| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_GENERAL_MATRIX_MATRIX_H |
| #define EIGEN_GENERAL_MATRIX_MATRIX_H |
| |
| // IWYU pragma: private |
| #include "../InternalHeaderCheck.h" |
| |
| namespace Eigen { |
| |
| namespace internal { |
| |
| template<typename LhsScalar_, typename RhsScalar_> class level3_blocking; |
| |
| /* Specialization for a row-major destination matrix => simple transposition of the product */ |
| template< |
| typename Index, |
| typename LhsScalar, int LhsStorageOrder, bool ConjugateLhs, |
| typename RhsScalar, int RhsStorageOrder, bool ConjugateRhs, |
| int ResInnerStride> |
| struct general_matrix_matrix_product<Index,LhsScalar,LhsStorageOrder,ConjugateLhs,RhsScalar,RhsStorageOrder,ConjugateRhs,RowMajor,ResInnerStride> |
| { |
| typedef gebp_traits<RhsScalar,LhsScalar> Traits; |
| |
| typedef typename ScalarBinaryOpTraits<LhsScalar, RhsScalar>::ReturnType ResScalar; |
| static EIGEN_STRONG_INLINE void run( |
| Index rows, Index cols, Index depth, |
| const LhsScalar* lhs, Index lhsStride, |
| const RhsScalar* rhs, Index rhsStride, |
| ResScalar* res, Index resIncr, Index resStride, |
| ResScalar alpha, |
| level3_blocking<RhsScalar,LhsScalar>& blocking, |
| GemmParallelInfo<Index>* info = 0) |
| { |
| // transpose the product such that the result is column major |
| general_matrix_matrix_product<Index, |
| RhsScalar, RhsStorageOrder==RowMajor ? ColMajor : RowMajor, ConjugateRhs, |
| LhsScalar, LhsStorageOrder==RowMajor ? ColMajor : RowMajor, ConjugateLhs, |
| ColMajor,ResInnerStride> |
| ::run(cols,rows,depth,rhs,rhsStride,lhs,lhsStride,res,resIncr,resStride,alpha,blocking,info); |
| } |
| }; |
| |
| /* Specialization for a col-major destination matrix |
| * => Blocking algorithm following Goto's paper */ |
| template< |
| typename Index, |
| typename LhsScalar, int LhsStorageOrder, bool ConjugateLhs, |
| typename RhsScalar, int RhsStorageOrder, bool ConjugateRhs, |
| int ResInnerStride> |
| struct general_matrix_matrix_product<Index,LhsScalar,LhsStorageOrder,ConjugateLhs,RhsScalar,RhsStorageOrder,ConjugateRhs,ColMajor,ResInnerStride> |
| { |
| |
| typedef gebp_traits<LhsScalar,RhsScalar> Traits; |
| |
| typedef typename ScalarBinaryOpTraits<LhsScalar, RhsScalar>::ReturnType ResScalar; |
| static void run(Index rows, Index cols, Index depth, |
| const LhsScalar* lhs_, Index lhsStride, |
| const RhsScalar* rhs_, Index rhsStride, |
| ResScalar* res_, Index resIncr, Index resStride, |
| ResScalar alpha, |
| level3_blocking<LhsScalar,RhsScalar>& blocking, |
| GemmParallelInfo<Index>* info = 0) |
| { |
| typedef const_blas_data_mapper<LhsScalar, Index, LhsStorageOrder> LhsMapper; |
| typedef const_blas_data_mapper<RhsScalar, Index, RhsStorageOrder> RhsMapper; |
| typedef blas_data_mapper<typename Traits::ResScalar, Index, ColMajor,Unaligned,ResInnerStride> ResMapper; |
| LhsMapper lhs(lhs_, lhsStride); |
| RhsMapper rhs(rhs_, rhsStride); |
| ResMapper res(res_, resStride, resIncr); |
| |
| Index kc = blocking.kc(); // cache block size along the K direction |
| Index mc = (std::min)(rows,blocking.mc()); // cache block size along the M direction |
| Index nc = (std::min)(cols,blocking.nc()); // cache block size along the N direction |
| |
