
const Packet& pAlpha,
const Packet& pMask)
{
MICRO_EXTRA(MICRO_EXTRA_ROWS, remaining_rows, false)
}
#define MICRO_UNROLL_WORK(func, func2, peel) \
MICRO_UNROLL(func2); \
func(0,peel) func(1,peel) func(2,peel) func(3,peel) \
func(4,peel) func(5,peel) func(6,peel) func(7,peel)
#define MICRO_WORK_ONE(iter, peel) \
if (unroll_factor > iter) { \
pger_common<Packet, false, accRows>(&accZero##iter, lhsV##iter, rhsV##peel); \
}
#define MICRO_TYPE_PEEL4(func, func2, peel) \
if (PEEL > peel) { \
Packet lhsV0, lhsV1, lhsV2, lhsV3, lhsV4, lhsV5, lhsV6, lhsV7; \
MICRO_BROADCAST(peel) \
MICRO_UNROLL_WORK(func, func2, peel) \
} else { \
EIGEN_UNUSED_VARIABLE(rhsV##peel); \
}
#define MICRO_UNROLL_TYPE_PEEL(M, func, func1, func2) \
Packet rhsV0[M], rhsV1[M], rhsV2[M], rhsV3[M], rhsV4[M], rhsV5[M], rhsV6[M], rhsV7[M]; \
func(func1,func2,0) func(func1,func2,1) \
func(func1,func2,2) func(func1,func2,3) \
func(func1,func2,4) func(func1,func2,5) \
func(func1,func2,6) func(func1,func2,7)
#define MICRO_UNROLL_TYPE_ONE(M, func, func1, func2) \
Packet rhsV0[M]; \
func(func1,func2,0)
#define MICRO_UNROLL_TYPE(MICRO_TYPE, size) \
MICRO_TYPE(4, MICRO_TYPE_PEEL4, MICRO_WORK_ONE, MICRO_LOAD_ONE) \
MICRO_ADD_ROWS(size)
#define MICRO_ONE_PEEL4 MICRO_UNROLL_TYPE(MICRO_UNROLL_TYPE_PEEL, PEEL)
#define MICRO_ONE4 MICRO_UNROLL_TYPE(MICRO_UNROLL_TYPE_ONE, 1)
#define MICRO_DST_PTR_ONE(iter) \
if (unroll_factor > iter) { \
bsetzero<Packet, accRows>(accZero##iter); \
} else { \
EIGEN_UNUSED_VARIABLE(accZero##iter); \
}
#define MICRO_DST_PTR MICRO_UNROLL(MICRO_DST_PTR_ONE)
#define MICRO_SRC_PTR MICRO_UNROLL(MICRO_SRC_PTR_ONE)
#define MICRO_PREFETCH MICRO_UNROLL(MICRO_PREFETCH_ONE)
#define MICRO_STORE_ONE(iter) \
if (unroll_factor > iter) { \
bload<DataMapper, Packet, Index, 0, ColMajor, false, accRows>(acc, res, row + iter*accCols, 0); \
bscale<Packet,accRows,!(MICRO_NORMAL(iter))>(acc, accZero##iter, pAlpha, pMask); \
bstore<DataMapper, Packet, Index, accRows>(acc, res, row + iter*accCols); \
}
#define MICRO_STORE MICRO_UNROLL(MICRO_STORE_ONE)
template<int unroll_factor, typename Scalar, typename Packet, typename DataMapper, typename Index, const Index accRows, const Index accCols, const Index accCols2>
EIGEN_ALWAYS_INLINE void gemm_unrolled_iteration(
const DataMapper& res,
const Scalar* lhs_base,
const Scalar* rhs_base,
Index depth,
Index strideA,
Index offsetA,
Index strideB,
Index& row,
const Packet& pAlpha,
const Packet& pMask)
{
const Scalar* rhs_ptr0 = rhs_base, * rhs_ptr1 = NULL, * rhs_ptr2 = NULL;
const Scalar* lhs_ptr0 = NULL, * lhs_ptr1 = NULL, * lhs_ptr2 = NULL, * lhs_ptr3 = NULL, * lhs_ptr4 = NULL, * lhs_ptr5 = NULL, * lhs_ptr6 = NULL, * lhs_ptr7 = NULL;
PacketBlock<Packet,accRows> accZero0, accZero1, accZero2, accZero3, accZero4, accZero5, accZero6, accZero7;
PacketBlock<Packet,accRows> acc;
MICRO_SRC2_PTR
MICRO_SRC_PTR
MICRO_DST_PTR
Index k = 0;
for(; k + PEEL <= depth; k+= PEEL)
{
MICRO_PREFETCHN(accRows)
MICRO_PREFETCH
MICRO_ONE_PEEL4
}
for(; k < depth; k++)
{
MICRO_ONE4
}
MICRO_STORE
MICRO_UPDATE
}
#define MICRO_UNROLL_ITER2(N, M) \
gemm_unrolled_iteration<N + ((M) ? 1 : 0), Scalar, Packet, DataMapper, Index, accRows, accCols, M ? M : accCols>(res3, lhs_base, rhs_base, depth, strideA, offsetA, strideB, row, pAlpha, pMask); \
if (M) return;
template<typename Scalar, typename Packet, typename DataMapper, typename Index, const Index accRows, const Index accCols>
EIGEN_ALWAYS_INLINE void gemm_cols(
const DataMapper& res,
const Scalar* blockA,
const Scalar* blockB,
Index depth,
Index strideA,
Index offsetA,
Index strideB,
Index offsetB,
Index col,
Index rows,
Index remaining_rows,
const Packet& pAlpha,
const Packet& pMask)
{
const DataMapper res3 = res.getSubMapper(0, col);
const Scalar* rhs_base = blockB + col*strideB + MICRO_NEW_ROWS*offsetB;
const Scalar* lhs_base = blockA + accCols*offsetA;
Index row = 0;
#define MAX_UNROLL 7
while(row + MAX_UNROLL*accCols <= rows) {
MICRO_UNROLL_ITER2(MAX_UNROLL, 0);
}
switch( (rows-row)/accCols ) {
#if MAX_UNROLL > 7
case 7:
MICRO_UNROLL_ITER(MICRO_UNROLL_ITER2, 7)
break;
#endif
#if MAX_UNROLL > 6
case 6:
MICRO_UNROLL_ITER(MICRO_UNROLL_ITER2, 6)
break;
#endif
#if MAX_UNROLL > 5
case 5:
MICRO_UNROLL_ITER(MICRO_UNROLL_ITER2, 5)
break;
#endif
#if MAX_UNROLL > 4
case 4:
MICRO_UNROLL_ITER(MICRO_UNROLL_ITER2, 4)
break;
#endif
#if MAX_UNROLL > 3
case 3:
MICRO_UNROLL_ITER(MICRO_UNROLL_ITER2, 3)
break;
#endif
#if MAX_UNROLL > 2
case 2:
MICRO_UNROLL_ITER(MICRO_UNROLL_ITER2, 2)
break;
#endif
#if MAX_UNROLL > 1
case 1:
MICRO_UNROLL_ITER(MICRO_UNROLL_ITER2, 1)
break;
#endif
default:
break;
}
#undef MAX_UNROLL
if(remaining_rows > 0)
{
gemm_extra_row<Scalar, Packet, DataMapper, Index, accRows, accCols>(res3, blockA, rhs_base, depth, strideA, offsetA, strideB, row, rows, remaining_rows, pAlpha, pMask);
}
}
#define MICRO_EXTRA_COLS(N) \
gemm_cols<Scalar, Packet, DataMapper, Index, N, accCols>(res, blockA, blockB, depth, strideA, offsetA, strideB, offsetB, col, rows, remaining_rows, pAlpha, pMask);
template<typename Scalar, typename Packet, typename DataMapper, typename Index, const Index accCols>
EIGEN_STRONG_INLINE void gemm_extra_cols(
const DataMapper& res,
const Scalar* blockA,
const Scalar* blockB,
Index depth,
Index strideA,
Index offsetA,
Index strideB,
Index offsetB,
Index col,
Index rows,
Index cols,
Index remaining_rows,
const Packet& pAlpha,
const Packet& pMask)
{
MICRO_EXTRA(MICRO_EXTRA_COLS, cols-col, true)
}
/****************
* GEMM kernels *
* **************/
template<typename Scalar, typename Index, typename Packet, typename RhsPacket, typename DataMapper, const Index accRows, const Index accCols>
EIGEN_STRONG_INLINE void gemm(const DataMapper& res, const Scalar* blockA, const Scalar* blockB, Index rows, Index depth, Index cols, Scalar alpha, Index strideA, Index strideB, Index offsetA, Index offsetB)
{
const Index remaining_rows = rows % accCols;
if( strideA == -1 ) strideA = depth;
if( strideB == -1 ) strideB = depth;
const Packet pAlpha = pset1<Packet>(alpha);
const Packet pMask = bmask<Packet>(remaining_rows);
Index col = 0;
for(; col + accRows <= cols; col += accRows)
{
gemm_cols<Scalar, Packet, DataMapper, Index, accRows, accCols>(res, blockA, blockB, depth, strideA, offsetA, strideB, offsetB, col, rows, remaining_rows, pAlpha, pMask);
}
if (col != cols)
{
gemm_extra_cols<Scalar, Packet, DataMapper, Index, accCols>(res, blockA, blockB, depth, strideA, offsetA, strideB, offsetB, col, rows, cols, remaining_rows, pAlpha, pMask);
}
}
#define accColsC (accCols / 2)
#define advanceRows ((LhsIsReal) ? 1 : 2)
#define advanceCols ((RhsIsReal) ? 1 : 2)
// PEEL_COMPLEX loop factor.
