| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #include <cstdlib> |
| #include <cerrno> |
| #include <ctime> |
| #include <iostream> |
| #include <fstream> |
| #include <string> |
| #include <sstream> |
| #include <vector> |
| #include <typeinfo> |
| #include <functional> |
| |
| // The following includes of STL headers have to be done _before_ the |
| // definition of macros min() and max(). The reason is that many STL |
| // implementations will not work properly as the min and max symbols collide |
| // with the STL functions std:min() and std::max(). The STL headers may check |
| // for the macro definition of min/max and issue a warning or undefine the |
| // macros. |
| // |
| // Still, Windows defines min() and max() in windef.h as part of the regular |
| // Windows system interfaces and many other Windows APIs depend on these |
| // macros being available. To prevent the macro expansion of min/max and to |
| // make Eigen compatible with the Windows environment all function calls of |
| // std::min() and std::max() have to be written with parenthesis around the |
| // function name. |
| // |
| // All STL headers used by Eigen should be included here. Because main.h is |
| // included before any Eigen header and because the STL headers are guarded |
| // against multiple inclusions, no STL header will see our own min/max macro |
| // definitions. |
| #include <limits> |
| #include <algorithm> |
| #include <complex> |
| #include <deque> |
| #include <queue> |
| #include <cassert> |
| #include <list> |
| #if __cplusplus >= 201103L |
| #include <random> |
| #ifdef EIGEN_USE_THREADS |
| #include <future> |
| #endif |
| #endif |
| |
| // Same for cuda_fp16.h |
| #if defined(__CUDACC__) && !defined(EIGEN_NO_CUDA) |
| // Means the compiler is either nvcc or clang with CUDA enabled |
| #define EIGEN_CUDACC __CUDACC__ |
| #endif |
| #if defined(EIGEN_CUDACC) |
| #include <cuda.h> |
| #define EIGEN_CUDA_SDK_VER (CUDA_VERSION * 10) |
| #else |
| #define EIGEN_CUDA_SDK_VER 0 |
| #endif |
| #if EIGEN_CUDA_SDK_VER >= 70500 |
| #include <cuda_fp16.h> |
| #endif |
| |
| // To test that all calls from Eigen code to std::min() and std::max() are |
| // protected by parenthesis against macro expansion, the min()/max() macros |
| // are defined here and any not-parenthesized min/max call will cause a |
| // compiler error. |
| #if !defined(__HIPCC__) && !defined(EIGEN_USE_SYCL) |
| // |
| // HIP header files include the following files |
| // <thread> |
| // <regex> |
| // <unordered_map> |
| // which seem to contain not-parenthesized calls to "max"/"min", triggering the following check and causing the compile to fail |
| // |
| // Including those header files before the following macro definition for "min" / "max", only partially resolves the issue |
| // This is because other HIP header files also define "isnan" / "isinf" / "isfinite" functions, which are needed in other |
| // headers. |
| // |
| // So instead choosing to simply disable this check for HIP |
| // |
| #define min(A,B) please_protect_your_min_with_parentheses |
| #define max(A,B) please_protect_your_max_with_parentheses |
| #define isnan(X) please_protect_your_isnan_with_parentheses |
| #define isinf(X) please_protect_your_isinf_with_parentheses |
| #define isfinite(X) please_protect_your_isfinite_with_parentheses |
| #endif |
| |
| |
| // test possible conflicts |
| struct real {}; |
| struct imag {}; |
| |
| #ifdef M_PI |
| #undef M_PI |
| #endif |
| #define M_PI please_use_EIGEN_PI_instead_of_M_PI |
| |
| #define FORBIDDEN_IDENTIFIER (this_identifier_is_forbidden_to_avoid_clashes) this_identifier_is_forbidden_to_avoid_clashes |
| // B0 is defined in POSIX header termios.h |
| #define B0 FORBIDDEN_IDENTIFIER |
| // `I` may be defined by complex.h: |
| #define I FORBIDDEN_IDENTIFIER |
| |
| // Unit tests calling Eigen's blas library must preserve the default blocking size |
| // to avoid troubles. |
| #ifndef EIGEN_NO_DEBUG_SMALL_PRODUCT_BLOCKS |
| #define EIGEN_DEBUG_SMALL_PRODUCT_BLOCKS |
