| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // We used the "A Divide-And-Conquer Algorithm for the Bidiagonal SVD" |
| // research report written by Ming Gu and Stanley C.Eisenstat |
| // The code variable names correspond to the names they used in their |
| // report |
| // |
| // Copyright (C) 2013 Gauthier Brun <brun.gauthier@gmail.com> |
| // Copyright (C) 2013 Nicolas Carre <nicolas.carre@ensimag.fr> |
| // Copyright (C) 2013 Jean Ceccato <jean.ceccato@ensimag.fr> |
| // Copyright (C) 2013 Pierre Zoppitelli <pierre.zoppitelli@ensimag.fr> |
| // Copyright (C) 2013 Jitse Niesen <jitse@maths.leeds.ac.uk> |
| // Copyright (C) 2014-2017 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_BDCSVD_H |
| #define EIGEN_BDCSVD_H |
| // #define EIGEN_BDCSVD_DEBUG_VERBOSE |
| // #define EIGEN_BDCSVD_SANITY_CHECKS |
| |
| #ifdef EIGEN_BDCSVD_SANITY_CHECKS |
| #undef eigen_internal_assert |
| #define eigen_internal_assert(X) assert(X); |
| #endif |
| |
| // IWYU pragma: private |
| #include "./InternalHeaderCheck.h" |
| |
| #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE |
| #include <iostream> |
| #endif |
| |
| namespace Eigen { |
| |
| #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE |
| IOFormat bdcsvdfmt(8, 0, ", ", "\n", " [", "]"); |
| #endif |
| |
| template <typename MatrixType_, int Options> |
| class BDCSVD; |
| |
| namespace internal { |
| |
| template <typename MatrixType_, int Options> |
| struct traits<BDCSVD<MatrixType_, Options> > : svd_traits<MatrixType_, Options> { |
| typedef MatrixType_ MatrixType; |
| }; |
| |
| template <typename MatrixType, int Options> |
| struct allocate_small_svd { |
| static void run(JacobiSVD<MatrixType, Options>& smallSvd, Index rows, Index cols, unsigned int computationOptions) { |
| (void)computationOptions; |
| smallSvd = JacobiSVD<MatrixType, Options>(rows, cols); |
| } |
| }; |
| |
| EIGEN_DIAGNOSTICS(push) |
| EIGEN_DISABLE_DEPRECATED_WARNING |
| |
| template <typename MatrixType> |
| struct allocate_small_svd<MatrixType, 0> { |
| static void run(JacobiSVD<MatrixType>& smallSvd, Index rows, Index cols, unsigned int computationOptions) { |
| smallSvd = JacobiSVD<MatrixType>(rows, cols, computationOptions); |
| } |
| }; |
| |
| EIGEN_DIAGNOSTICS(pop) |
| |
| } // end namespace internal |
| |
| /** \ingroup SVD_Module |
| * |
| * |
| * \class BDCSVD |
| * |
| * \brief class Bidiagonal Divide and Conquer SVD |
| * |
| * \tparam MatrixType_ the type of the matrix of which we are computing the SVD decomposition |
| * |
| * \tparam Options_ this optional parameter allows one to specify options for computing unitaries \a U and \a V. |
| * Possible values are #ComputeThinU, #ComputeThinV, #ComputeFullU, #ComputeFullV, and |
| * #DisableQRDecomposition. It is not possible to request both the thin and full version of \a U or |
| * \a V. By default, unitaries are not computed. BDCSVD uses R-Bidiagonalization to improve |
| * performance on tall and wide matrices. For backwards compatility, the option |
| * #DisableQRDecomposition can be used to disable this optimization. |
| * |
| * This class first reduces the input matrix to bi-diagonal form using class UpperBidiagonalization, |
| * and then performs a divide-and-conquer diagonalization. Small blocks are diagonalized using class JacobiSVD. |
| * You can control the switching size with the setSwitchSize() method, default is 16. |
| * For small matrice (<16), it is thus preferable to directly use JacobiSVD. For larger ones, BDCSVD is highly |
| * recommended and can several order of magnitude faster. |
| * |
| * \warning this algorithm is unlikely to provide accurate result when compiled with unsafe math optimizations. |
| * For instance, this concerns Intel's compiler (ICC), which performs such optimization by default unless |
| * you compile with the \c -fp-model \c precise option. Likewise, the \c -ffast-math option of GCC or clang will |
| * significantly degrade the accuracy. |
| * |
| * \sa class JacobiSVD |
| */ |
| template <typename MatrixType_, int Options_> |
| class BDCSVD : public SVDBase<BDCSVD<MatrixType_, Options_> > { |
| typedef SVDBase<BDCSVD> Base; |
| |
| public: |
| using Base::cols; |
| using Base::computeU; |
| using Base::computeV; |
| using Base::diagSize; |
| using Base::rows; |
| |
| typedef MatrixType_ MatrixType; |
| typedef typename Base::Scalar Scalar; |
| typedef typename Base::RealScalar RealScalar; |
| typedef typename NumTraits<RealScalar>::Literal Literal; |
| typedef typename Base::Index Index; |
| enum { |
| Options = Options_, |
| QRDecomposition = Options & internal::QRPreconditionerBits, |
| ComputationOptions = Options & internal::ComputationOptionsBits, |
| RowsAtCompileTime = Base::RowsAtCompileTime, |
| ColsAtCompileTime = Base::ColsAtCompileTime, |
| DiagSizeAtCompileTime = Base::DiagSizeAtCompileTime, |
| MaxRowsAtCompileTime = Base::MaxRowsAtCompileTime, |
| MaxColsAtCompileTime = Base::MaxColsAtCompileTime, |
| MaxDiagSizeAtCompileTime = Base::MaxDiagSizeAtCompileTime, |
| MatrixOptions = Base::MatrixOptions |
| }; |
| |