| gemm_pack_lhs<LhsScalar, Index, LhsMapper, Traits::mr, Traits::LhsProgress, typename Traits::LhsPacket4Packing, LhsStorageOrder> pack_lhs; |
| gemm_pack_rhs<RhsScalar, Index, RhsMapper, Traits::nr, RhsStorageOrder> pack_rhs; |
| gebp_kernel<LhsScalar, RhsScalar, Index, ResMapper, Traits::mr, Traits::nr, ConjugateLhs, ConjugateRhs> gebp; |
| |
| #ifdef EIGEN_HAS_OPENMP |
| if(info) |
| { |
| // this is the parallel version! |
| int tid = omp_get_thread_num(); |
| int threads = omp_get_num_threads(); |
| |
| LhsScalar* blockA = blocking.blockA(); |
| eigen_internal_assert(blockA!=0); |
| |
| std::size_t sizeB = kc*nc; |
| ei_declare_aligned_stack_constructed_variable(RhsScalar, blockB, sizeB, 0); |
| |
| // For each horizontal panel of the rhs, and corresponding vertical panel of the lhs... |
| for(Index k=0; k<depth; k+=kc) |
| { |
| const Index actual_kc = (std::min)(k+kc,depth)-k; // => rows of B', and cols of the A' |
| |
| // In order to reduce the chance that a thread has to wait for the other, |
| // let's start by packing B'. |
| pack_rhs(blockB, rhs.getSubMapper(k,0), actual_kc, nc); |
| |
| // Pack A_k to A' in a parallel fashion: |
| // each thread packs the sub block A_k,i to A'_i where i is the thread id. |
| |
| // However, before copying to A'_i, we have to make sure that no other thread is still using it, |
| // i.e., we test that info[tid].users equals 0. |
| // Then, we set info[tid].users to the number of threads to mark that all other threads are going to use it. |
| while(info[tid].users!=0) {} |
| info[tid].users = threads; |
| |
| pack_lhs(blockA+info[tid].lhs_start*actual_kc, lhs.getSubMapper(info[tid].lhs_start,k), actual_kc, info[tid].lhs_length); |
| |
| // Notify the other threads that the part A'_i is ready to go. |
| info[tid].sync = k; |
| |
| // Computes C_i += A' * B' per A'_i |
| for(int shift=0; shift<threads; ++shift) |
| { |
| int i = (tid+shift)%threads; |
| |
| // At this point we have to make sure that A'_i has been updated by the thread i, |
| // we use testAndSetOrdered to mimic a volatile access. |
| // However, no need to wait for the B' part which has been updated by the current thread! |
| if (shift>0) { |
| while(info[i].sync!=k) { |
| } |
| } |
| |
| gebp(res.getSubMapper(info[i].lhs_start, 0), blockA+info[i].lhs_start*actual_kc, blockB, info[i].lhs_length, actual_kc, nc, alpha); |
| } |
| |
| // Then keep going as usual with the remaining B' |
| for(Index j=nc; j<cols; j+=nc) |
| { |
| const Index actual_nc = (std::min)(j+nc,cols)-j; |
| |
| // pack B_k,j to B' |
| pack_rhs(blockB, rhs.getSubMapper(k,j), actual_kc, actual_nc); |
| |
| // C_j += A' * B' |
| gebp(res.getSubMapper(0, j), blockA, blockB, rows, actual_kc, actual_nc, alpha); |
| } |
| |
| // Release all the sub blocks A'_i of A' for the current thread, |
| // i.e., we simply decrement the number of users by 1 |
| for(Index i=0; i<threads; ++i) |
| info[i].users -= 1; |
| } |
| } |
| else |
| #endif // EIGEN_HAS_OPENMP |
| { |
| EIGEN_UNUSED_VARIABLE(info); |
| |
| // this is the sequential version! |
| std::size_t sizeA = kc*mc; |
| std::size_t sizeB = kc*nc; |
| |
| ei_declare_aligned_stack_constructed_variable(LhsScalar, blockA, sizeA, blocking.blockA()); |
| ei_declare_aligned_stack_constructed_variable(RhsScalar, blockB, sizeB, blocking.blockB()); |
| |