| #endif |
| |
| // shuts down ICC's remark #593: variable "XXX" was set but never used |
| #define TEST_SET_BUT_UNUSED_VARIABLE(X) EIGEN_UNUSED_VARIABLE(X) |
| |
| #ifdef TEST_ENABLE_TEMPORARY_TRACKING |
| |
| static long int nb_temporaries; |
| static long int nb_temporaries_on_assert = -1; |
| |
| inline void on_temporary_creation(long int size) { |
| // here's a great place to set a breakpoint when debugging failures in this test! |
| if(size!=0) nb_temporaries++; |
| if(nb_temporaries_on_assert>0) assert(nb_temporaries<nb_temporaries_on_assert); |
| } |
| |
| #define EIGEN_DENSE_STORAGE_CTOR_PLUGIN { on_temporary_creation(size); } |
| |
| #define VERIFY_EVALUATION_COUNT(XPR,N) {\ |
| nb_temporaries = 0; \ |
| XPR; \ |
| if(nb_temporaries!=(N)) { std::cerr << "nb_temporaries == " << nb_temporaries << "\n"; }\ |
| VERIFY( (#XPR) && nb_temporaries==(N) ); \ |
| } |
| |
| #endif |
| |
| #include "split_test_helper.h" |
| |
| #ifdef NDEBUG |
| #undef NDEBUG |
| #endif |
| |
| // On windows CE, NDEBUG is automatically defined <assert.h> if NDEBUG is not defined. |
| #ifndef DEBUG |
| #define DEBUG |
| #endif |
| |
| // bounds integer values for AltiVec |
| #if defined(__ALTIVEC__) || defined(__VSX__) |
| #define EIGEN_MAKING_DOCS |
| #endif |
| |
| #define DEFAULT_REPEAT 10 |
| |
| namespace Eigen |
| { |
| static std::vector<std::string> g_test_stack; |
| // level == 0 <=> abort if test fail |
| // level >= 1 <=> warning message to std::cerr if test fail |
| static int g_test_level = 0; |
| static int g_repeat = 1; |
| static unsigned int g_seed = 0; |
| static bool g_has_set_repeat = false, g_has_set_seed = false; |
| |
| class EigenTest |
| { |
| public: |
| EigenTest() : m_func(0) {} |
| EigenTest(const char* a_name, void (*func)(void)) |
| : m_name(a_name), m_func(func) |
| { |
| ms_registered_tests.push_back(this); |
| } |
| const std::string& name() const { return m_name; } |
| void operator()() const { m_func(); } |
| |
| static const std::vector<EigenTest*>& all() { return ms_registered_tests; } |
| protected: |
| std::string m_name; |
| void (*m_func)(void); |
| static std::vector<EigenTest*> ms_registered_tests; |
| }; |
| |
| std::vector<EigenTest*> EigenTest::ms_registered_tests; |
| |
| // Declare and register a test, e.g.: |
| // EIGEN_DECLARE_TEST(mytest) { ... } |
| // will create a function: |
| // void test_mytest() { ... } |
| // that will be automatically called. |
| #define EIGEN_DECLARE_TEST(X) \ |
| void EIGEN_CAT(test_,X) (); \ |
| static EigenTest EIGEN_CAT(test_handler_,X) (EIGEN_MAKESTRING(X), & EIGEN_CAT(test_,X)); \ |
| void EIGEN_CAT(test_,X) () |
| } |
| |
| #define TRACK std::cerr << __FILE__ << " " << __LINE__ << std::endl |
| // #define TRACK while() |
| |
| #define EIGEN_DEFAULT_IO_FORMAT IOFormat(4, 0, " ", "\n", "", "", "", "") |
| |
| #if (defined(_CPPUNWIND) || defined(__EXCEPTIONS)) && !defined(__CUDA_ARCH__) && !defined(__HIP_DEVICE_COMPILE__) && !defined(__SYCL_DEVICE_ONLY__) |
| #define EIGEN_EXCEPTIONS |
| #endif |
| |
| #ifndef EIGEN_NO_ASSERTION_CHECKING |
| |
| namespace Eigen |
| { |
| static const bool should_raise_an_assert = false; |
| |
| // Used to avoid to raise two exceptions at a time in which |
| // case the exception is not properly caught. |
| // This may happen when a second exceptions is triggered in a destructor. |
| static bool no_more_assert = false; |
| static bool report_on_cerr_on_assert_failure = true; |
| |
| struct eigen_assert_exception |
| { |
| eigen_assert_exception(void) {} |
| ~eigen_assert_exception() { Eigen::no_more_assert = false; } |
| }; |
| |
| struct eigen_static_assert_exception |
| { |
| eigen_static_assert_exception(void) {} |
| ~eigen_static_assert_exception() { Eigen::no_more_assert = false; } |
| }; |
| } |
| // If EIGEN_DEBUG_ASSERTS is defined and if no assertion is triggered while |
| // one should have been, then the list of executed assertions is printed out. |
| // |
| // EIGEN_DEBUG_ASSERTS is not enabled by default as it |
| // significantly increases the compilation time |