#define PEEL_COMPLEX 3
#define PEEL_COMPLEX_ROW 3
#define MICRO_COMPLEX_UNROLL(func) \
func(0) func(1) func(2) func(3)
#define MICRO_COMPLEX_ZERO_PEEL(peel) \
if ((PEEL_COMPLEX_ROW > peel) && (peel != 0)) { \
bsetzero<Packet, accRows>(accReal##peel); \
bsetzero<Packet, accRows>(accImag##peel); \
} else { \
EIGEN_UNUSED_VARIABLE(accReal##peel); \
EIGEN_UNUSED_VARIABLE(accImag##peel); \
}
#define MICRO_COMPLEX_ADD_ROWS(N, used) \
MICRO_ADD(ptr_real, N) \
if (!RhsIsReal) { \
MICRO_ADD(ptr_imag, N) \
} else if (used) { \
EIGEN_UNUSED_VARIABLE(MICRO_RHS(ptr_imag,0)); \
EIGEN_UNUSED_VARIABLE(MICRO_RHS(ptr_imag,1)); \
EIGEN_UNUSED_VARIABLE(MICRO_RHS(ptr_imag,2)); \
}
#define MICRO_COMPLEX_BROADCAST(peel) \
MICRO_BROADCAST1(peel, ptr_real, rhsV, false) \
if (!RhsIsReal) { \
MICRO_BROADCAST1(peel, ptr_imag, rhsVi, false) \
} else { \
EIGEN_UNUSED_VARIABLE(rhsVi##peel); \
}
#define MICRO_COMPLEX_BROADCAST_EXTRA \
Packet rhsV[4], rhsVi[4]; \
MICRO_BROADCAST_EXTRA1(ptr_real, rhsV, false) \
if(!RhsIsReal) { \
MICRO_BROADCAST_EXTRA1(ptr_imag, rhsVi, false) \
} else { \
EIGEN_UNUSED_VARIABLE(rhsVi); \
} \
MICRO_COMPLEX_ADD_ROWS(1, true)
#define MICRO_COMPLEX_SRC2_PTR \
MICRO_SRC2(ptr_real, strideB*advanceCols, 0) \
if (!RhsIsReal) { \
MICRO_RHS(ptr_imag,0) = rhs_base + MICRO_NEW_ROWS*strideB; \
MICRO_SRC2(ptr_imag, strideB*advanceCols, strideB) \
} else { \
EIGEN_UNUSED_VARIABLE(MICRO_RHS(ptr_imag,0)); \
EIGEN_UNUSED_VARIABLE(MICRO_RHS(ptr_imag,1)); \
EIGEN_UNUSED_VARIABLE(MICRO_RHS(ptr_imag,2)); \
}
#define MICRO_COMPLEX_ZERO_PEEL_ROW MICRO_COMPLEX_UNROLL(MICRO_COMPLEX_ZERO_PEEL)
#define MICRO_COMPLEX_WORK_PEEL(peel) \
if (PEEL_COMPLEX_ROW > peel) { \
MICRO_COMPLEX_BROADCAST(peel) \
pgerc<accRows, Scalar, Packet, ConjugateLhs, ConjugateRhs, LhsIsReal, RhsIsReal>(&accReal##peel, &accImag##peel, lhs_ptr_real + (remaining_rows * peel), lhs_ptr_imag + (remaining_rows * peel), rhsV##peel, rhsVi##peel); \
} else { \
EIGEN_UNUSED_VARIABLE(rhsV##peel); \
EIGEN_UNUSED_VARIABLE(rhsVi##peel); \
}
#define MICRO_COMPLEX_ADD_COLS(size) \
lhs_ptr_real += (remaining_rows * size); \
if(!LhsIsReal) lhs_ptr_imag += (remaining_rows * size); \
else EIGEN_UNUSED_VARIABLE(lhs_ptr_imag);
#define MICRO_COMPLEX_WORK_PEEL_ROW \
Packet rhsV0[4], rhsV1[4], rhsV2[4], rhsV3[4]; \
Packet rhsVi0[4], rhsVi1[4], rhsVi2[4], rhsVi3[4]; \
MICRO_COMPLEX_UNROLL(MICRO_COMPLEX_WORK_PEEL) \
MICRO_COMPLEX_ADD_COLS(PEEL_COMPLEX_ROW) \
MICRO_COMPLEX_ADD_ROWS(PEEL_COMPLEX_ROW, false)
#define MICRO_COMPLEX_ADD_PEEL(peel, sum) \
if (PEEL_COMPLEX_ROW > peel) { \
for (Index i = 0; i < accRows; i++) { \
accReal##sum.packet[i] += accReal##peel.packet[i]; \
accImag##sum.packet[i] += accImag##peel.packet[i]; \
} \
}
#define MICRO_COMPLEX_ADD_PEEL_ROW \
MICRO_COMPLEX_ADD_PEEL(2, 0) MICRO_COMPLEX_ADD_PEEL(3, 1) \
MICRO_COMPLEX_ADD_PEEL(1, 0)
template<typename Scalar, typename Packet, typename Index, const Index accRows, bool ConjugateLhs, bool ConjugateRhs, bool LhsIsReal, bool RhsIsReal, const Index remaining_rows>
EIGEN_ALWAYS_INLINE void MICRO_COMPLEX_EXTRA_ROW(
const Scalar* &lhs_ptr_real, const Scalar* &lhs_ptr_imag,
const Scalar* &rhs_ptr_real0, const Scalar* &rhs_ptr_real1, const Scalar* &rhs_ptr_real2,
const Scalar* &rhs_ptr_imag0, const Scalar* &rhs_ptr_imag1, const Scalar* &rhs_ptr_imag2,
PacketBlock<Packet,accRows> &accReal, PacketBlock<Packet,accRows> &accImag)
{
MICRO_COMPLEX_BROADCAST_EXTRA
pgerc<accRows, Scalar, Packet, ConjugateLhs, ConjugateRhs, LhsIsReal, RhsIsReal>(&accReal, &accImag, lhs_ptr_real, lhs_ptr_imag, rhsV, rhsVi);
MICRO_COMPLEX_ADD_COLS(1)
}
template<typename Scalar, typename Packet, typename Packetc, typename DataMapper, typename Index, const Index accRows, const Index accCols, bool ConjugateLhs, bool ConjugateRhs, bool LhsIsReal, bool RhsIsReal, const Index remaining_rows>
EIGEN_ALWAYS_INLINE void gemm_unrolled_complex_row_iteration(
const DataMapper& res,
const Scalar* lhs_base,
const Scalar* rhs_base,
Index depth,
Index strideA,
Index offsetA,
Index strideB,
Index row,
Index rows,
const Packet& pAlphaReal,
const Packet& pAlphaImag,
const Packet& pMask)
{
const Scalar* rhs_ptr_real0 = rhs_base, * rhs_ptr_real1 = NULL, * rhs_ptr_real2 = NULL;
const Scalar* rhs_ptr_imag0 = NULL, * rhs_ptr_imag1 = NULL, * rhs_ptr_imag2 = NULL;
const Scalar* lhs_ptr_real = lhs_base + advanceRows*row*strideA + remaining_rows*offsetA;
const Scalar* lhs_ptr_imag = NULL;
if(!LhsIsReal) lhs_ptr_imag = lhs_ptr_real + remaining_rows*strideA;
else EIGEN_UNUSED_VARIABLE(lhs_ptr_imag);
PacketBlock<Packet,accRows> accReal0, accImag0, accReal1, accImag1, accReal2, accImag2, accReal3, accImag3;
PacketBlock<Packet,accRows> taccReal, taccImag;
PacketBlock<Packetc,accRows> acc0, acc1;
PacketBlock<Packetc,accRows*2> tRes;
MICRO_COMPLEX_SRC2_PTR
bsetzero<Packet, accRows>(accReal0);
bsetzero<Packet, accRows>(accImag0);
Index remaining_depth = depth & -quad_traits<Scalar>::rows;
Index k = 0;
if (remaining_depth >= PEEL_COMPLEX_ROW) {
MICRO_COMPLEX_ZERO_PEEL_ROW
do
{
MICRO_COMPLEX_PREFETCHN(accRows)
EIGEN_POWER_PREFETCH(lhs_ptr_real);
if(!LhsIsReal) {
EIGEN_POWER_PREFETCH(lhs_ptr_imag);
}
MICRO_COMPLEX_WORK_PEEL_ROW
} while ((k += PEEL_COMPLEX_ROW) + PEEL_COMPLEX_ROW <= remaining_depth);
MICRO_COMPLEX_ADD_PEEL_ROW
}
for(; k < depth; k++)
{
MICRO_COMPLEX_EXTRA_ROW<Scalar, Packet, Index, accRows, ConjugateLhs, ConjugateRhs, LhsIsReal, RhsIsReal, remaining_rows>(lhs_ptr_real, lhs_ptr_imag, rhs_ptr_real0, rhs_ptr_real1, rhs_ptr_real2, rhs_ptr_imag0, rhs_ptr_imag1, rhs_ptr_imag2, accReal0, accImag0);
}
const bool full = (remaining_rows > accColsC);
bload<DataMapper, Packetc, Index, accColsC, ColMajor, true, accRows, full>(tRes, res, row, 0);
if ((accRows == 1) || (rows >= accCols))
{
bscalec<Packet,accRows,true>(accReal0, accImag0, pAlphaReal, pAlphaImag, taccReal, taccImag, pMask);
bcouple<Packet, Packetc, accRows, full>(taccReal, taccImag, tRes, acc0, acc1);
bstore<DataMapper, Packetc, Index, accRows>(acc0, res, row + 0);
if (full) {
bstore<DataMapper, Packetc, Index, accRows>(acc1, res, row + accColsC);
}
} else {
bscalec<Packet,accRows,false>(accReal0, accImag0, pAlphaReal, pAlphaImag, taccReal, taccImag, pMask);
bcouple<Packet, Packetc, accRows, full>(taccReal, taccImag, tRes, acc0, acc1);
if ((sizeof(Scalar) == sizeof(float)) && (remaining_rows == 1))
{
for(Index j = 0; j < accRows; j++) {
res(row + 0, j) = pfirst<Packetc>(acc0.packet[j]);
}
} else {
bstore<DataMapper, Packetc, Index, accRows>(acc0, res, row + 0);
if (full) {
for(Index j = 0; j < accRows; j++) {
res(row + accColsC, j) = pfirst<Packetc>(acc1.packet[j]);
}
}
}
}
}
#define MICRO_COMPLEX_EXTRA_ROWS(N) \
