|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> | 
|  | // Copyright (C) 2014 Navdeep Jaitly <ndjaitly@google.com> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #define EIGEN_TEST_NO_LONGDOUBLE | 
|  | #define EIGEN_TEST_NO_COMPLEX | 
|  |  | 
|  | #define EIGEN_DEFAULT_DENSE_INDEX_TYPE int | 
|  | #define EIGEN_USE_GPU | 
|  |  | 
|  | #include "main.h" | 
|  | #include <unsupported/Eigen/CXX11/Tensor> | 
|  |  | 
|  | #include <unsupported/Eigen/CXX11/src/Tensor/TensorGpuHipCudaDefines.h> | 
|  |  | 
|  | using Eigen::Tensor; | 
|  | typedef Tensor<float, 1>::DimensionPair DimPair; | 
|  |  | 
|  | template<int DataLayout> | 
|  | void test_gpu_contraction(int m_size, int k_size, int n_size) | 
|  | { | 
|  | std::cout << "Testing for (" << m_size << "," << k_size << "," << n_size << ")" << std::endl; | 
|  | // with these dimensions, the output has 300 * 140 elements, which is | 
|  | // more than 30 * 1024, which is the number of threads in blocks on | 
|  | // a 15 SM GK110 GPU | 
|  | Tensor<float, 2, DataLayout> t_left(m_size, k_size); | 
|  | Tensor<float, 2, DataLayout> t_right(k_size, n_size); | 
|  | Tensor<float, 2, DataLayout> t_result(m_size, n_size); | 
|  | Tensor<float, 2, DataLayout> t_result_gpu(m_size, n_size); | 
|  | Eigen::array<DimPair, 1> dims(DimPair(1, 0)); | 
|  |  | 
|  | t_left.setRandom(); | 
|  | t_right.setRandom(); | 
|  |  | 
|  | std::size_t t_left_bytes = t_left.size()  * sizeof(float); | 
|  | std::size_t t_right_bytes = t_right.size() * sizeof(float); | 
|  | std::size_t t_result_bytes = t_result.size() * sizeof(float); | 
|  |  | 
|  | float* d_t_left; | 
|  | float* d_t_right; | 
|  | float* d_t_result; | 
|  |  | 
|  | gpuMalloc((void**)(&d_t_left), t_left_bytes); | 
|  | gpuMalloc((void**)(&d_t_right), t_right_bytes); | 
|  | gpuMalloc((void**)(&d_t_result), t_result_bytes); | 
|  |  | 
|  | gpuMemcpy(d_t_left, t_left.data(), t_left_bytes, gpuMemcpyHostToDevice); | 
|  | gpuMemcpy(d_t_right, t_right.data(), t_right_bytes, gpuMemcpyHostToDevice); | 
|  |  | 
|  | Eigen::GpuStreamDevice stream; | 
|  | Eigen::GpuDevice gpu_device(&stream); | 
|  |  | 
|  | Eigen::TensorMap<Eigen::Tensor<float, 2, DataLayout> > | 
|  | gpu_t_left(d_t_left, Eigen::array<int, 2>(m_size, k_size)); | 
|  | Eigen::TensorMap<Eigen::Tensor<float, 2, DataLayout> > | 
|  | gpu_t_right(d_t_right, Eigen::array<int, 2>(k_size, n_size)); | 
|  | Eigen::TensorMap<Eigen::Tensor<float, 2, DataLayout> > | 
|  | gpu_t_result(d_t_result, Eigen::array<int, 2>(m_size, n_size)); | 
|  |  | 
|  |  | 
|  | gpu_t_result.device(gpu_device) = gpu_t_left.contract(gpu_t_right, dims); | 
|  | t_result = t_left.contract(t_right, dims); | 
|  |  | 
|  | gpuMemcpy(t_result_gpu.data(), d_t_result, t_result_bytes, gpuMemcpyDeviceToHost); | 