| // and might even introduce side effects that would hide |
| // some memory errors. |
| #ifdef EIGEN_DEBUG_ASSERTS |
| |
| namespace Eigen |
| { |
| namespace internal |
| { |
| static bool push_assert = false; |
| } |
| static std::vector<std::string> eigen_assert_list; |
| } |
| #define eigen_assert(a) \ |
| if( (!(a)) && (!no_more_assert) ) \ |
| { \ |
| if(report_on_cerr_on_assert_failure) \ |
| std::cerr << #a << " " __FILE__ << "(" << __LINE__ << ")\n"; \ |
| Eigen::no_more_assert = true; \ |
| EIGEN_THROW_X(Eigen::eigen_assert_exception()); \ |
| } \ |
| else if (Eigen::internal::push_assert) \ |
| { \ |
| eigen_assert_list.push_back(std::string(EIGEN_MAKESTRING(__FILE__) " (" EIGEN_MAKESTRING(__LINE__) ") : " #a) ); \ |
| } |
| |
| #ifdef EIGEN_EXCEPTIONS |
| #define VERIFY_RAISES_ASSERT(a) \ |
| { \ |
| Eigen::no_more_assert = false; \ |
| Eigen::eigen_assert_list.clear(); \ |
| Eigen::internal::push_assert = true; \ |
| Eigen::report_on_cerr_on_assert_failure = false; \ |
| try { \ |
| a; \ |
| std::cerr << "One of the following asserts should have been triggered:\n"; \ |
| for (uint ai=0 ; ai<eigen_assert_list.size() ; ++ai) \ |
| std::cerr << " " << eigen_assert_list[ai] << "\n"; \ |
| VERIFY(Eigen::should_raise_an_assert && # a); \ |
| } catch (Eigen::eigen_assert_exception) { \ |
| Eigen::internal::push_assert = false; VERIFY(true); \ |
| } \ |
| Eigen::report_on_cerr_on_assert_failure = true; \ |
| Eigen::internal::push_assert = false; \ |
| } |
| #endif //EIGEN_EXCEPTIONS |
| |
| #elif !defined(__CUDACC__) && !defined(__HIPCC__) && !defined(SYCL_DEVICE_ONLY) // EIGEN_DEBUG_ASSERTS |
| // see bug 89. The copy_bool here is working around a bug in gcc <= 4.3 |
| #define eigen_assert(a) \ |
| if( (!Eigen::internal::copy_bool(a)) && (!no_more_assert) )\ |
| { \ |
| Eigen::no_more_assert = true; \ |
| if(report_on_cerr_on_assert_failure) \ |
| eigen_plain_assert(a); \ |
| else \ |
| EIGEN_THROW_X(Eigen::eigen_assert_exception()); \ |
| } |
| |
| #ifdef EIGEN_EXCEPTIONS |
| #define VERIFY_RAISES_ASSERT(a) { \ |
| Eigen::no_more_assert = false; \ |
| Eigen::report_on_cerr_on_assert_failure = false; \ |
| try { \ |
| a; \ |
| VERIFY(Eigen::should_raise_an_assert && # a); \ |
| } \ |
| catch (Eigen::eigen_assert_exception&) { VERIFY(true); } \ |
| Eigen::report_on_cerr_on_assert_failure = true; \ |
| } |
| #endif // EIGEN_EXCEPTIONS |
| #endif // EIGEN_DEBUG_ASSERTS |
| |
| #if defined(TEST_CHECK_STATIC_ASSERTIONS) && defined(EIGEN_EXCEPTIONS) |
| #define EIGEN_STATIC_ASSERT(a,MSG) \ |
| if( (!Eigen::internal::copy_bool(a)) && (!no_more_assert) )\ |
| { \ |
| Eigen::no_more_assert = true; \ |
| if(report_on_cerr_on_assert_failure) \ |
| eigen_plain_assert((a) && #MSG); \ |
| else \ |
| EIGEN_THROW_X(Eigen::eigen_static_assert_exception()); \ |
| } |
| #define VERIFY_RAISES_STATIC_ASSERT(a) { \ |
| Eigen::no_more_assert = false; \ |
| Eigen::report_on_cerr_on_assert_failure = false; \ |
| try { \ |
| a; \ |
| VERIFY(Eigen::should_raise_an_assert && # a); \ |
| } \ |
| catch (Eigen::eigen_static_assert_exception&) { VERIFY(true); } \ |
| Eigen::report_on_cerr_on_assert_failure = true; \ |
| } |
| #endif // TEST_CHECK_STATIC_ASSERTIONS |
| |
| #ifndef VERIFY_RAISES_ASSERT |
| #define VERIFY_RAISES_ASSERT(a) \ |
| std::cout << "Can't VERIFY_RAISES_ASSERT( " #a " ) with exceptions disabled\n"; |
| #endif |
| #ifndef VERIFY_RAISES_STATIC_ASSERT |
| #define VERIFY_RAISES_STATIC_ASSERT(a) \ |
| std::cout << "Can't VERIFY_RAISES_STATIC_ASSERT( " #a " ) with exceptions disabled\n"; |
| #endif |
| |
| #if !defined(__CUDACC__) && !defined(__HIPCC__) && !defined(SYCL_DEVICE_ONLY) |
| #define EIGEN_USE_CUSTOM_ASSERT |
| #endif |
| |
| #else // EIGEN_NO_ASSERTION_CHECKING |
| |
| #define VERIFY_RAISES_ASSERT(a) {} |
| #define VERIFY_RAISES_STATIC_ASSERT(a) {} |
| |
| #endif // EIGEN_NO_ASSERTION_CHECKING |
| |
| #define EIGEN_INTERNAL_DEBUGGING |
| #include <Eigen/QR> // required for createRandomPIMatrixOfRank |
| |
