blob: 7ff7bf1acc4938fa5dd10d92d5aea62a9a49cd5d [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "main.h"
template<typename MatrixType> void matrixVisitor(const MatrixType& p)
{
typedef typename MatrixType::Scalar Scalar;
Index rows = p.rows();
Index cols = p.cols();
// construct a random matrix where all coefficients are different
MatrixType m;
m = MatrixType::Random(rows, cols);
for(Index i = 0; i < m.size(); i++)
for(Index i2 = 0; i2 < i; i2++)
while(numext::equal_strict(m(i), m(i2))) // yes, strict equality
m(i) = internal::random<Scalar>();
Scalar minc = Scalar(1000), maxc = Scalar(-1000);
Index minrow=0,mincol=0,maxrow=0,maxcol=0;
for(Index j = 0; j < cols; j++)
for(Index i = 0; i < rows; i++)
{
if(m(i,j) < minc)
{
minc = m(i,j);
minrow = i;
mincol = j;
}
if(m(i,j) > maxc)
{
maxc = m(i,j);
maxrow = i;
maxcol = j;
}
}
Index eigen_minrow, eigen_mincol, eigen_maxrow, eigen_maxcol;
Scalar eigen_minc, eigen_maxc;
eigen_minc = m.minCoeff(&eigen_minrow,&eigen_mincol);
eigen_maxc = m.maxCoeff(&eigen_maxrow,&eigen_maxcol);
VERIFY(minrow == eigen_minrow);
VERIFY(maxrow == eigen_maxrow);
VERIFY(mincol == eigen_mincol);
VERIFY(maxcol == eigen_maxcol);
VERIFY_IS_APPROX(minc, eigen_minc);
VERIFY_IS_APPROX(maxc, eigen_maxc);
VERIFY_IS_APPROX(minc, m.minCoeff());
VERIFY_IS_APPROX(maxc, m.maxCoeff());
eigen_maxc = (m.adjoint()*m).maxCoeff(&eigen_maxrow,&eigen_maxcol);
Index maxrow2=0,maxcol2=0;
eigen_maxc = (m.adjoint()*m).eval().maxCoeff(&maxrow2,&maxcol2);
VERIFY(maxrow2 == eigen_maxrow);
VERIFY(maxcol2 == eigen_maxcol);
if (!NumTraits<Scalar>::IsInteger && m.size() > 2) {
// Test NaN propagation by replacing an element with NaN.
bool stop = false;
for (Index j = 0; j < cols && !stop; ++j) {
for (Index i = 0; i < rows && !stop; ++i) {
if (!(j == mincol && i == minrow) &&
!(j == maxcol && i == maxrow)) {
m(i,j) = NumTraits<Scalar>::quiet_NaN();
stop = true;
break;
}
}
}
eigen_minc = m.template minCoeff<PropagateNumbers>(&eigen_minrow, &eigen_mincol);
eigen_maxc = m.template maxCoeff<PropagateNumbers>(&eigen_maxrow, &eigen_maxcol);
VERIFY(minrow == eigen_minrow);
VERIFY(maxrow == eigen_maxrow);
VERIFY(mincol == eigen_mincol);
VERIFY(maxcol == eigen_maxcol);
VERIFY_IS_APPROX(minc, eigen_minc);
VERIFY_IS_APPROX(maxc, eigen_maxc);
VERIFY_IS_APPROX(minc, m.template minCoeff<PropagateNumbers>());
VERIFY_IS_APPROX(maxc, m.template maxCoeff<PropagateNumbers>());
eigen_minc = m.template minCoeff<PropagateNaN>(&eigen_minrow, &eigen_mincol);
eigen_maxc = m.template maxCoeff<PropagateNaN>(&eigen_maxrow, &eigen_maxcol);
VERIFY(minrow != eigen_minrow || mincol != eigen_mincol);
VERIFY(maxrow != eigen_maxrow || maxcol != eigen_maxcol);
VERIFY((numext::isnan)(eigen_minc));
VERIFY((numext::isnan)(eigen_maxc));
}
}
template<typename VectorType> void vectorVisitor(const VectorType& w)