|  | for (DenseIndex i = 0; i < t_result.size(); i++) { | 
|  | if (fabs(t_result(i) - t_result_gpu(i)) < 1e-4f) { | 
|  | continue; | 
|  | } | 
|  | if (Eigen::internal::isApprox(t_result(i), t_result_gpu(i), 1e-4f)) { | 
|  | continue; | 
|  | } | 
|  | std::cout << "mismatch detected at index " << i << ": " << t_result(i) | 
|  | << " vs " <<  t_result_gpu(i) << std::endl; | 
|  | assert(false); | 
|  | } | 
|  |  | 
|  | gpuFree((void*)d_t_left); | 
|  | gpuFree((void*)d_t_right); | 
|  | gpuFree((void*)d_t_result); | 
|  | } | 
|  |  | 
|  |  | 
|  | template<int DataLayout> | 
|  | void test_scalar(int m_size, int k_size, int n_size) | 
|  | { | 
|  | std::cout << "Testing for (" << m_size << "," << k_size << "," << n_size << ")" << std::endl; | 
|  | // with these dimensions, the output has 300 * 140 elements, which is | 
|  | // more than 30 * 1024, which is the number of threads in blocks on | 
|  | // a 15 SM GK110 GPU | 
|  | Tensor<float, 2, DataLayout> t_left(m_size, k_size); | 
|  | Tensor<float, 2, DataLayout> t_right(k_size, n_size); | 
|  | Tensor<float, 0, DataLayout> t_result; | 
|  | Tensor<float, 0, DataLayout> t_result_gpu; | 
|  | Eigen::array<DimPair, 2> dims(DimPair(0, 0), DimPair(1, 1)); | 
|  |  | 
|  | t_left.setRandom(); | 
|  | t_right.setRandom(); | 
|  |  | 
|  | std::size_t t_left_bytes = t_left.size()  * sizeof(float); | 
|  | std::size_t t_right_bytes = t_right.size() * sizeof(float); | 
|  | std::size_t t_result_bytes = sizeof(float); | 
|  |  | 
|  | float* d_t_left; | 
|  | float* d_t_right; | 
|  | float* d_t_result; | 
|  |  | 
|  | gpuMalloc((void**)(&d_t_left), t_left_bytes); | 
|  | gpuMalloc((void**)(&d_t_right), t_right_bytes); | 
|  | gpuMalloc((void**)(&d_t_result), t_result_bytes); | 
|  |  | 
|  | gpuMemcpy(d_t_left, t_left.data(), t_left_bytes, gpuMemcpyHostToDevice); | 
|  | gpuMemcpy(d_t_right, t_right.data(), t_right_bytes, gpuMemcpyHostToDevice); | 
|  |  | 
|  | Eigen::GpuStreamDevice stream; | 
|  | Eigen::GpuDevice gpu_device(&stream); | 
|  |  | 
|  | Eigen::TensorMap<Eigen::Tensor<float, 2, DataLayout> > | 
|  | gpu_t_left(d_t_left, m_size, k_size); | 
|  | Eigen::TensorMap<Eigen::Tensor<float, 2, DataLayout> > | 
|  | gpu_t_right(d_t_right, k_size, n_size); | 
|  | Eigen::TensorMap<Eigen::Tensor<float, 0, DataLayout> > | 
|  | gpu_t_result(d_t_result); | 
|  |  | 
|  | gpu_t_result.device(gpu_device) = gpu_t_left.contract(gpu_t_right, dims); | 
|  | t_result = t_left.contract(t_right, dims); | 
|  |  | 
|  | gpuMemcpy(t_result_gpu.data(), d_t_result, t_result_bytes, gpuMemcpyDeviceToHost); | 
|  | if (fabs(t_result() - t_result_gpu()) > 1e-4f && | 
|  | !Eigen::internal::isApprox(t_result(), t_result_gpu(), 1e-4f)) { | 