| inline void verify_impl(bool condition, const char *testname, const char *file, int line, const char *condition_as_string) |
| { |
| if (!condition) |
| { |
| if(Eigen::g_test_level>0) |
| std::cerr << "WARNING: "; |
| std::cerr << "Test " << testname << " failed in " << file << " (" << line << ")" |
| << std::endl << " " << condition_as_string << std::endl; |
| std::cerr << "Stack:\n"; |
| const int test_stack_size = static_cast<int>(Eigen::g_test_stack.size()); |
| for(int i=test_stack_size-1; i>=0; --i) |
| std::cerr << " - " << Eigen::g_test_stack[i] << "\n"; |
| std::cerr << "\n"; |
| if(Eigen::g_test_level==0) |
| abort(); |
| } |
| } |
| |
| #define VERIFY(a) ::verify_impl(a, g_test_stack.back().c_str(), __FILE__, __LINE__, EIGEN_MAKESTRING(a)) |
| |
| #define VERIFY_GE(a, b) ::verify_impl(a >= b, g_test_stack.back().c_str(), __FILE__, __LINE__, EIGEN_MAKESTRING(a >= b)) |
| #define VERIFY_LE(a, b) ::verify_impl(a <= b, g_test_stack.back().c_str(), __FILE__, __LINE__, EIGEN_MAKESTRING(a <= b)) |
| |
| |
| #define VERIFY_IS_EQUAL(a, b) VERIFY(test_is_equal(a, b, true)) |
| #define VERIFY_IS_NOT_EQUAL(a, b) VERIFY(test_is_equal(a, b, false)) |
| #define VERIFY_IS_APPROX(a, b) VERIFY(verifyIsApprox(a, b)) |
| #define VERIFY_IS_NOT_APPROX(a, b) VERIFY(!test_isApprox(a, b)) |
| #define VERIFY_IS_MUCH_SMALLER_THAN(a, b) VERIFY(test_isMuchSmallerThan(a, b)) |
| #define VERIFY_IS_NOT_MUCH_SMALLER_THAN(a, b) VERIFY(!test_isMuchSmallerThan(a, b)) |
| #define VERIFY_IS_APPROX_OR_LESS_THAN(a, b) VERIFY(test_isApproxOrLessThan(a, b)) |
| #define VERIFY_IS_NOT_APPROX_OR_LESS_THAN(a, b) VERIFY(!test_isApproxOrLessThan(a, b)) |
| |
| #define VERIFY_IS_UNITARY(a) VERIFY(test_isUnitary(a)) |
| |
| #define STATIC_CHECK(COND) EIGEN_STATIC_ASSERT( (COND) , EIGEN_INTERNAL_ERROR_PLEASE_FILE_A_BUG_REPORT ) |
| |
| #define CALL_SUBTEST(FUNC) do { \ |
| g_test_stack.push_back(EIGEN_MAKESTRING(FUNC)); \ |
| FUNC; \ |
| g_test_stack.pop_back(); \ |
| } while (0) |
| |
| |
| namespace Eigen { |
| |
| template<typename T1,typename T2> |
| typename internal::enable_if<internal::is_same<T1,T2>::value,bool>::type |
| is_same_type(const T1&, const T2&) |
| { |
| return true; |
| } |
| |
| template<typename T> inline typename NumTraits<T>::Real test_precision() { return NumTraits<T>::dummy_precision(); } |
| template<> inline float test_precision<float>() { return 1e-3f; } |
| template<> inline double test_precision<double>() { return 1e-6; } |
| template<> inline long double test_precision<long double>() { return 1e-6l; } |
| template<> inline float test_precision<std::complex<float> >() { return test_precision<float>(); } |
| template<> inline double test_precision<std::complex<double> >() { return test_precision<double>(); } |
| template<> inline long double test_precision<std::complex<long double> >() { return test_precision<long double>(); } |
| |
| #define EIGEN_TEST_SCALAR_TEST_OVERLOAD(TYPE) \ |
| inline bool test_isApprox(TYPE a, TYPE b) \ |
| { return internal::isApprox(a, b, test_precision<TYPE>()); } \ |
| inline bool test_isMuchSmallerThan(TYPE a, TYPE b) \ |
| { return internal::isMuchSmallerThan(a, b, test_precision<TYPE>()); } \ |
| inline bool test_isApproxOrLessThan(TYPE a, TYPE b) \ |
| { return internal::isApproxOrLessThan(a, b, test_precision<TYPE>()); } |
| |
| EIGEN_TEST_SCALAR_TEST_OVERLOAD(short) |
| EIGEN_TEST_SCALAR_TEST_OVERLOAD(unsigned short) |
| EIGEN_TEST_SCALAR_TEST_OVERLOAD(int) |
| EIGEN_TEST_SCALAR_TEST_OVERLOAD(unsigned int) |
| EIGEN_TEST_SCALAR_TEST_OVERLOAD(long) |
| EIGEN_TEST_SCALAR_TEST_OVERLOAD(unsigned long) |
| #if EIGEN_HAS_CXX11 |
| EIGEN_TEST_SCALAR_TEST_OVERLOAD(long long) |
| EIGEN_TEST_SCALAR_TEST_OVERLOAD(unsigned long long) |
| #endif |
| EIGEN_TEST_SCALAR_TEST_OVERLOAD(float) |
| EIGEN_TEST_SCALAR_TEST_OVERLOAD(double) |
| EIGEN_TEST_SCALAR_TEST_OVERLOAD(half) |
| EIGEN_TEST_SCALAR_TEST_OVERLOAD(bfloat16) |
| |
| #undef EIGEN_TEST_SCALAR_TEST_OVERLOAD |
| |
| #ifndef EIGEN_TEST_NO_COMPLEX |
| inline bool test_isApprox(const std::complex<float>& a, const std::complex<float>& b) |