gemm_unrolled_complex_row_iteration<Scalar, Packet, Packetc, DataMapper, Index, accRows, accCols, ConjugateLhs, ConjugateRhs, LhsIsReal, RhsIsReal, N>(res, lhs_base, rhs_base, depth, strideA, offsetA, strideB, row, rows, pAlphaReal, pAlphaImag, pMask);
template<typename Scalar, typename Packet, typename Packetc, typename DataMapper, typename Index, const Index accRows, const Index accCols, bool ConjugateLhs, bool ConjugateRhs, bool LhsIsReal, bool RhsIsReal>
EIGEN_ALWAYS_INLINE void gemm_complex_extra_row(
const DataMapper& res,
const Scalar* lhs_base,
const Scalar* rhs_base,
Index depth,
Index strideA,
Index offsetA,
Index strideB,
Index row,
Index rows,
Index remaining_rows,
const Packet& pAlphaReal,
const Packet& pAlphaImag,
const Packet& pMask)
{
MICRO_EXTRA(MICRO_COMPLEX_EXTRA_ROWS, remaining_rows, false)
}
#define MICRO_COMPLEX_UNROLL_WORK(func, func2, peel) \
MICRO_COMPLEX_UNROLL(func2); \
func(0,peel) func(1,peel) func(2,peel) func(3,peel)
#define MICRO_COMPLEX_WORK_ONE4(iter, peel) \
if (unroll_factor > iter) { \
pgerc_common<accRows, Packet, ConjugateLhs, ConjugateRhs, LhsIsReal, RhsIsReal>(&accReal##iter, &accImag##iter, lhsV##iter, lhsVi##iter, rhsV##peel, rhsVi##peel); \
}
#define MICRO_COMPLEX_TYPE_PEEL4(func, func2, peel) \
if (PEEL_COMPLEX > peel) { \
Packet lhsV0, lhsV1, lhsV2, lhsV3; \
Packet lhsVi0, lhsVi1, lhsVi2, lhsVi3; \
MICRO_COMPLEX_BROADCAST(peel) \
MICRO_COMPLEX_UNROLL_WORK(func, func2, peel) \
} else { \
EIGEN_UNUSED_VARIABLE(rhsV##peel); \
EIGEN_UNUSED_VARIABLE(rhsVi##peel); \
}
#define MICRO_COMPLEX_UNROLL_TYPE_PEEL(M, func, func1, func2) \
Packet rhsV0[M], rhsV1[M], rhsV2[M], rhsV3[M]; \
Packet rhsVi0[M], rhsVi1[M], rhsVi2[M], rhsVi3[M]; \
func(func1,func2,0) func(func1,func2,1) \
func(func1,func2,2) func(func1,func2,3)
#define MICRO_COMPLEX_UNROLL_TYPE_ONE(M, func, func1, func2) \
Packet rhsV0[M], rhsVi0[M];\
func(func1,func2,0)
#define MICRO_COMPLEX_UNROLL_TYPE(MICRO_COMPLEX_TYPE, size) \
MICRO_COMPLEX_TYPE(4, MICRO_COMPLEX_TYPE_PEEL4, MICRO_COMPLEX_WORK_ONE4, MICRO_COMPLEX_LOAD_ONE) \
MICRO_COMPLEX_ADD_ROWS(size, false)
#define MICRO_COMPLEX_ONE_PEEL4 MICRO_COMPLEX_UNROLL_TYPE(MICRO_COMPLEX_UNROLL_TYPE_PEEL, PEEL_COMPLEX)
#define MICRO_COMPLEX_ONE4 MICRO_COMPLEX_UNROLL_TYPE(MICRO_COMPLEX_UNROLL_TYPE_ONE, 1)
#define MICRO_COMPLEX_DST_PTR_ONE(iter) \
if (unroll_factor > iter) { \
bsetzero<Packet, accRows>(accReal##iter); \
bsetzero<Packet, accRows>(accImag##iter); \
} else { \
EIGEN_UNUSED_VARIABLE(accReal##iter); \
EIGEN_UNUSED_VARIABLE(accImag##iter); \
}
#define MICRO_COMPLEX_DST_PTR MICRO_COMPLEX_UNROLL(MICRO_COMPLEX_DST_PTR_ONE)
#define MICRO_COMPLEX_SRC_PTR MICRO_COMPLEX_UNROLL(MICRO_COMPLEX_SRC_PTR_ONE)
#define MICRO_COMPLEX_PREFETCH MICRO_COMPLEX_UNROLL(MICRO_COMPLEX_PREFETCH_ONE)
#define MICRO_COMPLEX_STORE_ONE(iter) \
if (unroll_factor > iter) { \
const bool full = ((MICRO_NORMAL(iter)) || (accCols2 > accColsC)); \
bload<DataMapper, Packetc, Index, accColsC, ColMajor, true, accRows, full>(tRes, res, row + iter*accCols, 0); \
bscalec<Packet,accRows,!(MICRO_NORMAL(iter))>(accReal##iter, accImag##iter, pAlphaReal, pAlphaImag, taccReal, taccImag, pMask); \
bcouple<Packet, Packetc, accRows, full>(taccReal, taccImag, tRes, acc0, acc1); \
bstore<DataMapper, Packetc, Index, accRows>(acc0, res, row + iter*accCols + 0); \
if (full) { \
bstore<DataMapper, Packetc, Index, accRows>(acc1, res, row + iter*accCols + accColsC); \
} \
}
#define MICRO_COMPLEX_STORE MICRO_COMPLEX_UNROLL(MICRO_COMPLEX_STORE_ONE)
template<int unroll_factor, typename Scalar, typename Packet, typename Packetc, typename DataMapper, typename Index, const Index accRows, const Index accCols, const Index accCols2, bool ConjugateLhs, bool ConjugateRhs, bool LhsIsReal, bool RhsIsReal>
EIGEN_ALWAYS_INLINE void gemm_complex_unrolled_iteration(
const DataMapper& res,
const Scalar* lhs_base,
const Scalar* rhs_base,
Index depth,
Index strideA,
Index offsetA,
Index strideB,
Index& row,
const Packet& pAlphaReal,
const Packet& pAlphaImag,
const Packet& pMask)
{
const Scalar* rhs_ptr_real0 = rhs_base, * rhs_ptr_real1 = NULL, * rhs_ptr_real2 = NULL;
const Scalar* rhs_ptr_imag0 = NULL, * rhs_ptr_imag1 = NULL, * rhs_ptr_imag2 = NULL;
const Index imag_delta = accCols*strideA;
const Index imag_delta2 = accCols2*strideA;
const Scalar* lhs_ptr_real0 = NULL, * lhs_ptr_real1 = NULL;
const Scalar* lhs_ptr_real2 = NULL, * lhs_ptr_real3 = NULL;
PacketBlock<Packet,accRows> accReal0, accImag0, accReal1, accImag1;
PacketBlock<Packet,accRows> accReal2, accImag2, accReal3, accImag3;
PacketBlock<Packet,accRows> taccReal, taccImag;
PacketBlock<Packetc,accRows> acc0, acc1;
PacketBlock<Packetc,accRows*2> tRes;
MICRO_COMPLEX_SRC2_PTR
MICRO_COMPLEX_SRC_PTR
MICRO_COMPLEX_DST_PTR
Index k = 0;
for(; k + PEEL_COMPLEX <= depth; k+= PEEL_COMPLEX)
{
MICRO_COMPLEX_PREFETCHN(accRows)
MICRO_COMPLEX_PREFETCH
MICRO_COMPLEX_ONE_PEEL4
}
for(; k < depth; k++)
{
MICRO_COMPLEX_ONE4
}
MICRO_COMPLEX_STORE
MICRO_COMPLEX_UPDATE
}
#define MICRO_COMPLEX_UNROLL_ITER2(N, M) \
gemm_complex_unrolled_iteration<N + (M ? 1 : 0), Scalar, Packet, Packetc, DataMapper, Index, accRows, accCols, M ? M : accCols, ConjugateLhs, ConjugateRhs, LhsIsReal, RhsIsReal>(res3, lhs_base, rhs_base, depth, strideA, offsetA, strideB, row, pAlphaReal, pAlphaImag, pMask); \
if (M) return;
template<typename Scalar, typename Packet, typename Packetc, typename DataMapper, typename Index, const Index accRows, const Index accCols, bool ConjugateLhs, bool ConjugateRhs, bool LhsIsReal, bool RhsIsReal>
EIGEN_ALWAYS_INLINE void gemm_complex_cols(
const DataMapper& res,
const Scalar* blockA,
const Scalar* blockB,
Index depth,
Index strideA,
Index offsetA,
Index strideB,
Index offsetB,
Index col,
Index rows,
Index remaining_rows,
const Packet& pAlphaReal,
const Packet& pAlphaImag,
const Packet& pMask)
{
const DataMapper res3 = res.getSubMapper(0, col);
const Scalar* rhs_base = blockB + advanceCols*col*strideB + MICRO_NEW_ROWS*offsetB;
const Scalar* lhs_base = blockA + accCols*offsetA;
Index row = 0;
#define MAX_COMPLEX_UNROLL 4
while(row + MAX_COMPLEX_UNROLL*accCols <= rows) {
MICRO_COMPLEX_UNROLL_ITER2(MAX_COMPLEX_UNROLL, 0);
}
switch( (rows-row)/accCols ) {
#if MAX_COMPLEX_UNROLL > 4
case 4:
MICRO_UNROLL_ITER(MICRO_COMPLEX_UNROLL_ITER2, 4)
break;
#endif
#if MAX_COMPLEX_UNROLL > 3
case 3:
MICRO_UNROLL_ITER(MICRO_COMPLEX_UNROLL_ITER2, 3)
break;
#endif
#if MAX_COMPLEX_UNROLL > 2
case 2:
MICRO_UNROLL_ITER(MICRO_COMPLEX_UNROLL_ITER2, 2)
break;
#endif
#if MAX_COMPLEX_UNROLL > 1
case 1:
MICRO_UNROLL_ITER(MICRO_COMPLEX_UNROLL_ITER2, 1)
break;
#endif
default:
break;
}
#undef MAX_COMPLEX_UNROLL
if(remaining_rows > 0)
{
gemm_complex_extra_row<Scalar, Packet, Packetc, DataMapper, Index, accRows, accCols, ConjugateLhs, ConjugateRhs, LhsIsReal, RhsIsReal>(res3, blockA, rhs_base, depth, strideA, offsetA, strideB, row, rows, remaining_rows, pAlphaReal, pAlphaImag, pMask);