|  | std::cout << "mismatch detected: " << t_result() | 
|  | << " vs " <<  t_result_gpu() << std::endl; | 
|  | assert(false); | 
|  | } | 
|  |  | 
|  | gpuFree((void*)d_t_left); | 
|  | gpuFree((void*)d_t_right); | 
|  | gpuFree((void*)d_t_result); | 
|  | } | 
|  |  | 
|  |  | 
|  | template<int DataLayout> | 
|  | void test_gpu_contraction_m() { | 
|  | for (int k = 32; k < 256; k++) { | 
|  | test_gpu_contraction<ColMajor>(k, 128, 128); | 
|  | test_gpu_contraction<RowMajor>(k, 128, 128); | 
|  | } | 
|  | } | 
|  |  | 
|  | template<int DataLayout> | 
|  | void test_gpu_contraction_k() { | 
|  | for (int k = 32; k < 256; k++) { | 
|  | test_gpu_contraction<ColMajor>(128, k, 128); | 
|  | test_gpu_contraction<RowMajor>(128, k, 128); | 
|  | } | 
|  | } | 
|  |  | 
|  | template<int DataLayout> | 
|  | void test_gpu_contraction_n() { | 
|  | for (int k = 32; k < 256; k++) { | 
|  | test_gpu_contraction<ColMajor>(128, 128, k); | 
|  | test_gpu_contraction<RowMajor>(128, 128, k); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | template<int DataLayout> | 
|  | void test_gpu_contraction_sizes() { | 
|  | int m_sizes[] = { 31,  39,   63,   64,   65, | 
|  | 127, 129,  255,  257 , 511, | 
|  | 512, 513, 1023, 1024, 1025}; | 
|  |  | 
|  | int n_sizes[] = { 31,  39,   63,   64,   65, | 
|  | 127, 129,  255,  257,  511, | 
|  | 512, 513, 1023, 1024, 1025}; | 
|  |  | 
|  | int k_sizes[] = {  31,   39,  63,  64,   65, | 
|  | 95,   96, 127, 129,  255, | 
|  | 257,  511, 512, 513, 1023, | 
|  | 1024, 1025}; | 
|  |  | 
|  | for (int i = 0; i < 15; i++) { | 
|  | for (int j = 0; j < 15; j++) { | 
|  | for (int k = 0; k < 17; k++) { | 
|  | test_gpu_contraction<DataLayout>(m_sizes[i], n_sizes[j], k_sizes[k]); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | EIGEN_DECLARE_TEST(cxx11_tensor_contract_gpu) | 
|  | { | 
|  | CALL_SUBTEST_1(test_gpu_contraction<ColMajor>(128, 128, 128)); | 
|  | CALL_SUBTEST_1(test_gpu_contraction<RowMajor>(128, 128, 128)); | 
|  |  | 
|  | CALL_SUBTEST_1(test_scalar<ColMajor>(128, 128, 128)); | 
|  | CALL_SUBTEST_1(test_scalar<RowMajor>(128, 128, 128)); | 
|  |  | 
|  | CALL_SUBTEST_2(test_gpu_contraction_m<ColMajor>()); | 
|  | CALL_SUBTEST_3(test_gpu_contraction_m<RowMajor>()); | 
|  |  | 
|  | CALL_SUBTEST_4(test_gpu_contraction_k<ColMajor>()); | 
|  | CALL_SUBTEST_5(test_gpu_contraction_k<RowMajor>()); | 
|  |  | 
|  | CALL_SUBTEST_6(test_gpu_contraction_n<ColMajor>()); | 
|  | CALL_SUBTEST_7(test_gpu_contraction_n<RowMajor>()); | 
|  |  | 
|  | #if !defined(EIGEN_USE_HIP) | 
|  | // disable these subtests for HIP | 
|  | CALL_SUBTEST_8(test_gpu_contraction_sizes<ColMajor>()); | 
|  | CALL_SUBTEST_9(test_gpu_contraction_sizes<RowMajor>()); | 
|  | #endif | 
|  | } |