| const bool pack_rhs_once = mc!=rows && kc==depth && nc==cols; |
| |
| // For each horizontal panel of the rhs, and corresponding panel of the lhs... |
| for(Index i2=0; i2<rows; i2+=mc) |
| { |
| const Index actual_mc = (std::min)(i2+mc,rows)-i2; |
| |
| for(Index k2=0; k2<depth; k2+=kc) |
| { |
| const Index actual_kc = (std::min)(k2+kc,depth)-k2; |
| |
| // OK, here we have selected one horizontal panel of rhs and one vertical panel of lhs. |
| // => Pack lhs's panel into a sequential chunk of memory (L2/L3 caching) |
| // Note that this panel will be read as many times as the number of blocks in the rhs's |
| // horizontal panel which is, in practice, a very low number. |
| pack_lhs(blockA, lhs.getSubMapper(i2,k2), actual_kc, actual_mc); |
| |
| // For each kc x nc block of the rhs's horizontal panel... |
| for(Index j2=0; j2<cols; j2+=nc) |
| { |
| const Index actual_nc = (std::min)(j2+nc,cols)-j2; |
| |
| // We pack the rhs's block into a sequential chunk of memory (L2 caching) |
| // Note that this block will be read a very high number of times, which is equal to the number of |
| // micro horizontal panel of the large rhs's panel (e.g., rows/12 times). |
| if((!pack_rhs_once) || i2==0) |
| pack_rhs(blockB, rhs.getSubMapper(k2,j2), actual_kc, actual_nc); |
| |
| // Everything is packed, we can now call the panel * block kernel: |
| gebp(res.getSubMapper(i2, j2), blockA, blockB, actual_mc, actual_kc, actual_nc, alpha); |
| } |
| } |
| } |
| } |
| } |
| |
| }; |
| |
| /********************************************************************************* |
| * Specialization of generic_product_impl for "large" GEMM, i.e., |
| * implementation of the high level wrapper to general_matrix_matrix_product |
| **********************************************************************************/ |
| |
| template<typename Scalar, typename Index, typename Gemm, typename Lhs, typename Rhs, typename Dest, typename BlockingType> |
| struct gemm_functor |
| { |
| gemm_functor(const Lhs& lhs, const Rhs& rhs, Dest& dest, const Scalar& actualAlpha, BlockingType& blocking) |
| : m_lhs(lhs), m_rhs(rhs), m_dest(dest), m_actualAlpha(actualAlpha), m_blocking(blocking) |
| {} |
| |
| void initParallelSession(Index num_threads) const |
| { |
| m_blocking.initParallel(m_lhs.rows(), m_rhs.cols(), m_lhs.cols(), num_threads); |
| m_blocking.allocateA(); |
| } |
| |
| void operator() (Index row, Index rows, Index col=0, Index cols=-1, GemmParallelInfo<Index>* info=0) const |
| { |
| if(cols==-1) |
| cols = m_rhs.cols(); |
| |
| Gemm::run(rows, cols, m_lhs.cols(), |
| &m_lhs.coeffRef(row,0), m_lhs.outerStride(), |
| &m_rhs.coeffRef(0,col), m_rhs.outerStride(), |
| (Scalar*)&(m_dest.coeffRef(row,col)), m_dest.innerStride(), m_dest.outerStride(), |
| m_actualAlpha, m_blocking, info); |
| } |
| |
| typedef typename Gemm::Traits Traits; |
| |
| protected: |
| const Lhs& m_lhs; |
| const Rhs& m_rhs; |
| Dest& m_dest; |
| Scalar m_actualAlpha; |
| BlockingType& m_blocking; |
| }; |
| |
| template<int StorageOrder, typename LhsScalar, typename RhsScalar, int MaxRows, int MaxCols, int MaxDepth, int KcFactor=1, |
| bool FiniteAtCompileTime = MaxRows!=Dynamic && MaxCols!=Dynamic && MaxDepth != Dynamic> class gemm_blocking_space; |
| |
| template<typename LhsScalar_, typename RhsScalar_> |