}
}
#define MICRO_COMPLEX_EXTRA_COLS(N) \
gemm_complex_cols<Scalar, Packet, Packetc, DataMapper, Index, N, accCols, ConjugateLhs, ConjugateRhs, LhsIsReal, RhsIsReal>(res, blockA, blockB, depth, strideA, offsetA, strideB, offsetB, col, rows, remaining_rows, pAlphaReal, pAlphaImag, pMask);
template<typename Scalar, typename Packet, typename Packetc, typename DataMapper, typename Index, const Index accCols, bool ConjugateLhs, bool ConjugateRhs, bool LhsIsReal, bool RhsIsReal>
EIGEN_STRONG_INLINE void gemm_complex_extra_cols(
const DataMapper& res,
const Scalar* blockA,
const Scalar* blockB,
Index depth,
Index strideA,
Index offsetA,
Index strideB,
Index offsetB,
Index col,
Index rows,
Index cols,
Index remaining_rows,
const Packet& pAlphaReal,
const Packet& pAlphaImag,
const Packet& pMask)
{
MICRO_EXTRA(MICRO_COMPLEX_EXTRA_COLS, cols-col, true)
}
template<typename LhsScalar, typename RhsScalar, typename Scalarc, typename Scalar, typename Index, typename Packet, typename Packetc, typename RhsPacket, typename DataMapper, const Index accRows, const Index accCols, bool ConjugateLhs, bool ConjugateRhs, bool LhsIsReal, bool RhsIsReal>
EIGEN_STRONG_INLINE void gemm_complex(const DataMapper& res, const LhsScalar* blockAc, const RhsScalar* blockBc, Index rows, Index depth, Index cols, Scalarc alpha, Index strideA, Index strideB, Index offsetA, Index offsetB)
{
const Index remaining_rows = rows % accCols;
if( strideA == -1 ) strideA = depth;
if( strideB == -1 ) strideB = depth;
const Packet pAlphaReal = pset1<Packet>(alpha.real());
const Packet pAlphaImag = pset1<Packet>(alpha.imag());
const Packet pMask = bmask<Packet>(remaining_rows);
const Scalar* blockA = (Scalar *) blockAc;
const Scalar* blockB = (Scalar *) blockBc;
Index col = 0;
for(; col + accRows <= cols; col += accRows)
{
gemm_complex_cols<Scalar, Packet, Packetc, DataMapper, Index, accRows, accCols, ConjugateLhs, ConjugateRhs, LhsIsReal, RhsIsReal>(res, blockA, blockB, depth, strideA, offsetA, strideB, offsetB, col, rows, remaining_rows, pAlphaReal, pAlphaImag, pMask);
}
if (col != cols)
{
gemm_complex_extra_cols<Scalar, Packet, Packetc, DataMapper, Index, accCols, ConjugateLhs, ConjugateRhs, LhsIsReal, RhsIsReal>(res, blockA, blockB, depth, strideA, offsetA, strideB, offsetB, col, rows, cols, remaining_rows, pAlphaReal, pAlphaImag, pMask);
}
}
#undef accColsC
#undef advanceCols
#undef advanceRows
#include "MatrixVectorProduct.h"
/************************************
* ppc64le template specializations *
* **********************************/
template<typename Index, typename DataMapper, int Pack1, int Pack2, typename Packet, bool Conjugate, bool PanelMode>
struct gemm_pack_lhs<double, Index, DataMapper, Pack1, Pack2, Packet, ColMajor, Conjugate, PanelMode>
{
void operator()(double* blockA, const DataMapper& lhs, Index depth, Index rows, Index stride=0, Index offset=0);
};
template<typename Index, typename DataMapper, int Pack1, int Pack2, typename Packet, bool Conjugate, bool PanelMode>
void gemm_pack_lhs<double, Index, DataMapper, Pack1, Pack2, Packet, ColMajor, Conjugate, PanelMode>
::operator()(double* blockA, const DataMapper& lhs, Index depth, Index rows, Index stride, Index offset)
{
dhs_pack<double, Index, DataMapper, Packet2d, ColMajor, PanelMode, true> pack;
pack(blockA, lhs, depth, rows, stride, offset);
}
template<typename Index, typename DataMapper, int Pack1, int Pack2, typename Packet, bool Conjugate, bool PanelMode>
struct gemm_pack_lhs<double, Index, DataMapper, Pack1, Pack2, Packet, RowMajor, Conjugate, PanelMode>
{
void operator()(double* blockA, const DataMapper& lhs, Index depth, Index rows, Index stride=0, Index offset=0);
};
template<typename Index, typename DataMapper, int Pack1, int Pack2, typename Packet, bool Conjugate, bool PanelMode>
void gemm_pack_lhs<double, Index, DataMapper, Pack1, Pack2, Packet, RowMajor, Conjugate, PanelMode>
::operator()(double* blockA, const DataMapper& lhs, Index depth, Index rows, Index stride, Index offset)
{
dhs_pack<double, Index, DataMapper, Packet2d, RowMajor, PanelMode, true> pack;
pack(blockA, lhs, depth, rows, stride, offset);
}
#if EIGEN_ALTIVEC_USE_CUSTOM_PACK
template<typename Index, typename DataMapper, int nr, bool Conjugate, bool PanelMode>
struct gemm_pack_rhs<double, Index, DataMapper, nr, ColMajor, Conjugate, PanelMode>
{
void operator()(double* blockB, const DataMapper& rhs, Index depth, Index cols, Index stride=0, Index offset=0);
};
template<typename Index, typename DataMapper, int nr, bool Conjugate, bool PanelMode>
void gemm_pack_rhs<double, Index, DataMapper, nr, ColMajor, Conjugate, PanelMode>
::operator()(double* blockB, const DataMapper& rhs, Index depth, Index cols, Index stride, Index offset)
{
dhs_pack<double, Index, DataMapper, Packet2d, ColMajor, PanelMode, false> pack;
pack(blockB, rhs, depth, cols, stride, offset);
}
template<typename Index, typename DataMapper, int nr, bool Conjugate, bool PanelMode>
struct gemm_pack_rhs<double, Index, DataMapper, nr, RowMajor, Conjugate, PanelMode>
{
void operator()(double* blockB, const DataMapper& rhs, Index depth, Index cols, Index stride=0, Index offset=0);
};
template<typename Index, typename DataMapper, int nr, bool Conjugate, bool PanelMode>
void gemm_pack_rhs<double, Index, DataMapper, nr, RowMajor, Conjugate, PanelMode>
::operator()(double* blockB, const DataMapper& rhs, Index depth, Index cols, Index stride, Index offset)
{
dhs_pack<double, Index, DataMapper, Packet2d, RowMajor, PanelMode, false> pack;
pack(blockB, rhs, depth, cols, stride, offset);
}
#endif
template<typename Index, typename DataMapper, int Pack1, int Pack2, typename Packet, bool Conjugate, bool PanelMode>
struct gemm_pack_lhs<float, Index, DataMapper, Pack1, Pack2, Packet, RowMajor, Conjugate, PanelMode>
{
void operator()(float* blockA, const DataMapper& lhs, Index depth, Index rows, Index stride=0, Index offset=0);
};
template<typename Index, typename DataMapper, int Pack1, int Pack2, typename Packet, bool Conjugate, bool PanelMode>
void gemm_pack_lhs<float, Index, DataMapper, Pack1, Pack2, Packet, RowMajor, Conjugate, PanelMode>
::operator()(float* blockA, const DataMapper& lhs, Index depth, Index rows, Index stride, Index offset)
{
dhs_pack<float, Index, DataMapper, Packet4f, RowMajor, PanelMode, true> pack;
pack(blockA, lhs, depth, rows, stride, offset);
}
template<typename Index, typename DataMapper, int Pack1, int Pack2, typename Packet, bool Conjugate, bool PanelMode>
struct gemm_pack_lhs<float, Index, DataMapper, Pack1, Pack2, Packet, ColMajor, Conjugate, PanelMode>
{