| { return internal::isApprox(a, b, test_precision<std::complex<float> >()); } |
| inline bool test_isMuchSmallerThan(const std::complex<float>& a, const std::complex<float>& b) |
| { return internal::isMuchSmallerThan(a, b, test_precision<std::complex<float> >()); } |
| |
| inline bool test_isApprox(const std::complex<double>& a, const std::complex<double>& b) |
| { return internal::isApprox(a, b, test_precision<std::complex<double> >()); } |
| inline bool test_isMuchSmallerThan(const std::complex<double>& a, const std::complex<double>& b) |
| { return internal::isMuchSmallerThan(a, b, test_precision<std::complex<double> >()); } |
| |
| #ifndef EIGEN_TEST_NO_LONGDOUBLE |
| inline bool test_isApprox(const std::complex<long double>& a, const std::complex<long double>& b) |
| { return internal::isApprox(a, b, test_precision<std::complex<long double> >()); } |
| inline bool test_isMuchSmallerThan(const std::complex<long double>& a, const std::complex<long double>& b) |
| { return internal::isMuchSmallerThan(a, b, test_precision<std::complex<long double> >()); } |
| #endif |
| #endif |
| |
| #ifndef EIGEN_TEST_NO_LONGDOUBLE |
| inline bool test_isApprox(const long double& a, const long double& b) |
| { |
| bool ret = internal::isApprox(a, b, test_precision<long double>()); |
| if (!ret) std::cerr |
| << std::endl << " actual = " << a |
| << std::endl << " expected = " << b << std::endl << std::endl; |
| return ret; |
| } |
| |
| inline bool test_isMuchSmallerThan(const long double& a, const long double& b) |
| { return internal::isMuchSmallerThan(a, b, test_precision<long double>()); } |
| inline bool test_isApproxOrLessThan(const long double& a, const long double& b) |
| { return internal::isApproxOrLessThan(a, b, test_precision<long double>()); } |
| #endif // EIGEN_TEST_NO_LONGDOUBLE |
| |
| // test_relative_error returns the relative difference between a and b as a real scalar as used in isApprox. |
| template<typename T1,typename T2> |
| typename NumTraits<typename T1::RealScalar>::NonInteger test_relative_error(const EigenBase<T1> &a, const EigenBase<T2> &b) |
| { |
| using std::sqrt; |
| typedef typename NumTraits<typename T1::RealScalar>::NonInteger RealScalar; |
| typename internal::nested_eval<T1,2>::type ea(a.derived()); |
| typename internal::nested_eval<T2,2>::type eb(b.derived()); |
| return sqrt(RealScalar((ea-eb).cwiseAbs2().sum()) / RealScalar((std::min)(eb.cwiseAbs2().sum(),ea.cwiseAbs2().sum()))); |
| } |
| |
| template<typename T1,typename T2> |
| typename T1::RealScalar test_relative_error(const T1 &a, const T2 &b, const typename T1::Coefficients* = 0) |
| { |
| return test_relative_error(a.coeffs(), b.coeffs()); |
| } |
| |
| template<typename T1,typename T2> |
| typename T1::Scalar test_relative_error(const T1 &a, const T2 &b, const typename T1::MatrixType* = 0) |
| { |
| return test_relative_error(a.matrix(), b.matrix()); |
| } |
| |
| template<typename S, int D> |
| S test_relative_error(const Translation<S,D> &a, const Translation<S,D> &b) |
| { |
| return test_relative_error(a.vector(), b.vector()); |
| } |
| |
| template <typename S, int D, int O> |
| S test_relative_error(const ParametrizedLine<S,D,O> &a, const ParametrizedLine<S,D,O> &b) |
| { |
| return (std::max)(test_relative_error(a.origin(), b.origin()), test_relative_error(a.origin(), b.origin())); |
| } |
| |
| template <typename S, int D> |
| S test_relative_error(const AlignedBox<S,D> &a, const AlignedBox<S,D> &b) |
| { |
| return (std::max)(test_relative_error((a.min)(), (b.min)()), test_relative_error((a.max)(), (b.max)())); |
| } |
| |
| template<typename Derived> class SparseMatrixBase; |
| template<typename T1,typename T2> |
| typename T1::RealScalar test_relative_error(const MatrixBase<T1> &a, const SparseMatrixBase<T2> &b) |
| { |
| return test_relative_error(a,b.toDense()); |
| } |
| |
| template<typename Derived> class SparseMatrixBase; |
| template<typename T1,typename T2> |
| typename T1::RealScalar test_relative_error(const SparseMatrixBase<T1> &a, const MatrixBase<T2> &b) |