| class level3_blocking |
| { |
| typedef LhsScalar_ LhsScalar; |
| typedef RhsScalar_ RhsScalar; |
| |
| protected: |
| LhsScalar* m_blockA; |
| RhsScalar* m_blockB; |
| |
| Index m_mc; |
| Index m_nc; |
| Index m_kc; |
| |
| public: |
| |
| level3_blocking() |
| : m_blockA(0), m_blockB(0), m_mc(0), m_nc(0), m_kc(0) |
| {} |
| |
| inline Index mc() const { return m_mc; } |
| inline Index nc() const { return m_nc; } |
| inline Index kc() const { return m_kc; } |
| |
| inline LhsScalar* blockA() { return m_blockA; } |
| inline RhsScalar* blockB() { return m_blockB; } |
| }; |
| |
| template<int StorageOrder, typename LhsScalar_, typename RhsScalar_, int MaxRows, int MaxCols, int MaxDepth, int KcFactor> |
| class gemm_blocking_space<StorageOrder,LhsScalar_,RhsScalar_,MaxRows, MaxCols, MaxDepth, KcFactor, true /* == FiniteAtCompileTime */> |
| : public level3_blocking< |
| std::conditional_t<StorageOrder==RowMajor,RhsScalar_,LhsScalar_>, |
| std::conditional_t<StorageOrder==RowMajor,LhsScalar_,RhsScalar_>> |
| { |
| enum { |
| Transpose = StorageOrder==RowMajor, |
| ActualRows = Transpose ? MaxCols : MaxRows, |
| ActualCols = Transpose ? MaxRows : MaxCols |
| }; |
| typedef std::conditional_t<Transpose,RhsScalar_,LhsScalar_> LhsScalar; |
| typedef std::conditional_t<Transpose,LhsScalar_,RhsScalar_> RhsScalar; |
| enum { |
| SizeA = ActualRows * MaxDepth, |
| SizeB = ActualCols * MaxDepth |
| }; |
| |
| #if EIGEN_MAX_STATIC_ALIGN_BYTES >= EIGEN_DEFAULT_ALIGN_BYTES |
| EIGEN_ALIGN_MAX LhsScalar m_staticA[SizeA]; |
| EIGEN_ALIGN_MAX RhsScalar m_staticB[SizeB]; |
| #else |
| EIGEN_ALIGN_MAX char m_staticA[SizeA * sizeof(LhsScalar) + EIGEN_DEFAULT_ALIGN_BYTES-1]; |
| EIGEN_ALIGN_MAX char m_staticB[SizeB * sizeof(RhsScalar) + EIGEN_DEFAULT_ALIGN_BYTES-1]; |
| #endif |
| |
| public: |
| |
| gemm_blocking_space(Index /*rows*/, Index /*cols*/, Index /*depth*/, Index /*num_threads*/, bool /*full_rows = false*/) |
| { |
| this->m_mc = ActualRows; |
| this->m_nc = ActualCols; |
| this->m_kc = MaxDepth; |
| #if EIGEN_MAX_STATIC_ALIGN_BYTES >= EIGEN_DEFAULT_ALIGN_BYTES |
| this->m_blockA = m_staticA; |
| this->m_blockB = m_staticB; |
| #else |
| this->m_blockA = reinterpret_cast<LhsScalar*>((std::uintptr_t(m_staticA) + (EIGEN_DEFAULT_ALIGN_BYTES-1)) & ~std::size_t(EIGEN_DEFAULT_ALIGN_BYTES-1)); |
| this->m_blockB = reinterpret_cast<RhsScalar*>((std::uintptr_t(m_staticB) + (EIGEN_DEFAULT_ALIGN_BYTES-1)) & ~std::size_t(EIGEN_DEFAULT_ALIGN_BYTES-1)); |
| #endif |
| } |
| |
| void initParallel(Index, Index, Index, Index) |
| {} |
| |
| inline void allocateA() {} |
| inline void allocateB() {} |
| inline void allocateAll() {} |
| }; |
| |
| template<int StorageOrder, typename LhsScalar_, typename RhsScalar_, int MaxRows, int MaxCols, int MaxDepth, int KcFactor> |
| class gemm_blocking_space<StorageOrder,LhsScalar_,RhsScalar_,MaxRows, MaxCols, MaxDepth, KcFactor, false> |
| : public level3_blocking< |
| std::conditional_t<StorageOrder==RowMajor,RhsScalar_,LhsScalar_>, |
| std::conditional_t<StorageOrder==RowMajor,LhsScalar_,RhsScalar_>> |
| { |
| enum { |
| Transpose = StorageOrder==RowMajor |
| }; |
| typedef std::conditional_t<Transpose,RhsScalar_,LhsScalar_> LhsScalar; |
| typedef std::conditional_t<Transpose,LhsScalar_,RhsScalar_> RhsScalar; |
| |
