| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2009 Thomas Capricelli <orzel@freehackers.org> |
| // |
| // This code initially comes from MINPACK whose original authors are: |
| // Copyright Jorge More - Argonne National Laboratory |
| // Copyright Burt Garbow - Argonne National Laboratory |
| // Copyright Ken Hillstrom - Argonne National Laboratory |
| // |
| // This Source Code Form is subject to the terms of the Minpack license |
| // (a BSD-like license) described in the campaigned CopyrightMINPACK.txt file. |
| |
| #ifndef EIGEN_LMONESTEP_H |
| #define EIGEN_LMONESTEP_H |
| |
| #include "./InternalHeaderCheck.h" |
| |
| namespace Eigen { |
| |
| template<typename FunctorType> |
| LevenbergMarquardtSpace::Status |
| LevenbergMarquardt<FunctorType>::minimizeOneStep(FVectorType &x) |
| { |
| using std::abs; |
| using std::sqrt; |
| RealScalar temp, temp1,temp2; |
| RealScalar ratio; |
| RealScalar pnorm, xnorm, fnorm1, actred, dirder, prered; |
| eigen_assert(x.size()==n); // check the caller is not cheating us |
| |
| temp = 0.0; xnorm = 0.0; |
| /* calculate the jacobian matrix. */ |
| Index df_ret = m_functor.df(x, m_fjac); |
| if (df_ret<0) |
| return LevenbergMarquardtSpace::UserAsked; |
| if (df_ret>0) |
| // numerical diff, we evaluated the function df_ret times |
| m_nfev += df_ret; |
| else m_njev++; |
| |
| /* compute the qr factorization of the jacobian. */ |
| for (int j = 0; j < x.size(); ++j) |
| m_wa2(j) = m_fjac.col(j).blueNorm(); |
| QRSolver qrfac(m_fjac); |
| if(qrfac.info() != Success) { |
| m_info = NumericalIssue; |
| return LevenbergMarquardtSpace::ImproperInputParameters; |
| } |
| // Make a copy of the first factor with the associated permutation |
| m_rfactor = qrfac.matrixR(); |
| m_permutation = (qrfac.colsPermutation()); |
| |
| /* on the first iteration and if external scaling is not used, scale according */ |
| /* to the norms of the columns of the initial jacobian. */ |
| if (m_iter == 1) { |
| if (!m_useExternalScaling) |
| for (Index j = 0; j < n; ++j) |
| m_diag[j] = (m_wa2[j]==0.)? 1. : m_wa2[j]; |
| |
| /* on the first iteration, calculate the norm of the scaled x */ |
| /* and initialize the step bound m_delta. */ |
| xnorm = m_diag.cwiseProduct(x).stableNorm(); |
| m_delta = m_factor * xnorm; |
| if (m_delta == 0.) |
| m_delta = m_factor; |
| } |
| |
| /* form (q transpose)*m_fvec and store the first n components in */ |
| /* m_qtf. */ |
| m_wa4 = m_fvec; |
| m_wa4 = qrfac.matrixQ().adjoint() * m_fvec; |
| m_qtf = m_wa4.head(n); |
| |
| /* compute the norm of the scaled gradient. */ |
| m_gnorm = 0.; |
| if (m_fnorm != 0.) |
| for (Index j = 0; j < n; ++j) |
| if (m_wa2[m_permutation.indices()[j]] != 0.) |
| m_gnorm = (std::max)(m_gnorm, abs( m_rfactor.col(j).head(j+1).dot(m_qtf.head(j+1)/m_fnorm) / m_wa2[m_permutation.indices()[j]])); |
| |
| /* test for convergence of the gradient norm. */ |
| if (m_gnorm <= m_gtol) { |
| m_info = Success; |
| return LevenbergMarquardtSpace::CosinusTooSmall; |
| } |
| |
| /* rescale if necessary. */ |
| if (!m_useExternalScaling) |
| m_diag = m_diag.cwiseMax(m_wa2); |
| |
| do { |
| /* determine the levenberg-marquardt parameter. */ |
| internal::lmpar2(qrfac, m_diag, m_qtf, m_delta, m_par, m_wa1); |
| |
| /* store the direction p and x + p. calculate the norm of p. */ |
| m_wa1 = -m_wa1; |
