blob: d0fbfb38a899bdf882837651abaeb0a94b036464 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_CXX11_TENSOR_TENSOR_FORCED_EVAL_H
#define EIGEN_CXX11_TENSOR_TENSOR_FORCED_EVAL_H
// IWYU pragma: private
#include "./InternalHeaderCheck.h"
#include <memory>
namespace Eigen {
/** \class TensorForcedEval
* \ingroup CXX11_Tensor_Module
*
* \brief Tensor reshaping class.
*
*
*/
namespace internal {
template <typename XprType>
struct traits<TensorForcedEvalOp<XprType>> {
// Type promotion to handle the case where the types of the lhs and the rhs are different.
typedef typename XprType::Scalar Scalar;
typedef traits<XprType> XprTraits;
typedef typename traits<XprType>::StorageKind StorageKind;
typedef typename traits<XprType>::Index Index;
typedef typename XprType::Nested Nested;
typedef std::remove_reference_t<Nested> Nested_;
static constexpr int NumDimensions = XprTraits::NumDimensions;
static constexpr int Layout = XprTraits::Layout;
typedef typename XprTraits::PointerType PointerType;
enum { Flags = 0 };
};
template <typename XprType>
struct eval<TensorForcedEvalOp<XprType>, Eigen::Dense> {
typedef const TensorForcedEvalOp<XprType>& type;
};
template <typename XprType>
struct nested<TensorForcedEvalOp<XprType>, 1, typename eval<TensorForcedEvalOp<XprType>>::type> {
typedef TensorForcedEvalOp<XprType> type;
};
} // end namespace internal
template <typename XprType>
class TensorForcedEvalOp : public TensorBase<TensorForcedEvalOp<XprType>, ReadOnlyAccessors> {
public:
typedef typename Eigen::internal::traits<TensorForcedEvalOp>::Scalar Scalar;
typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
typedef std::remove_const_t<typename XprType::CoeffReturnType> CoeffReturnType;
typedef typename Eigen::internal::nested<TensorForcedEvalOp>::type Nested;
typedef typename Eigen::internal::traits<TensorForcedEvalOp>::StorageKind StorageKind;
typedef typename Eigen::internal::traits<TensorForcedEvalOp>::Index Index;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorForcedEvalOp(const XprType& expr) : m_xpr(expr) {}
EIGEN_DEVICE_FUNC const internal::remove_all_t<typename XprType::Nested>& expression() const { return m_xpr; }
protected:
typename XprType::Nested m_xpr;
};
namespace internal {
template <typename Device, typename CoeffReturnType>
struct non_integral_type_placement_new {
template <typename StorageType>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void operator()(Index numValues, StorageType m_buffer) {
// Initialize non-trivially constructible types.
if (!internal::is_arithmetic<CoeffReturnType>::value) {
for (Index i = 0; i < numValues; ++i) new (m_buffer + i) CoeffReturnType();
}
}
};
// SYCL does not support non-integral types
// having new (m_buffer + i) CoeffReturnType() causes the following compiler error for SYCL Devices
// no matching function for call to 'operator new'
template <typename CoeffReturnType>
struct non_integral_type_placement_new<Eigen::SyclDevice, CoeffReturnType> {
template <typename StorageType>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void operator()(Index, StorageType) {}
};
} // end namespace internal
template <typename Device>
class DeviceTempPointerHolder {
public:
DeviceTempPointerHolder(const Device& device, size_t size)
: device_(device), size_(size), ptr_(device.allocate_temp(size)) {}
~DeviceTempPointerHolder() {
device_.deallocate_temp(ptr_);
size_ = 0;
ptr_ = nullptr;
}
void* ptr() { return ptr_; }
private:
Device device_;
size_t size_;
void* ptr_;
};
template <typename ArgType_, typename Device>
struct TensorEvaluator<const TensorForcedEvalOp<ArgType_>, Device> {
typedef const internal::remove_all_t<ArgType_> ArgType;
typedef TensorForcedEvalOp<ArgType> XprType;
typedef typename ArgType::Scalar Scalar;
typedef typename TensorEvaluator<ArgType, Device>::Dimensions Dimensions;
typedef typename XprType::Index Index;
typedef typename XprType::CoeffReturnType CoeffReturnType;
typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
static constexpr int PacketSize = PacketType<CoeffReturnType, Device>::size;
typedef typename Eigen::internal::traits<XprType>::PointerType TensorPointerType;
typedef StorageMemory<CoeffReturnType, Device> Storage;