void operator()(float* blockA, const DataMapper& lhs, Index depth, Index rows, Index stride=0, Index offset=0);
};
template<typename Index, typename DataMapper, int Pack1, int Pack2, typename Packet, bool Conjugate, bool PanelMode>
void gemm_pack_lhs<float, Index, DataMapper, Pack1, Pack2, Packet, ColMajor, Conjugate, PanelMode>
::operator()(float* blockA, const DataMapper& lhs, Index depth, Index rows, Index stride, Index offset)
{
dhs_pack<float, Index, DataMapper, Packet4f, ColMajor, PanelMode, true> pack;
pack(blockA, lhs, depth, rows, stride, offset);
}
template<typename Index, typename DataMapper, int Pack1, int Pack2, typename Packet, bool Conjugate, bool PanelMode>
struct gemm_pack_lhs<std::complex<float>, Index, DataMapper, Pack1, Pack2, Packet, RowMajor, Conjugate, PanelMode>
{
void operator()(std::complex<float>* blockA, const DataMapper& lhs, Index depth, Index rows, Index stride=0, Index offset=0);
};
template<typename Index, typename DataMapper, int Pack1, int Pack2, typename Packet, bool Conjugate, bool PanelMode>
void gemm_pack_lhs<std::complex<float>, Index, DataMapper, Pack1, Pack2, Packet, RowMajor, Conjugate, PanelMode>
::operator()(std::complex<float>* blockA, const DataMapper& lhs, Index depth, Index rows, Index stride, Index offset)
{
dhs_cpack<float, Index, DataMapper, Packet4f, Packet2cf, RowMajor, Conjugate, PanelMode, true> pack;
pack(blockA, lhs, depth, rows, stride, offset);
}
template<typename Index, typename DataMapper, int Pack1, int Pack2, typename Packet, bool Conjugate, bool PanelMode>
struct gemm_pack_lhs<std::complex<float>, Index, DataMapper, Pack1, Pack2, Packet, ColMajor, Conjugate, PanelMode>
{
void operator()(std::complex<float>* blockA, const DataMapper& lhs, Index depth, Index rows, Index stride=0, Index offset=0);
};
template<typename Index, typename DataMapper, int Pack1, int Pack2, typename Packet, bool Conjugate, bool PanelMode>
void gemm_pack_lhs<std::complex<float>, Index, DataMapper, Pack1, Pack2, Packet, ColMajor, Conjugate, PanelMode>
::operator()(std::complex<float>* blockA, const DataMapper& lhs, Index depth, Index rows, Index stride, Index offset)
{
dhs_cpack<float, Index, DataMapper, Packet4f, Packet2cf, ColMajor, Conjugate, PanelMode, true> pack;
pack(blockA, lhs, depth, rows, stride, offset);
}
#if EIGEN_ALTIVEC_USE_CUSTOM_PACK
template<typename Index, typename DataMapper, int nr, bool Conjugate, bool PanelMode>
struct gemm_pack_rhs<float, Index, DataMapper, nr, ColMajor, Conjugate, PanelMode>
{
void operator()(float* blockB, const DataMapper& rhs, Index depth, Index cols, Index stride=0, Index offset=0);
};
template<typename Index, typename DataMapper, int nr, bool Conjugate, bool PanelMode>
void gemm_pack_rhs<float, Index, DataMapper, nr, ColMajor, Conjugate, PanelMode>
::operator()(float* blockB, const DataMapper& rhs, Index depth, Index cols, Index stride, Index offset)
{
dhs_pack<float, Index, DataMapper, Packet4f, ColMajor, PanelMode, false> pack;
pack(blockB, rhs, depth, cols, stride, offset);
}
template<typename Index, typename DataMapper, int nr, bool Conjugate, bool PanelMode>
struct gemm_pack_rhs<float, Index, DataMapper, nr, RowMajor, Conjugate, PanelMode>
{
void operator()(float* blockB, const DataMapper& rhs, Index depth, Index cols, Index stride=0, Index offset=0);
};
template<typename Index, typename DataMapper, int nr, bool Conjugate, bool PanelMode>
void gemm_pack_rhs<float, Index, DataMapper, nr, RowMajor, Conjugate, PanelMode>
::operator()(float* blockB, const DataMapper& rhs, Index depth, Index cols, Index stride, Index offset)
{
dhs_pack<float, Index, DataMapper, Packet4f, RowMajor, PanelMode, false> pack;
pack(blockB, rhs, depth, cols, stride, offset);
}
#endif
template<typename Index, typename DataMapper, int nr, bool Conjugate, bool PanelMode>
struct gemm_pack_rhs<std::complex<float>, Index, DataMapper, nr, ColMajor, Conjugate, PanelMode>
{
void operator()(std::complex<float>* blockB, const DataMapper& rhs, Index depth, Index cols, Index stride=0, Index offset=0);
};
template<typename Index, typename DataMapper, int nr, bool Conjugate, bool PanelMode>
void gemm_pack_rhs<std::complex<float>, Index, DataMapper, nr, ColMajor, Conjugate, PanelMode>
::operator()(std::complex<float>* blockB, const DataMapper& rhs, Index depth, Index cols, Index stride, Index offset)
{
dhs_cpack<float, Index, DataMapper, Packet4f, Packet2cf, ColMajor, Conjugate, PanelMode, false> pack;
pack(blockB, rhs, depth, cols, stride, offset);
}
template<typename Index, typename DataMapper, int nr, bool Conjugate, bool PanelMode>
struct gemm_pack_rhs<std::complex<float>, Index, DataMapper, nr, RowMajor, Conjugate, PanelMode>
{
void operator()(std::complex<float>* blockB, const DataMapper& rhs, Index depth, Index cols, Index stride=0, Index offset=0);
};
template<typename Index, typename DataMapper, int nr, bool Conjugate, bool PanelMode>
void gemm_pack_rhs<std::complex<float>, Index, DataMapper, nr, RowMajor, Conjugate, PanelMode>
::operator()(std::complex<float>* blockB, const DataMapper& rhs, Index depth, Index cols, Index stride, Index offset)
{
dhs_cpack<float, Index, DataMapper, Packet4f, Packet2cf, RowMajor, Conjugate, PanelMode, false> pack;
pack(blockB, rhs, depth, cols, stride, offset);
}
template<typename Index, typename DataMapper, int Pack1, int Pack2, typename Packet, bool Conjugate, bool PanelMode>
struct gemm_pack_lhs<std::complex<double>, Index, DataMapper, Pack1, Pack2, Packet, RowMajor, Conjugate, PanelMode>
{
void operator()(std::complex<double>* blockA, const DataMapper& lhs, Index depth, Index rows, Index stride=0, Index offset=0);
};
template<typename Index, typename DataMapper, int Pack1, int Pack2, typename Packet, bool Conjugate, bool PanelMode>
void gemm_pack_lhs<std::complex<double>, Index, DataMapper, Pack1, Pack2, Packet, RowMajor, Conjugate, PanelMode>
::operator()(std::complex<double>* blockA, const DataMapper& lhs, Index depth, Index rows, Index stride, Index offset)
{
dhs_cpack<double, Index, DataMapper, Packet2d, Packet1cd, RowMajor, Conjugate, PanelMode, true> pack;
pack(blockA, lhs, depth, rows, stride, offset);
}
template<typename Index, typename DataMapper, int Pack1, int Pack2, typename Packet, bool Conjugate, bool PanelMode>
struct gemm_pack_lhs<std::complex<double>, Index, DataMapper, Pack1, Pack2, Packet, ColMajor, Conjugate, PanelMode>
{
void operator()(std::complex<double>* blockA, const DataMapper& lhs, Index depth, Index rows, Index stride=0, Index offset=0);
};
template<typename Index, typename DataMapper, int Pack1, int Pack2, typename Packet, bool Conjugate, bool PanelMode>
void gemm_pack_lhs<std::complex<double>, Index, DataMapper, Pack1, Pack2, Packet, ColMajor, Conjugate, PanelMode>