| m_wa2 = x + m_wa1; |
| pnorm = m_diag.cwiseProduct(m_wa1).stableNorm(); |
| |
| /* on the first iteration, adjust the initial step bound. */ |
| if (m_iter == 1) |
| m_delta = (std::min)(m_delta,pnorm); |
| |
| /* evaluate the function at x + p and calculate its norm. */ |
| if ( m_functor(m_wa2, m_wa4) < 0) |
| return LevenbergMarquardtSpace::UserAsked; |
| ++m_nfev; |
| fnorm1 = m_wa4.stableNorm(); |
| |
| /* compute the scaled actual reduction. */ |
| actred = -1.; |
| if (Scalar(.1) * fnorm1 < m_fnorm) |
| actred = 1. - numext::abs2(fnorm1 / m_fnorm); |
| |
| /* compute the scaled predicted reduction and */ |
| /* the scaled directional derivative. */ |
| m_wa3 = m_rfactor.template triangularView<Upper>() * (m_permutation.inverse() *m_wa1); |
| temp1 = numext::abs2(m_wa3.stableNorm() / m_fnorm); |
| temp2 = numext::abs2(sqrt(m_par) * pnorm / m_fnorm); |
| prered = temp1 + temp2 / Scalar(.5); |
| dirder = -(temp1 + temp2); |
| |
| /* compute the ratio of the actual to the predicted */ |
| /* reduction. */ |
| ratio = 0.; |
| if (prered != 0.) |
| ratio = actred / prered; |
| |
| /* update the step bound. */ |
| if (ratio <= Scalar(.25)) { |
| if (actred >= 0.) |
| temp = RealScalar(.5); |
| if (actred < 0.) |
| temp = RealScalar(.5) * dirder / (dirder + RealScalar(.5) * actred); |
| if (RealScalar(.1) * fnorm1 >= m_fnorm || temp < RealScalar(.1)) |
| temp = Scalar(.1); |
| /* Computing MIN */ |
| m_delta = temp * (std::min)(m_delta, pnorm / RealScalar(.1)); |
| m_par /= temp; |
| } else if (!(m_par != 0. && ratio < RealScalar(.75))) { |
| m_delta = pnorm / RealScalar(.5); |
| m_par = RealScalar(.5) * m_par; |
| } |
| |
| /* test for successful iteration. */ |
| if (ratio >= RealScalar(1e-4)) { |
| /* successful iteration. update x, m_fvec, and their norms. */ |
| x = m_wa2; |
| m_wa2 = m_diag.cwiseProduct(x); |
| m_fvec = m_wa4; |
| xnorm = m_wa2.stableNorm(); |
| m_fnorm = fnorm1; |
| ++m_iter; |
| } |
| |
| /* tests for convergence. */ |
| if (abs(actred) <= m_ftol && prered <= m_ftol && Scalar(.5) * ratio <= 1. && m_delta <= m_xtol * xnorm) |
| { |
| m_info = Success; |
| return LevenbergMarquardtSpace::RelativeErrorAndReductionTooSmall; |
| } |
| if (abs(actred) <= m_ftol && prered <= m_ftol && Scalar(.5) * ratio <= 1.) |
| { |
| m_info = Success; |
| return LevenbergMarquardtSpace::RelativeReductionTooSmall; |
| } |
| if (m_delta <= m_xtol * xnorm) |
| { |
| m_info = Success; |
| return LevenbergMarquardtSpace::RelativeErrorTooSmall; |
| } |
| |
| /* tests for termination and stringent tolerances. */ |
| if (m_nfev >= m_maxfev) |
| { |
| m_info = NoConvergence; |
| return LevenbergMarquardtSpace::TooManyFunctionEvaluation; |
| } |
| if (abs(actred) <= NumTraits<Scalar>::epsilon() && prered <= NumTraits<Scalar>::epsilon() && Scalar(.5) * ratio <= 1.) |
| { |
| m_info = Success; |
| return LevenbergMarquardtSpace::FtolTooSmall; |
| } |
| if (m_delta <= NumTraits<Scalar>::epsilon() * xnorm) |
| { |
| m_info = Success; |
| return LevenbergMarquardtSpace::XtolTooSmall; |
| } |
| if (m_gnorm <= NumTraits<Scalar>::epsilon()) |
| { |
| m_info = Success; |
| return LevenbergMarquardtSpace::GtolTooSmall; |
| } |
| |
| } while (ratio < Scalar(1e-4)); |
| |
| return LevenbergMarquardtSpace::Running; |
| } |
| |
| |
| } // end namespace Eigen |
| |
| #endif // EIGEN_LMONESTEP_H |