| Index m_sizeA; |
| Index m_sizeB; |
| |
| public: |
| |
| gemm_blocking_space(Index rows, Index cols, Index depth, Index num_threads, bool l3_blocking) |
| { |
| this->m_mc = Transpose ? cols : rows; |
| this->m_nc = Transpose ? rows : cols; |
| this->m_kc = depth; |
| |
| if(l3_blocking) |
| { |
| computeProductBlockingSizes<LhsScalar,RhsScalar,KcFactor>(this->m_kc, this->m_mc, this->m_nc, num_threads); |
| } |
| else // no l3 blocking |
| { |
| Index n = this->m_nc; |
| computeProductBlockingSizes<LhsScalar,RhsScalar,KcFactor>(this->m_kc, this->m_mc, n, num_threads); |
| } |
| |
| m_sizeA = this->m_mc * this->m_kc; |
| m_sizeB = this->m_kc * this->m_nc; |
| } |
| |
| void initParallel(Index rows, Index cols, Index depth, Index num_threads) |
| { |
| this->m_mc = Transpose ? cols : rows; |
| this->m_nc = Transpose ? rows : cols; |
| this->m_kc = depth; |
| |
| eigen_internal_assert(this->m_blockA==0 && this->m_blockB==0); |
| Index m = this->m_mc; |
| computeProductBlockingSizes<LhsScalar,RhsScalar,KcFactor>(this->m_kc, m, this->m_nc, num_threads); |
| m_sizeA = this->m_mc * this->m_kc; |
| m_sizeB = this->m_kc * this->m_nc; |
| } |
| |
| void allocateA() |
| { |
| if(this->m_blockA==0) |
| this->m_blockA = aligned_new<LhsScalar>(m_sizeA); |
| } |
| |
| void allocateB() |
| { |
| if(this->m_blockB==0) |
| this->m_blockB = aligned_new<RhsScalar>(m_sizeB); |
| } |
| |
| void allocateAll() |
| { |
| allocateA(); |
| allocateB(); |
| } |
| |
| ~gemm_blocking_space() |
| { |
| aligned_delete(this->m_blockA, m_sizeA); |
| aligned_delete(this->m_blockB, m_sizeB); |
| } |
| }; |
| |
| } // end namespace internal |
| |
| namespace internal { |
| |
| template<typename Lhs, typename Rhs> |
| struct generic_product_impl<Lhs,Rhs,DenseShape,DenseShape,GemmProduct> |
| : generic_product_impl_base<Lhs,Rhs,generic_product_impl<Lhs,Rhs,DenseShape,DenseShape,GemmProduct> > |
| { |
| typedef typename Product<Lhs,Rhs>::Scalar Scalar; |
| typedef typename Lhs::Scalar LhsScalar; |
| typedef typename Rhs::Scalar RhsScalar; |
| |
| typedef internal::blas_traits<Lhs> LhsBlasTraits; |
| typedef typename LhsBlasTraits::DirectLinearAccessType ActualLhsType; |
| typedef internal::remove_all_t<ActualLhsType> ActualLhsTypeCleaned; |
| |
| typedef internal::blas_traits<Rhs> RhsBlasTraits; |
| typedef typename RhsBlasTraits::DirectLinearAccessType ActualRhsType; |
| typedef internal::remove_all_t<ActualRhsType> ActualRhsTypeCleaned; |
| |
| enum { |
| MaxDepthAtCompileTime = min_size_prefer_fixed(Lhs::MaxColsAtCompileTime, Rhs::MaxRowsAtCompileTime) |
| }; |
| |
| typedef generic_product_impl<Lhs,Rhs,DenseShape,DenseShape,CoeffBasedProductMode> lazyproduct; |
| |
| template<typename Dst> |
| static void evalTo(Dst& dst, const Lhs& lhs, const Rhs& rhs) |
| { |
| // See http://eigen.tuxfamily.org/bz/show_bug.cgi?id=404 for a discussion and helper program |
| // to determine the following heuristic. |
| // EIGEN_GEMM_TO_COEFFBASED_THRESHOLD is typically defined to 20 in GeneralProduct.h, |
| // unless it has been specialized by the user or for a given architecture. |
| // Note that the condition rhs.rows()>0 was required because lazy product is (was?) not happy with empty inputs. |
| // I'm not sure it is still required. |