{
typedef typename VectorType::Scalar Scalar;
Index size = w.size();
// construct a random vector where all coefficients are different
VectorType v;
v = VectorType::Random(size);
for(Index i = 0; i < size; i++)
for(Index i2 = 0; i2 < i; i2++)
while(v(i) == v(i2)) // yes, ==
v(i) = internal::random<Scalar>();
Scalar minc = v(0), maxc = v(0);
Index minidx=0, maxidx=0;
for(Index i = 0; i < size; i++)
{
if(v(i) < minc)
{
minc = v(i);
minidx = i;
}
if(v(i) > maxc)
{
maxc = v(i);
maxidx = i;
}
}
Index eigen_minidx, eigen_maxidx;
Scalar eigen_minc, eigen_maxc;
eigen_minc = v.minCoeff(&eigen_minidx);
eigen_maxc = v.maxCoeff(&eigen_maxidx);
VERIFY(minidx == eigen_minidx);
VERIFY(maxidx == eigen_maxidx);
VERIFY_IS_APPROX(minc, eigen_minc);
VERIFY_IS_APPROX(maxc, eigen_maxc);
VERIFY_IS_APPROX(minc, v.minCoeff());
VERIFY_IS_APPROX(maxc, v.maxCoeff());
Index idx0 = internal::random<Index>(0,size-1);
Index idx1 = eigen_minidx;
Index idx2 = eigen_maxidx;
VectorType v1(v), v2(v);
v1(idx0) = v1(idx1);
v2(idx0) = v2(idx2);
v1.minCoeff(&eigen_minidx);
v2.maxCoeff(&eigen_maxidx);
VERIFY(eigen_minidx == (std::min)(idx0,idx1));
VERIFY(eigen_maxidx == (std::min)(idx0,idx2));
if (!NumTraits<Scalar>::IsInteger && size > 2) {
// Test NaN propagation by replacing an element with NaN.
for (Index i = 0; i < size; ++i) {
if (i != minidx && i != maxidx) {
v(i) = NumTraits<Scalar>::quiet_NaN();
break;
}
}
eigen_minc = v.template minCoeff<PropagateNumbers>(&eigen_minidx);
eigen_maxc = v.template maxCoeff<PropagateNumbers>(&eigen_maxidx);
VERIFY(minidx == eigen_minidx);
VERIFY(maxidx == eigen_maxidx);
VERIFY_IS_APPROX(minc, eigen_minc);
VERIFY_IS_APPROX(maxc, eigen_maxc);
VERIFY_IS_APPROX(minc, v.template minCoeff<PropagateNumbers>());
VERIFY_IS_APPROX(maxc, v.template maxCoeff<PropagateNumbers>());
eigen_minc = v.template minCoeff<PropagateNaN>(&eigen_minidx);
eigen_maxc = v.template maxCoeff<PropagateNaN>(&eigen_maxidx);
VERIFY(minidx != eigen_minidx);
VERIFY(maxidx != eigen_maxidx);
VERIFY((numext::isnan)(eigen_minc));
VERIFY((numext::isnan)(eigen_maxc));
}
}
template<typename T, bool Vectorizable>
struct TrackedVisitor {
void init(T v, int i, int j) { return this->operator()(v,i,j); }
void operator()(T v, int i, int j) {
EIGEN_UNUSED_VARIABLE(v)
visited.push_back({i, j});
vectorized = false;
}
template<typename Packet>
void packet(Packet p, int i, int j) {
EIGEN_UNUSED_VARIABLE(p)
visited.push_back({i, j});
vectorized = true;
}
std::vector<std::pair<int,int>> visited;
bool vectorized;
};
namespace Eigen {
namespace internal {
template<typename T, bool Vectorizable>
struct functor_traits<TrackedVisitor<T, Vectorizable> > {
enum { PacketAccess = Vectorizable, Cost = 1 };
};
} // namespace internal
} // namespace Eigen
void checkOptimalTraversal() {
// Unrolled - ColMajor.