typedef typename Storage::Type EvaluatorPointerType;
enum {
IsAligned = true,
PacketAccess = (PacketType<CoeffReturnType, Device>::size > 1),
BlockAccess = internal::is_arithmetic<CoeffReturnType>::value,
PreferBlockAccess = false,
RawAccess = true
};
static constexpr int Layout = TensorEvaluator<ArgType, Device>::Layout;
static constexpr int NumDims = internal::traits<ArgType>::NumDimensions;
//===- Tensor block evaluation strategy (see TensorBlock.h) -------------===//
typedef internal::TensorBlockDescriptor<NumDims, Index> TensorBlockDesc;
typedef internal::TensorBlockScratchAllocator<Device> TensorBlockScratch;
typedef typename internal::TensorMaterializedBlock<CoeffReturnType, NumDims, Layout, Index> TensorBlock;
//===--------------------------------------------------------------------===//
TensorEvaluator(const XprType& op, const Device& device)
: m_impl(op.expression(), device),
m_op(op.expression()),
m_device(device),
m_buffer_holder(nullptr),
m_buffer(nullptr) {}
~TensorEvaluator() { cleanup(); }
EIGEN_DEVICE_FUNC const Dimensions& dimensions() const { return m_impl.dimensions(); }
EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(EvaluatorPointerType) {
const Index numValues = internal::array_prod(m_impl.dimensions());
m_buffer_holder = std::make_shared<DeviceTempPointerHolder<Device>>(m_device, numValues * sizeof(CoeffReturnType));
m_buffer = static_cast<EvaluatorPointerType>(m_buffer_holder->ptr());
internal::non_integral_type_placement_new<Device, CoeffReturnType>()(numValues, m_buffer);
typedef TensorEvalToOp<const std::remove_const_t<ArgType>> EvalTo;
EvalTo evalToTmp(m_device.get(m_buffer), m_op);
internal::TensorExecutor<const EvalTo, std::remove_const_t<Device>,
/*Vectorizable=*/internal::IsVectorizable<Device, const ArgType>::value,
/*Tiling=*/internal::IsTileable<Device, const ArgType>::value>::run(evalToTmp, m_device);
return true;
}
#ifdef EIGEN_USE_THREADS
template <typename EvalSubExprsCallback>
EIGEN_STRONG_INLINE void evalSubExprsIfNeededAsync(EvaluatorPointerType, EvalSubExprsCallback done) {
const Index numValues = internal::array_prod(m_impl.dimensions());
m_buffer_holder = std::make_shared<DeviceTempPointerHolder<Device>>(m_device, numValues * sizeof(CoeffReturnType));
m_buffer = static_cast<EvaluatorPointerType>(m_buffer_holder->ptr());
typedef TensorEvalToOp<const std::remove_const_t<ArgType>> EvalTo;
EvalTo evalToTmp(m_device.get(m_buffer), m_op);
auto on_done = std::bind([](EvalSubExprsCallback done_) { done_(true); }, std::move(done));
internal::TensorAsyncExecutor<
const EvalTo, std::remove_const_t<Device>, decltype(on_done),
/*Vectorizable=*/internal::IsVectorizable<Device, const ArgType>::value,
/*Tiling=*/internal::IsTileable<Device, const ArgType>::value>::runAsync(evalToTmp, m_device,
std::move(on_done));
}
#endif
EIGEN_STRONG_INLINE void cleanup() {
m_buffer_holder = nullptr;
m_buffer = nullptr;
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const { return m_buffer[index]; }
template <int LoadMode>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const {
return internal::ploadt<PacketReturnType, LoadMode>(m_buffer + index);
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE internal::TensorBlockResourceRequirements getResourceRequirements() const {
return internal::TensorBlockResourceRequirements::any();
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorBlock block(TensorBlockDesc& desc, TensorBlockScratch& scratch,
bool /*root_of_expr_ast*/ = false) const {
eigen_assert(m_buffer != nullptr);
return TensorBlock::materialize(m_buffer, m_impl.dimensions(), desc, scratch);
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const {
return TensorOpCost(sizeof(CoeffReturnType), 0, 0, vectorized, PacketSize);
}
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE EvaluatorPointerType data() const { return m_buffer; }
private:
TensorEvaluator<ArgType, Device> m_impl;
const ArgType m_op;
const Device EIGEN_DEVICE_REF m_device;
std::shared_ptr<DeviceTempPointerHolder<Device>> m_buffer_holder;
EvaluatorPointerType m_buffer; // Cached copy of the value stored in m_buffer_holder.
};
} // end namespace Eigen
#endif // EIGEN_CXX11_TENSOR_TENSOR_FORCED_EVAL_H