::operator()(std::complex<double>* blockA, const DataMapper& lhs, Index depth, Index rows, Index stride, Index offset)
{
dhs_cpack<double, Index, DataMapper, Packet2d, Packet1cd, ColMajor, Conjugate, PanelMode, true> pack;
pack(blockA, lhs, depth, rows, stride, offset);
}
template<typename Index, typename DataMapper, int nr, bool Conjugate, bool PanelMode>
struct gemm_pack_rhs<std::complex<double>, Index, DataMapper, nr, ColMajor, Conjugate, PanelMode>
{
void operator()(std::complex<double>* blockB, const DataMapper& rhs, Index depth, Index cols, Index stride=0, Index offset=0);
};
template<typename Index, typename DataMapper, int nr, bool Conjugate, bool PanelMode>
void gemm_pack_rhs<std::complex<double>, Index, DataMapper, nr, ColMajor, Conjugate, PanelMode>
::operator()(std::complex<double>* blockB, const DataMapper& rhs, Index depth, Index cols, Index stride, Index offset)
{
dhs_cpack<double, Index, DataMapper, Packet2d, Packet1cd, ColMajor, Conjugate, PanelMode, false> pack;
pack(blockB, rhs, depth, cols, stride, offset);
}
template<typename Index, typename DataMapper, int nr, bool Conjugate, bool PanelMode>
struct gemm_pack_rhs<std::complex<double>, Index, DataMapper, nr, RowMajor, Conjugate, PanelMode>
{
void operator()(std::complex<double>* blockB, const DataMapper& rhs, Index depth, Index cols, Index stride=0, Index offset=0);
};
template<typename Index, typename DataMapper, int nr, bool Conjugate, bool PanelMode>
void gemm_pack_rhs<std::complex<double>, Index, DataMapper, nr, RowMajor, Conjugate, PanelMode>
::operator()(std::complex<double>* blockB, const DataMapper& rhs, Index depth, Index cols, Index stride, Index offset)
{
dhs_cpack<double, Index, DataMapper, Packet2d, Packet1cd, RowMajor, Conjugate, PanelMode, false> pack;
pack(blockB, rhs, depth, cols, stride, offset);
}
// ********* gebp specializations *********
template<typename Index, typename DataMapper, int mr, int nr, bool ConjugateLhs, bool ConjugateRhs>
struct gebp_kernel<float, float, Index, DataMapper, mr, nr, ConjugateLhs, ConjugateRhs>
{
typedef typename quad_traits<float>::vectortype Packet;
typedef typename quad_traits<float>::rhstype RhsPacket;
void operator()(const DataMapper& res, const float* blockA, const float* blockB,
Index rows, Index depth, Index cols, float alpha,
Index strideA=-1, Index strideB=-1, Index offsetA=0, Index offsetB=0);
};
template<typename Index, typename DataMapper, int mr, int nr, bool ConjugateLhs, bool ConjugateRhs>
void gebp_kernel<float, float, Index, DataMapper, mr, nr, ConjugateLhs, ConjugateRhs>
::operator()(const DataMapper& res, const float* blockA, const float* blockB,
Index rows, Index depth, Index cols, float alpha,
Index strideA, Index strideB, Index offsetA, Index offsetB)
{
const Index accRows = quad_traits<float>::rows;
const Index accCols = quad_traits<float>::size;
void (*gemm_function)(const DataMapper&, const float*, const float*, Index, Index, Index, float, Index, Index, Index, Index);
#if defined(EIGEN_ALTIVEC_MMA_ONLY)
//generate with MMA only
gemm_function = &Eigen::internal::gemmMMA<float, Index, Packet, RhsPacket, DataMapper, accRows, accCols>;
#elif defined(EIGEN_ALTIVEC_MMA_DYNAMIC_DISPATCH)
if (__builtin_cpu_supports ("arch_3_1") && __builtin_cpu_supports ("mma")){
gemm_function = &Eigen::internal::gemmMMA<float, Index, Packet, RhsPacket, DataMapper, accRows, accCols>;
}
else{
gemm_function = &Eigen::internal::gemm<float, Index, Packet, RhsPacket, DataMapper, accRows, accCols>;
}
#else
gemm_function = &Eigen::internal::gemm<float, Index, Packet, RhsPacket, DataMapper, accRows, accCols>;
#endif
gemm_function(res, blockA, blockB, rows, depth, cols, alpha, strideA, strideB, offsetA, offsetB);
}
template<typename Index, typename DataMapper, int mr, int nr, bool ConjugateLhs, bool ConjugateRhs>
struct gebp_kernel<std::complex<float>, std::complex<float>, Index, DataMapper, mr, nr, ConjugateLhs, ConjugateRhs>
{
typedef Packet4f Packet;
typedef Packet2cf Packetc;
typedef Packet4f RhsPacket;
void operator()(const DataMapper& res, const std::complex<float>* blockA, const std::complex<float>* blockB,
Index rows, Index depth, Index cols, std::complex<float> alpha,
Index strideA=-1, Index strideB=-1, Index offsetA=0, Index offsetB=0);
};
template<typename Index, typename DataMapper, int mr, int nr, bool ConjugateLhs, bool ConjugateRhs>
void gebp_kernel<std::complex<float>, std::complex<float>, Index, DataMapper, mr, nr, ConjugateLhs, ConjugateRhs>
::operator()(const DataMapper& res, const std::complex<float>* blockA, const std::complex<float>* blockB,
Index rows, Index depth, Index cols, std::complex<float> alpha,
Index strideA, Index strideB, Index offsetA, Index offsetB)
{
const Index accRows = quad_traits<float>::rows;
const Index accCols = quad_traits<float>::size;
void (*gemm_function)(const DataMapper&, const std::complex<float>*, const std::complex<float>*,
Index, Index, Index, std::complex<float>, Index, Index, Index, Index);
#if defined(EIGEN_ALTIVEC_MMA_ONLY)
//generate with MMA only
gemm_function = &Eigen::internal::gemm_complexMMA<std::complex<float>, std::complex<float>, std::complex<float>, float, Index, Packet, Packetc, RhsPacket, DataMapper, accRows, accCols, ConjugateLhs, ConjugateRhs, false, false>;
#elif defined(EIGEN_ALTIVEC_MMA_DYNAMIC_DISPATCH)
if (__builtin_cpu_supports ("arch_3_1") && __builtin_cpu_supports ("mma")){
gemm_function = &Eigen::internal::gemm_complexMMA<std::complex<float>, std::complex<float>, std::complex<float>, float, Index, Packet, Packetc, RhsPacket, DataMapper, accRows, accCols, ConjugateLhs, ConjugateRhs, false, false>;
}
else{
gemm_function = &Eigen::internal::gemm_complex<std::complex<float>, std::complex<float>, std::complex<float>, float, Index, Packet, Packetc, RhsPacket, DataMapper, accRows, accCols, ConjugateLhs, ConjugateRhs, false, false>;
}
#else
gemm_function = &Eigen::internal::gemm_complex<std::complex<float>, std::complex<float>, std::complex<float>, float, Index, Packet, Packetc, RhsPacket, DataMapper, accRows, accCols, ConjugateLhs, ConjugateRhs, false, false>;
#endif
gemm_function(res, blockA, blockB, rows, depth, cols, alpha, strideA, strideB, offsetA, offsetB);
}
template<typename Index, typename DataMapper, int mr, int nr, bool ConjugateLhs, bool ConjugateRhs>
struct gebp_kernel<float, std::complex<float>, Index, DataMapper, mr, nr, ConjugateLhs, ConjugateRhs>
{
typedef Packet4f Packet;
typedef Packet2cf Packetc;
typedef Packet4f RhsPacket;
void operator()(const DataMapper& res, const float* blockA, const std::complex<float>* blockB,
Index rows, Index depth, Index cols, std::complex<float> alpha,
Index strideA=-1, Index strideB=-1, Index offsetA=0, Index offsetB=0);
};
template<typename Index, typename DataMapper, int mr, int nr, bool ConjugateLhs, bool ConjugateRhs>