| { |
| return test_relative_error(a.toDense(),b); |
| } |
| |
| template<typename Derived> class SparseMatrixBase; |
| template<typename T1,typename T2> |
| typename T1::RealScalar test_relative_error(const SparseMatrixBase<T1> &a, const SparseMatrixBase<T2> &b) |
| { |
| return test_relative_error(a.toDense(),b.toDense()); |
| } |
| |
| template<typename T1,typename T2> |
| typename NumTraits<typename NumTraits<T1>::Real>::NonInteger test_relative_error(const T1 &a, const T2 &b, typename internal::enable_if<internal::is_arithmetic<typename NumTraits<T1>::Real>::value, T1>::type* = 0) |
| { |
| typedef typename NumTraits<typename NumTraits<T1>::Real>::NonInteger RealScalar; |
| return numext::sqrt(RealScalar(numext::abs2(a-b))/RealScalar((numext::mini)(numext::abs2(a),numext::abs2(b)))); |
| } |
| |
| template<typename T> |
| T test_relative_error(const Rotation2D<T> &a, const Rotation2D<T> &b) |
| { |
| return test_relative_error(a.angle(), b.angle()); |
| } |
| |
| template<typename T> |
| T test_relative_error(const AngleAxis<T> &a, const AngleAxis<T> &b) |
| { |
| return (std::max)(test_relative_error(a.angle(), b.angle()), test_relative_error(a.axis(), b.axis())); |
| } |
| |
| template<typename Type1, typename Type2> |
| inline bool test_isApprox(const Type1& a, const Type2& b, typename Type1::Scalar* = 0) // Enabled for Eigen's type only |
| { |
| return a.isApprox(b, test_precision<typename Type1::Scalar>()); |
| } |
| |
| // get_test_precision is a small wrapper to test_precision allowing to return the scalar precision for either scalars or expressions |
| template<typename T> |
| typename NumTraits<typename T::Scalar>::Real get_test_precision(const T&, const typename T::Scalar* = 0) |
| { |
| return test_precision<typename NumTraits<typename T::Scalar>::Real>(); |
| } |
| |
| template<typename T> |
| typename NumTraits<T>::Real get_test_precision(const T&,typename internal::enable_if<internal::is_arithmetic<typename NumTraits<T>::Real>::value, T>::type* = 0) |
| { |
| return test_precision<typename NumTraits<T>::Real>(); |
| } |
| |
| // verifyIsApprox is a wrapper to test_isApprox that outputs the relative difference magnitude if the test fails. |
| template<typename Type1, typename Type2> |
| inline bool verifyIsApprox(const Type1& a, const Type2& b) |
| { |
| bool ret = test_isApprox(a,b); |
| if(!ret) |
| { |
| std::cerr << "Difference too large wrt tolerance " << get_test_precision(a) << ", relative error is: " << test_relative_error(a,b) << std::endl; |
| } |
| return ret; |
| } |
| |
| // The idea behind this function is to compare the two scalars a and b where |
| // the scalar ref is a hint about the expected order of magnitude of a and b. |
| // WARNING: the scalar a and b must be positive |
| // Therefore, if for some reason a and b are very small compared to ref, |
| // we won't issue a false negative. |
| // This test could be: abs(a-b) <= eps * ref |
| // However, it seems that simply comparing a+ref and b+ref is more sensitive to true error. |
| template<typename Scalar,typename ScalarRef> |
| inline bool test_isApproxWithRef(const Scalar& a, const Scalar& b, const ScalarRef& ref) |
| { |
| return test_isApprox(a+ref, b+ref); |
| } |
| |
| template<typename Derived1, typename Derived2> |
| inline bool test_isMuchSmallerThan(const MatrixBase<Derived1>& m1, |
| const MatrixBase<Derived2>& m2) |
| { |
| return m1.isMuchSmallerThan(m2, test_precision<typename internal::traits<Derived1>::Scalar>()); |
| } |
| |
| template<typename Derived> |
| inline bool test_isMuchSmallerThan(const MatrixBase<Derived>& m, |
| const typename NumTraits<typename internal::traits<Derived>::Scalar>::Real& s) |
| { |
| return m.isMuchSmallerThan(s, test_precision<typename internal::traits<Derived>::Scalar>()); |
| } |
| |
| template<typename Derived> |
| inline bool test_isUnitary(const MatrixBase<Derived>& m) |
| { |
| return m.isUnitary(test_precision<typename internal::traits<Derived>::Scalar>()); |
| } |
| |