{
Eigen::Matrix4f X = Eigen::Matrix4f::Random();
TrackedVisitor<double, false> visitor;
X.visit(visitor);
int count = 0;
for (int j=0; j<X.cols(); ++j) {
for (int i=0; i<X.rows(); ++i) {
VERIFY_IS_EQUAL(visitor.visited[count].first, i);
VERIFY_IS_EQUAL(visitor.visited[count].second, j);
++count;
}
}
}
// Unrolled - RowMajor.
using Matrix4fRowMajor = Eigen::Matrix<float, 4, 4, Eigen::RowMajor>;
{
Matrix4fRowMajor X = Matrix4fRowMajor::Random();
TrackedVisitor<double, false> visitor;
X.visit(visitor);
int count = 0;
for (int i=0; i<X.rows(); ++i) {
for (int j=0; j<X.cols(); ++j) {
VERIFY_IS_EQUAL(visitor.visited[count].first, i);
VERIFY_IS_EQUAL(visitor.visited[count].second, j);
++count;
}
}
}
// Not unrolled - ColMajor
{
Eigen::MatrixXf X = Eigen::MatrixXf::Random(4, 4);
TrackedVisitor<double, false> visitor;
X.visit(visitor);
int count = 0;
for (int j=0; j<X.cols(); ++j) {
for (int i=0; i<X.rows(); ++i) {
VERIFY_IS_EQUAL(visitor.visited[count].first, i);
VERIFY_IS_EQUAL(visitor.visited[count].second, j);
++count;
}
}
}
// Not unrolled - RowMajor.
using MatrixXfRowMajor = Eigen::Matrix<float, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>;
{
MatrixXfRowMajor X = MatrixXfRowMajor::Random(4, 4);
TrackedVisitor<double, false> visitor;
X.visit(visitor);
int count = 0;
for (int i=0; i<X.rows(); ++i) {
for (int j=0; j<X.cols(); ++j) {
VERIFY_IS_EQUAL(visitor.visited[count].first, i);
VERIFY_IS_EQUAL(visitor.visited[count].second, j);
++count;
}
}
}
// Vectorized - ColMajor
{
// Ensure rows/cols is larger than packet size.
constexpr int PacketSize = Eigen::internal::packet_traits<float>::size;
Eigen::MatrixXf X = Eigen::MatrixXf::Random(4 * PacketSize, 4 * PacketSize);
TrackedVisitor<double, true> visitor;
X.visit(visitor);
int previ = -1;
int prevj = 0;
for (const auto& p : visitor.visited) {
int i = p.first;
int j = p.second;
VERIFY(
(j == prevj && i == previ + 1) // Advance single element
|| (j == prevj && i == previ + PacketSize) // Advance packet
|| (j == prevj + 1 && i == 0) // Advance column
);
previ = i;
prevj = j;
}
if (Eigen::internal::packet_traits<float>::Vectorizable) {
VERIFY(visitor.vectorized);
}
}
// Vectorized - RowMajor.
{
// Ensure rows/cols is larger than packet size.
constexpr int PacketSize = Eigen::internal::packet_traits<float>::size;
MatrixXfRowMajor X = MatrixXfRowMajor::Random(4 * PacketSize, 4 * PacketSize);
TrackedVisitor<double, true> visitor;
X.visit(visitor);
int previ = 0;
int prevj = -1;
for (const auto& p : visitor.visited) {
int i = p.first;
int j = p.second;
VERIFY(
(i == previ && j == prevj + 1) // Advance single element
|| (i == previ && j == prevj + PacketSize) // Advance packet
|| (i == previ + 1 && j == 0) // Advance row
);
previ = i;
prevj = j;
}
if (Eigen::internal::packet_traits<float>::Vectorizable) {
VERIFY(visitor.vectorized);
}
}
}
EIGEN_DECLARE_TEST(visitor)
{
for(int i = 0; i < g_repeat; i++) {
CALL_SUBTEST_1( matrixVisitor(Matrix<float, 1, 1>()) );
CALL_SUBTEST_2( matrixVisitor(Matrix2f()) );
CALL_SUBTEST_3( matrixVisitor(Matrix4d()) );
CALL_SUBTEST_4( matrixVisitor(MatrixXd(8, 12)) );
CALL_SUBTEST_5( matrixVisitor(Matrix<double,Dynamic,Dynamic,RowMajor>(20, 20)) );
CALL_SUBTEST_6( matrixVisitor(MatrixXi(8, 12)) );
}
for(int i = 0; i < g_repeat; i++) {
CALL_SUBTEST_7( vectorVisitor(Vector4f()) );
CALL_SUBTEST_7( vectorVisitor(Matrix<int,12,1>()) );
CALL_SUBTEST_8( vectorVisitor(VectorXd(10)) );
CALL_SUBTEST_9( vectorVisitor(RowVectorXd(10)) );
CALL_SUBTEST_10( vectorVisitor(VectorXf(33)) );
}
CALL_SUBTEST_11(checkOptimalTraversal());
}