void gebp_kernel<float, std::complex<float>, Index, DataMapper, mr, nr, ConjugateLhs, ConjugateRhs>
::operator()(const DataMapper& res, const float* blockA, const std::complex<float>* blockB,
Index rows, Index depth, Index cols, std::complex<float> alpha,
Index strideA, Index strideB, Index offsetA, Index offsetB)
{
const Index accRows = quad_traits<float>::rows;
const Index accCols = quad_traits<float>::size;
void (*gemm_function)(const DataMapper&, const float*, const std::complex<float>*,
Index, Index, Index, std::complex<float>, Index, Index, Index, Index);
#if defined(EIGEN_ALTIVEC_MMA_ONLY)
//generate with MMA only
gemm_function = &Eigen::internal::gemm_complexMMA<float, std::complex<float>, std::complex<float>, float, Index, Packet, Packetc, RhsPacket, DataMapper, accRows, accCols, ConjugateLhs, ConjugateRhs, true, false>;
#elif defined(EIGEN_ALTIVEC_MMA_DYNAMIC_DISPATCH)
if (__builtin_cpu_supports ("arch_3_1") && __builtin_cpu_supports ("mma")){
gemm_function = &Eigen::internal::gemm_complexMMA<float, std::complex<float>, std::complex<float>, float, Index, Packet, Packetc, RhsPacket, DataMapper, accRows, accCols, ConjugateLhs, ConjugateRhs, true, false>;
}
else{
gemm_function = &Eigen::internal::gemm_complex<float, std::complex<float>, std::complex<float>, float, Index, Packet, Packetc, RhsPacket, DataMapper, accRows, accCols, ConjugateLhs, ConjugateRhs, true, false>;
}
#else
gemm_function = &Eigen::internal::gemm_complex<float, std::complex<float>, std::complex<float>, float, Index, Packet, Packetc, RhsPacket, DataMapper, accRows, accCols, ConjugateLhs, ConjugateRhs, true, false>;
#endif
gemm_function(res, blockA, blockB, rows, depth, cols, alpha, strideA, strideB, offsetA, offsetB);
}
template<typename Index, typename DataMapper, int mr, int nr, bool ConjugateLhs, bool ConjugateRhs>
struct gebp_kernel<std::complex<float>, float, Index, DataMapper, mr, nr, ConjugateLhs, ConjugateRhs>
{
typedef Packet4f Packet;
typedef Packet2cf Packetc;
typedef Packet4f RhsPacket;
void operator()(const DataMapper& res, const std::complex<float>* blockA, const float* blockB,
Index rows, Index depth, Index cols, std::complex<float> alpha,
Index strideA=-1, Index strideB=-1, Index offsetA=0, Index offsetB=0);
};
template<typename Index, typename DataMapper, int mr, int nr, bool ConjugateLhs, bool ConjugateRhs>
void gebp_kernel<std::complex<float>, float, Index, DataMapper, mr, nr, ConjugateLhs, ConjugateRhs>
::operator()(const DataMapper& res, const std::complex<float>* blockA, const float* blockB,
Index rows, Index depth, Index cols, std::complex<float> alpha,
Index strideA, Index strideB, Index offsetA, Index offsetB)
{
const Index accRows = quad_traits<float>::rows;
const Index accCols = quad_traits<float>::size;
void (*gemm_function)(const DataMapper&, const std::complex<float>*, const float*,
Index, Index, Index, std::complex<float>, Index, Index, Index, Index);
#if defined(EIGEN_ALTIVEC_MMA_ONLY)
//generate with MMA only
gemm_function = &Eigen::internal::gemm_complexMMA<std::complex<float>, float, std::complex<float>, float, Index, Packet, Packetc, RhsPacket, DataMapper, accRows, accCols, ConjugateLhs, ConjugateRhs, false, true>;
#elif defined(EIGEN_ALTIVEC_MMA_DYNAMIC_DISPATCH)
if (__builtin_cpu_supports ("arch_3_1") && __builtin_cpu_supports ("mma")){
gemm_function = &Eigen::internal::gemm_complexMMA<std::complex<float>, float, std::complex<float>, float, Index, Packet, Packetc, RhsPacket, DataMapper, accRows, accCols, ConjugateLhs, ConjugateRhs, false, true>;
}
else{
gemm_function = &Eigen::internal::gemm_complex<std::complex<float>, float, std::complex<float>, float, Index, Packet, Packetc, RhsPacket, DataMapper, accRows, accCols, ConjugateLhs, ConjugateRhs, false, true>;
}
#else
gemm_function = &Eigen::internal::gemm_complex<std::complex<float>, float, std::complex<float>, float, Index, Packet, Packetc, RhsPacket, DataMapper, accRows, accCols, ConjugateLhs, ConjugateRhs, false, true>;
#endif
gemm_function(res, blockA, blockB, rows, depth, cols, alpha, strideA, strideB, offsetA, offsetB);
}
template<typename Index, typename DataMapper, int mr, int nr, bool ConjugateLhs, bool ConjugateRhs>
struct gebp_kernel<double, double, Index, DataMapper, mr, nr, ConjugateLhs, ConjugateRhs>
{
typedef typename quad_traits<double>::vectortype Packet;
typedef typename quad_traits<double>::rhstype RhsPacket;
void operator()(const DataMapper& res, const double* blockA, const double* blockB,
Index rows, Index depth, Index cols, double alpha,
Index strideA=-1, Index strideB=-1, Index offsetA=0, Index offsetB=0);
};
template<typename Index, typename DataMapper, int mr, int nr, bool ConjugateLhs, bool ConjugateRhs>
void gebp_kernel<double, double, Index, DataMapper, mr, nr, ConjugateLhs, ConjugateRhs>
::operator()(const DataMapper& res, const double* blockA, const double* blockB,
Index rows, Index depth, Index cols, double alpha,
Index strideA, Index strideB, Index offsetA, Index offsetB)
{
const Index accRows = quad_traits<double>::rows;
const Index accCols = quad_traits<double>::size;
void (*gemm_function)(const DataMapper&, const double*, const double*, Index, Index, Index, double, Index, Index, Index, Index);
#if defined(EIGEN_ALTIVEC_MMA_ONLY)
//generate with MMA only
gemm_function = &Eigen::internal::gemmMMA<double, Index, Packet, RhsPacket, DataMapper, accRows, accCols>;
#elif defined(EIGEN_ALTIVEC_MMA_DYNAMIC_DISPATCH)
if (__builtin_cpu_supports ("arch_3_1") && __builtin_cpu_supports ("mma")){
gemm_function = &Eigen::internal::gemmMMA<double, Index, Packet, RhsPacket, DataMapper, accRows, accCols>;
}
else{
gemm_function = &Eigen::internal::gemm<double, Index, Packet, RhsPacket, DataMapper, accRows, accCols>;
}
#else
gemm_function = &Eigen::internal::gemm<double, Index, Packet, RhsPacket, DataMapper, accRows, accCols>;
#endif
gemm_function(res, blockA, blockB, rows, depth, cols, alpha, strideA, strideB, offsetA, offsetB);
}
template<typename Index, typename DataMapper, int mr, int nr, bool ConjugateLhs, bool ConjugateRhs>
struct gebp_kernel<std::complex<double>, std::complex<double>, Index, DataMapper, mr, nr, ConjugateLhs, ConjugateRhs>
{
typedef quad_traits<double>::vectortype Packet;
typedef Packet1cd Packetc;
typedef quad_traits<double>::rhstype RhsPacket;
void operator()(const DataMapper& res, const std::complex<double>* blockA, const std::complex<double>* blockB,
Index rows, Index depth, Index cols, std::complex<double> alpha,
Index strideA=-1, Index strideB=-1, Index offsetA=0, Index offsetB=0);
};
template<typename Index, typename DataMapper, int mr, int nr, bool ConjugateLhs, bool ConjugateRhs>