| if((rhs.rows()+dst.rows()+dst.cols())<EIGEN_GEMM_TO_COEFFBASED_THRESHOLD && rhs.rows()>0) |
| lazyproduct::eval_dynamic(dst, lhs, rhs, internal::assign_op<typename Dst::Scalar,Scalar>()); |
| else |
| { |
| dst.setZero(); |
| scaleAndAddTo(dst, lhs, rhs, Scalar(1)); |
| } |
| } |
| |
| template<typename Dst> |
| static void addTo(Dst& dst, const Lhs& lhs, const Rhs& rhs) |
| { |
| if((rhs.rows()+dst.rows()+dst.cols())<EIGEN_GEMM_TO_COEFFBASED_THRESHOLD && rhs.rows()>0) |
| lazyproduct::eval_dynamic(dst, lhs, rhs, internal::add_assign_op<typename Dst::Scalar,Scalar>()); |
| else |
| scaleAndAddTo(dst,lhs, rhs, Scalar(1)); |
| } |
| |
| template<typename Dst> |
| static void subTo(Dst& dst, const Lhs& lhs, const Rhs& rhs) |
| { |
| if((rhs.rows()+dst.rows()+dst.cols())<EIGEN_GEMM_TO_COEFFBASED_THRESHOLD && rhs.rows()>0) |
| lazyproduct::eval_dynamic(dst, lhs, rhs, internal::sub_assign_op<typename Dst::Scalar,Scalar>()); |
| else |
| scaleAndAddTo(dst, lhs, rhs, Scalar(-1)); |
| } |
| |
| template<typename Dest> |
| static void scaleAndAddTo(Dest& dst, const Lhs& a_lhs, const Rhs& a_rhs, const Scalar& alpha) |
| { |
| eigen_assert(dst.rows()==a_lhs.rows() && dst.cols()==a_rhs.cols()); |
| if(a_lhs.cols()==0 || a_lhs.rows()==0 || a_rhs.cols()==0) |
| return; |
| |
| if (dst.cols() == 1) |
| { |
| // Fallback to GEMV if either the lhs or rhs is a runtime vector |
| typename Dest::ColXpr dst_vec(dst.col(0)); |
| return internal::generic_product_impl<Lhs,typename Rhs::ConstColXpr,DenseShape,DenseShape,GemvProduct> |
| ::scaleAndAddTo(dst_vec, a_lhs, a_rhs.col(0), alpha); |
| } |
| else if (dst.rows() == 1) |
| { |
| // Fallback to GEMV if either the lhs or rhs is a runtime vector |
| typename Dest::RowXpr dst_vec(dst.row(0)); |
| return internal::generic_product_impl<typename Lhs::ConstRowXpr,Rhs,DenseShape,DenseShape,GemvProduct> |
| ::scaleAndAddTo(dst_vec, a_lhs.row(0), a_rhs, alpha); |
| } |
| |
| add_const_on_value_type_t<ActualLhsType> lhs = LhsBlasTraits::extract(a_lhs); |
| add_const_on_value_type_t<ActualRhsType> rhs = RhsBlasTraits::extract(a_rhs); |
| |
| Scalar actualAlpha = combine_scalar_factors(alpha, a_lhs, a_rhs); |
| |
| typedef internal::gemm_blocking_space<(Dest::Flags&RowMajorBit) ? RowMajor : ColMajor,LhsScalar,RhsScalar, |
| Dest::MaxRowsAtCompileTime,Dest::MaxColsAtCompileTime,MaxDepthAtCompileTime> BlockingType; |
| |
| typedef internal::gemm_functor< |
| Scalar, Index, |
| internal::general_matrix_matrix_product< |
| Index, |
| LhsScalar, (ActualLhsTypeCleaned::Flags&RowMajorBit) ? RowMajor : ColMajor, bool(LhsBlasTraits::NeedToConjugate), |
| RhsScalar, (ActualRhsTypeCleaned::Flags&RowMajorBit) ? RowMajor : ColMajor, bool(RhsBlasTraits::NeedToConjugate), |
| (Dest::Flags&RowMajorBit) ? RowMajor : ColMajor, |
| Dest::InnerStrideAtCompileTime>, |
| ActualLhsTypeCleaned, ActualRhsTypeCleaned, Dest, BlockingType> GemmFunctor; |
| |
| BlockingType blocking(dst.rows(), dst.cols(), lhs.cols(), 1, true); |
| internal::parallelize_gemm<(Dest::MaxRowsAtCompileTime>32 || Dest::MaxRowsAtCompileTime==Dynamic)> |
| (GemmFunctor(lhs, rhs, dst, actualAlpha, blocking), a_lhs.rows(), a_rhs.cols(), a_lhs.cols(), Dest::Flags&RowMajorBit); |
| } |
| }; |
| |
| } // end namespace internal |
| |
| } // end namespace Eigen |
| |
| #endif // EIGEN_GENERAL_MATRIX_MATRIX_H |