| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2010-2011 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #include "lapack_common.h" |
| #include <Eigen/Cholesky> |
| |
| // POTRF computes the Cholesky factorization of a real symmetric positive definite matrix A. |
| EIGEN_LAPACK_FUNC(potrf,(char* uplo, int *n, RealScalar *pa, int *lda, int *info)) |
| { |
| *info = 0; |
| if(UPLO(*uplo)==INVALID) *info = -1; |
| else if(*n<0) *info = -2; |
| else if(*lda<std::max(1,*n)) *info = -4; |
| if(*info!=0) |
| { |
| int e = -*info; |
| return xerbla_(SCALAR_SUFFIX_UP"POTRF", &e, 6); |
| } |
| |
| Scalar* a = reinterpret_cast<Scalar*>(pa); |
| MatrixType A(a,*n,*n,*lda); |
| int ret; |
| if(UPLO(*uplo)==UP) ret = int(internal::llt_inplace<Scalar, Upper>::blocked(A)); |
| else ret = int(internal::llt_inplace<Scalar, Lower>::blocked(A)); |
| |
| if(ret>=0) |
| *info = ret+1; |
| |
| return 0; |
| } |
| |
| // POTRS solves a system of linear equations A*X = B with a symmetric |
| // positive definite matrix A using the Cholesky factorization |
| // A = U**T*U or A = L*L**T computed by DPOTRF. |
| EIGEN_LAPACK_FUNC(potrs,(char* uplo, int *n, int *nrhs, RealScalar *pa, int *lda, RealScalar *pb, int *ldb, int *info)) |
| { |
| *info = 0; |
| if(UPLO(*uplo)==INVALID) *info = -1; |
| else if(*n<0) *info = -2; |
| else if(*nrhs<0) *info = -3; |
| else if(*lda<std::max(1,*n)) *info = -5; |
| else if(*ldb<std::max(1,*n)) *info = -7; |
| if(*info!=0) |
| { |
| int e = -*info; |
| return xerbla_(SCALAR_SUFFIX_UP"POTRS", &e, 6); |
| } |
| |
| Scalar* a = reinterpret_cast<Scalar*>(pa); |
| Scalar* b = reinterpret_cast<Scalar*>(pb); |
| MatrixType A(a,*n,*n,*lda); |
| MatrixType B(b,*n,*nrhs,*ldb); |
| |
| if(UPLO(*uplo)==UP) |
| { |
| A.triangularView<Upper>().adjoint().solveInPlace(B); |
| A.triangularView<Upper>().solveInPlace(B); |
| } |
| else |
| { |
| A.triangularView<Lower>().solveInPlace(B); |
| A.triangularView<Lower>().adjoint().solveInPlace(B); |
| } |
| |
| return 0; |
| } |