void gebp_kernel<std::complex<double>, std::complex<double>, Index, DataMapper, mr, nr, ConjugateLhs, ConjugateRhs>
::operator()(const DataMapper& res, const std::complex<double>* blockA, const std::complex<double>* blockB,
Index rows, Index depth, Index cols, std::complex<double> alpha,
Index strideA, Index strideB, Index offsetA, Index offsetB)
{
const Index accRows = quad_traits<double>::rows;
const Index accCols = quad_traits<double>::size;
void (*gemm_function)(const DataMapper&, const std::complex<double>*, const std::complex<double>*,
Index, Index, Index, std::complex<double>, Index, Index, Index, Index);
#if defined(EIGEN_ALTIVEC_MMA_ONLY)
//generate with MMA only
gemm_function = &Eigen::internal::gemm_complexMMA<std::complex<double>, std::complex<double>, std::complex<double>, double, Index, Packet, Packetc, RhsPacket, DataMapper, accRows, accCols, ConjugateLhs, ConjugateRhs, false, false>;
#elif defined(EIGEN_ALTIVEC_MMA_DYNAMIC_DISPATCH)
if (__builtin_cpu_supports ("arch_3_1") && __builtin_cpu_supports ("mma")){
gemm_function = &Eigen::internal::gemm_complexMMA<std::complex<double>, std::complex<double>, std::complex<double>, double, Index, Packet, Packetc, RhsPacket, DataMapper, accRows, accCols, ConjugateLhs, ConjugateRhs, false, false>;
}
else{
gemm_function = &Eigen::internal::gemm_complex<std::complex<double>, std::complex<double>, std::complex<double>, double, Index, Packet, Packetc, RhsPacket, DataMapper, accRows, accCols, ConjugateLhs, ConjugateRhs, false, false>;
}
#else
gemm_function = &Eigen::internal::gemm_complex<std::complex<double>, std::complex<double>, std::complex<double>, double, Index, Packet, Packetc, RhsPacket, DataMapper, accRows, accCols, ConjugateLhs, ConjugateRhs, false, false>;
#endif
gemm_function(res, blockA, blockB, rows, depth, cols, alpha, strideA, strideB, offsetA, offsetB);
}
template<typename Index, typename DataMapper, int mr, int nr, bool ConjugateLhs, bool ConjugateRhs>
struct gebp_kernel<std::complex<double>, double, Index, DataMapper, mr, nr, ConjugateLhs, ConjugateRhs>
{
typedef quad_traits<double>::vectortype Packet;
typedef Packet1cd Packetc;
typedef quad_traits<double>::rhstype RhsPacket;
void operator()(const DataMapper& res, const std::complex<double>* blockA, const double* blockB,
Index rows, Index depth, Index cols, std::complex<double> alpha,
Index strideA=-1, Index strideB=-1, Index offsetA=0, Index offsetB=0);
};
template<typename Index, typename DataMapper, int mr, int nr, bool ConjugateLhs, bool ConjugateRhs>
void gebp_kernel<std::complex<double>, double, Index, DataMapper, mr, nr, ConjugateLhs, ConjugateRhs>
::operator()(const DataMapper& res, const std::complex<double>* blockA, const double* blockB,
Index rows, Index depth, Index cols, std::complex<double> alpha,
Index strideA, Index strideB, Index offsetA, Index offsetB)
{
const Index accRows = quad_traits<double>::rows;
const Index accCols = quad_traits<double>::size;
void (*gemm_function)(const DataMapper&, const std::complex<double>*, const double*,
Index, Index, Index, std::complex<double>, Index, Index, Index, Index);
#if defined(EIGEN_ALTIVEC_MMA_ONLY)
//generate with MMA only
gemm_function = &Eigen::internal::gemm_complexMMA<std::complex<double>, double, std::complex<double>, double, Index, Packet, Packetc, RhsPacket, DataMapper, accRows, accCols, ConjugateLhs, ConjugateRhs, false, true>;
#elif defined(EIGEN_ALTIVEC_MMA_DYNAMIC_DISPATCH)
if (__builtin_cpu_supports ("arch_3_1") && __builtin_cpu_supports ("mma")){
gemm_function = &Eigen::internal::gemm_complexMMA<std::complex<double>, double, std::complex<double>, double, Index, Packet, Packetc, RhsPacket, DataMapper, accRows, accCols, ConjugateLhs, ConjugateRhs, false, true>;
}
else{
gemm_function = &Eigen::internal::gemm_complex<std::complex<double>, double, std::complex<double>, double, Index, Packet, Packetc, RhsPacket, DataMapper, accRows, accCols, ConjugateLhs, ConjugateRhs, false, true>;
}
#else
gemm_function = &Eigen::internal::gemm_complex<std::complex<double>, double, std::complex<double>, double, Index, Packet, Packetc, RhsPacket, DataMapper, accRows, accCols, ConjugateLhs, ConjugateRhs, false, true>;
#endif
gemm_function(res, blockA, blockB, rows, depth, cols, alpha, strideA, strideB, offsetA, offsetB);
}
template<typename Index, typename DataMapper, int mr, int nr, bool ConjugateLhs, bool ConjugateRhs>
struct gebp_kernel<double, std::complex<double>, Index, DataMapper, mr, nr, ConjugateLhs, ConjugateRhs>
{
typedef quad_traits<double>::vectortype Packet;
typedef Packet1cd Packetc;
typedef quad_traits<double>::rhstype RhsPacket;
void operator()(const DataMapper& res, const double* blockA, const std::complex<double>* blockB,
Index rows, Index depth, Index cols, std::complex<double> alpha,
Index strideA=-1, Index strideB=-1, Index offsetA=0, Index offsetB=0);
};
template<typename Index, typename DataMapper, int mr, int nr, bool ConjugateLhs, bool ConjugateRhs>
void gebp_kernel<double, std::complex<double>, Index, DataMapper, mr, nr, ConjugateLhs, ConjugateRhs>
::operator()(const DataMapper& res, const double* blockA, const std::complex<double>* blockB,
Index rows, Index depth, Index cols, std::complex<double> alpha,
Index strideA, Index strideB, Index offsetA, Index offsetB)
{
const Index accRows = quad_traits<double>::rows;
const Index accCols = quad_traits<double>::size;
void (*gemm_function)(const DataMapper&, const double*, const std::complex<double>*,
Index, Index, Index, std::complex<double>, Index, Index, Index, Index);
#if defined(EIGEN_ALTIVEC_MMA_ONLY)
//generate with MMA only
gemm_function = &Eigen::internal::gemm_complexMMA<double, std::complex<double>, std::complex<double>, double, Index, Packet, Packetc, RhsPacket, DataMapper, accRows, accCols, ConjugateLhs, ConjugateRhs, true, false>;
#elif defined(EIGEN_ALTIVEC_MMA_DYNAMIC_DISPATCH)
if (__builtin_cpu_supports ("arch_3_1") && __builtin_cpu_supports ("mma")){
gemm_function = &Eigen::internal::gemm_complexMMA<double, std::complex<double>, std::complex<double>, double, Index, Packet, Packetc, RhsPacket, DataMapper, accRows, accCols, ConjugateLhs, ConjugateRhs, true, false>;
}
else{
gemm_function = &Eigen::internal::gemm_complex<double, std::complex<double>, std::complex<double>, double, Index, Packet, Packetc, RhsPacket, DataMapper, accRows, accCols, ConjugateLhs, ConjugateRhs, true, false>;
}
#else
gemm_function = &Eigen::internal::gemm_complex<double, std::complex<double>, std::complex<double>, double, Index, Packet, Packetc, RhsPacket, DataMapper, accRows, accCols, ConjugateLhs, ConjugateRhs, true, false>;
#endif
gemm_function(res, blockA, blockB, rows, depth, cols, alpha, strideA, strideB, offsetA, offsetB);
}
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_MATRIX_PRODUCT_ALTIVEC_H