| // Forward declaration to avoid ICC warning |
| template<typename T, typename U> |
| bool test_is_equal(const T& actual, const U& expected, bool expect_equal=true); |
| |
| template<typename T, typename U> |
| bool test_is_equal(const T& actual, const U& expected, bool expect_equal) |
| { |
| if ((actual==expected) == expect_equal) |
| return true; |
| // false: |
| std::cerr |
| << "\n actual = " << actual |
| << "\n expected " << (expect_equal ? "= " : "!=") << expected << "\n\n"; |
| return false; |
| } |
| |
| /** Creates a random Partial Isometry matrix of given rank. |
| * |
| * A partial isometry is a matrix all of whose singular values are either 0 or 1. |
| * This is very useful to test rank-revealing algorithms. |
| */ |
| // Forward declaration to avoid ICC warning |
| template<typename MatrixType> |
| void createRandomPIMatrixOfRank(Index desired_rank, Index rows, Index cols, MatrixType& m); |
| template<typename MatrixType> |
| void createRandomPIMatrixOfRank(Index desired_rank, Index rows, Index cols, MatrixType& m) |
| { |
| typedef typename internal::traits<MatrixType>::Scalar Scalar; |
| enum { Rows = MatrixType::RowsAtCompileTime, Cols = MatrixType::ColsAtCompileTime }; |
| |
| typedef Matrix<Scalar, Dynamic, 1> VectorType; |
| typedef Matrix<Scalar, Rows, Rows> MatrixAType; |
| typedef Matrix<Scalar, Cols, Cols> MatrixBType; |
| |
| if(desired_rank == 0) |
| { |
| m.setZero(rows,cols); |
| return; |
| } |
| |
| if(desired_rank == 1) |
| { |
| // here we normalize the vectors to get a partial isometry |
| m = VectorType::Random(rows).normalized() * VectorType::Random(cols).normalized().transpose(); |
| return; |
| } |
| |
| MatrixAType a = MatrixAType::Random(rows,rows); |
| MatrixType d = MatrixType::Identity(rows,cols); |
| MatrixBType b = MatrixBType::Random(cols,cols); |
| |
| // set the diagonal such that only desired_rank non-zero entries reamain |
| const Index diag_size = (std::min)(d.rows(),d.cols()); |
| if(diag_size != desired_rank) |
| d.diagonal().segment(desired_rank, diag_size-desired_rank) = VectorType::Zero(diag_size-desired_rank); |
| |
| HouseholderQR<MatrixAType> qra(a); |
| HouseholderQR<MatrixBType> qrb(b); |
| m = qra.householderQ() * d * qrb.householderQ(); |
| } |
| |
| // Forward declaration to avoid ICC warning |
| template<typename PermutationVectorType> |
| void randomPermutationVector(PermutationVectorType& v, Index size); |
| template<typename PermutationVectorType> |
| void randomPermutationVector(PermutationVectorType& v, Index size) |
| { |
| typedef typename PermutationVectorType::Scalar Scalar; |
| v.resize(size); |
| for(Index i = 0; i < size; ++i) v(i) = Scalar(i); |
| if(size == 1) return; |
| for(Index n = 0; n < 3 * size; ++n) |
| { |
| Index i = internal::random<Index>(0, size-1); |
| Index j; |
| do j = internal::random<Index>(0, size-1); while(j==i); |
| std::swap(v(i), v(j)); |
| } |
| } |
| |
| template<typename T> bool isNotNaN(const T& x) |
| { |
| return x==x; |
| } |
| |
| template<typename T> bool isPlusInf(const T& x) |
| { |
| return x > NumTraits<T>::highest(); |
| } |
| |
| template<typename T> bool isMinusInf(const T& x) |
| { |
| return x < NumTraits<T>::lowest(); |
| } |
| |
| } // end namespace Eigen |
| |
| template<typename T> struct GetDifferentType; |
| |
| template<> struct GetDifferentType<float> { typedef double type; }; |
| template<> struct GetDifferentType<double> { typedef float type; }; |
| template<typename T> struct GetDifferentType<std::complex<T> > |
| { typedef std::complex<typename GetDifferentType<T>::type> type; }; |
| |
| // Forward declaration to avoid ICC warning |
| template<typename T> std::string type_name(); |
| template<typename T> std::string type_name() { return "other"; } |
| template<> std::string type_name<float>() { return "float"; } |
| template<> std::string type_name<double>() { return "double"; } |
| template<> std::string type_name<long double>() { return "long double"; } |
| template<> std::string type_name<int>() { return "int"; } |
| template<> std::string type_name<std::complex<float> >() { return "complex<float>"; } |
| template<> std::string type_name<std::complex<double> >() { return "complex<double>"; } |
| template<> std::string type_name<std::complex<long double> >() { return "complex<long double>"; } |
| template<> std::string type_name<std::complex<int> >() { return "complex<int>"; } |
| |
| using namespace Eigen; |
| |
| inline void set_repeat_from_string(const char *str) |
| { |
| errno = 0; |
| g_repeat = int(strtoul(str, 0, 10)); |
| if(errno || g_repeat <= 0) |
| { |
| std::cout << "Invalid repeat value " << str << std::endl; |
| exit(EXIT_FAILURE); |
| } |
| g_has_set_repeat = true; |
| } |
| |
| inline void set_seed_from_string(const char *str) |
| { |
| errno = 0; |
| g_seed = int(strtoul(str, 0, 10)); |
| if(errno || g_seed == 0) |
| { |
| std::cout << "Invalid seed value " << str << std::endl; |
| exit(EXIT_FAILURE); |
| } |
| g_has_set_seed = true; |
| } |
| |
| int main(int argc, char *argv[]) |
| { |
| g_has_set_repeat = false; |
| g_has_set_seed = false; |
| bool need_help = false; |
| |
| for(int i = 1; i < argc; i++) |
| { |
| if(argv[i][0] == 'r') |
| { |
| if(g_has_set_repeat) |
| { |
| std::cout << "Argument " << argv[i] << " conflicting with a former argument" << std::endl; |
| return 1; |
| } |
| set_repeat_from_string(argv[i]+1); |
| } |
| else if(argv[i][0] == 's') |
| { |
| if(g_has_set_seed) |
| { |
| std::cout << "Argument " << argv[i] << " conflicting with a former argument" << std::endl; |
| return 1; |
| } |
| set_seed_from_string(argv[i]+1); |
| } |
| else |
| { |
| need_help = true; |
| } |
| } |
| |
| if(need_help) |
| { |
| std::cout << "This test application takes the following optional arguments:" << std::endl; |
| std::cout << " rN Repeat each test N times (default: " << DEFAULT_REPEAT << ")" << std::endl; |
| std::cout << " sN Use N as seed for random numbers (default: based on current time)" << std::endl; |
| std::cout << std::endl; |
| std::cout << "If defined, the environment variables EIGEN_REPEAT and EIGEN_SEED" << std::endl; |
| std::cout << "will be used as default values for these parameters." << std::endl; |
| return 1; |
| } |
| |
| char *env_EIGEN_REPEAT = getenv("EIGEN_REPEAT"); |
| if(!g_has_set_repeat && env_EIGEN_REPEAT) |
| set_repeat_from_string(env_EIGEN_REPEAT); |
| char *env_EIGEN_SEED = getenv("EIGEN_SEED"); |
| if(!g_has_set_seed && env_EIGEN_SEED) |
| set_seed_from_string(env_EIGEN_SEED); |
| |
| if(!g_has_set_seed) g_seed = (unsigned int) time(NULL); |
| if(!g_has_set_repeat) g_repeat = DEFAULT_REPEAT; |
| |
| std::cout << "Initializing random number generator with seed " << g_seed << std::endl; |
| std::stringstream ss; |
| ss << "Seed: " << g_seed; |
| g_test_stack.push_back(ss.str()); |
| srand(g_seed); |
| std::cout << "Repeating each test " << g_repeat << " times" << std::endl; |
| |
| VERIFY(EigenTest::all().size()>0); |
| |
| for(std::size_t i=0; i<EigenTest::all().size(); ++i) |
| { |
| const EigenTest& current_test = *EigenTest::all()[i]; |
| Eigen::g_test_stack.push_back(current_test.name()); |
| current_test(); |
| Eigen::g_test_stack.pop_back(); |
| } |
| |
| return 0; |
| } |
| |
| // These warning are disabled here such that they are still ON when parsing Eigen's header files. |
| #if defined __INTEL_COMPILER |
| // remark #383: value copied to temporary, reference to temporary used |
| // -> this warning is raised even for legal usage as: g_test_stack.push_back("foo"); where g_test_stack is a std::vector<std::string> |
| // remark #1418: external function definition with no prior declaration |
| // -> this warning is raised for all our test functions. Declaring them static would fix the issue. |
| // warning #279: controlling expression is constant |
| // remark #1572: floating-point equality and inequality comparisons are unreliable |
| #pragma warning disable 279 383 1418 1572 |
| #endif |
| |
| #ifdef _MSC_VER |
| // 4503 - decorated name length exceeded, name was truncated |
| #pragma warning( disable : 4503) |
| #endif |