| typedef typename Base::MatrixUType MatrixUType; |
| typedef typename Base::MatrixVType MatrixVType; |
| typedef typename Base::SingularValuesType SingularValuesType; |
| |
| typedef Matrix<Scalar, Dynamic, Dynamic, ColMajor> MatrixX; |
| typedef Matrix<RealScalar, Dynamic, Dynamic, ColMajor> MatrixXr; |
| typedef Matrix<RealScalar, Dynamic, 1> VectorType; |
| typedef Array<RealScalar, Dynamic, 1> ArrayXr; |
| typedef Array<Index, 1, Dynamic> ArrayXi; |
| typedef Ref<ArrayXr> ArrayRef; |
| typedef Ref<ArrayXi> IndicesRef; |
| |
| /** \brief Default Constructor. |
| * |
| * The default constructor is useful in cases in which the user intends to |
| * perform decompositions via BDCSVD::compute(const MatrixType&). |
| */ |
| BDCSVD() : m_algoswap(16), m_isTranspose(false), m_compU(false), m_compV(false), m_numIters(0) {} |
| |
| /** \brief Default Constructor with memory preallocation |
| * |
| * Like the default constructor but with preallocation of the internal data |
| * according to the specified problem size and \a Options template parameter. |
| * \sa BDCSVD() |
| */ |
| BDCSVD(Index rows, Index cols) : m_algoswap(16), m_numIters(0) { |
| allocate(rows, cols, internal::get_computation_options(Options)); |
| } |
| |
| /** \brief Default Constructor with memory preallocation |
| * |
| * Like the default constructor but with preallocation of the internal data |
| * according to the specified problem size and the \a computationOptions. |
| * |
| * One \b cannot request unitiaries using both the \a Options template parameter |
| * and the constructor. If possible, prefer using the \a Options template parameter. |
| * |
| * \param computationOptions specifification for computing Thin/Full unitaries U/V |
| * \sa BDCSVD() |
| * |
| * \deprecated Will be removed in the next major Eigen version. Options should |
| * be specified in the \a Options template parameter. |
| */ |
| EIGEN_DEPRECATED BDCSVD(Index rows, Index cols, unsigned int computationOptions) : m_algoswap(16), m_numIters(0) { |
| internal::check_svd_options_assertions<MatrixType, Options>(computationOptions, rows, cols); |
| allocate(rows, cols, computationOptions); |
| } |
| |
| /** \brief Constructor performing the decomposition of given matrix, using the custom options specified |
| * with the \a Options template paramter. |
| * |
| * \param matrix the matrix to decompose |
| */ |
| BDCSVD(const MatrixType& matrix) : m_algoswap(16), m_numIters(0) { |
| compute_impl(matrix, internal::get_computation_options(Options)); |
| } |
| |
| /** \brief Constructor performing the decomposition of given matrix using specified options |
| * for computing unitaries. |
| * |
| * One \b cannot request unitiaries using both the \a Options template parameter |
| * and the constructor. If possible, prefer using the \a Options template parameter. |
| * |
| * \param matrix the matrix to decompose |
| * \param computationOptions specifification for computing Thin/Full unitaries U/V |
| * |
| * \deprecated Will be removed in the next major Eigen version. Options should |
| * be specified in the \a Options template parameter. |
| */ |
| EIGEN_DEPRECATED BDCSVD(const MatrixType& matrix, unsigned int computationOptions) : m_algoswap(16), m_numIters(0) { |
| internal::check_svd_options_assertions<MatrixType, Options>(computationOptions, matrix.rows(), matrix.cols()); |
| compute_impl(matrix, computationOptions); |
| } |
| |
| ~BDCSVD() {} |
| |
| /** \brief Method performing the decomposition of given matrix. Computes Thin/Full unitaries U/V if specified |
| * using the \a Options template parameter or the class constructor. |
| * |
| * \param matrix the matrix to decompose |
| */ |
| BDCSVD& compute(const MatrixType& matrix) { return compute_impl(matrix, m_computationOptions); } |
| |
| /** \brief Method performing the decomposition of given matrix, as specified by |
| * the `computationOptions` parameter. |
| * |
| * \param matrix the matrix to decompose |
| * \param computationOptions specify whether to compute Thin/Full unitaries U/V |
| * |
| * \deprecated Will be removed in the next major Eigen version. Options should |
| * be specified in the \a Options template parameter. |
| */ |
| EIGEN_DEPRECATED BDCSVD& compute(const MatrixType& matrix, unsigned int computationOptions) { |
| internal::check_svd_options_assertions<MatrixType, Options>(computationOptions, matrix.rows(), matrix.cols()); |
| return compute_impl(matrix, computationOptions); |
| } |
| |
| void setSwitchSize(int s) { |
| eigen_assert(s >= 3 && "BDCSVD the size of the algo switch has to be at least 3."); |
| m_algoswap = s; |
| } |
| |
| private: |
| BDCSVD& compute_impl(const MatrixType& matrix, unsigned int computationOptions); |
| void divide(Index firstCol, Index lastCol, Index firstRowW, Index firstColW, Index shift); |
| void computeSVDofM(Index firstCol, Index n, MatrixXr& U, VectorType& singVals, MatrixXr& V); |
| void computeSingVals(const ArrayRef& col0, const ArrayRef& diag, const IndicesRef& perm, VectorType& singVals, |
| ArrayRef shifts, ArrayRef mus); |
| void perturbCol0(const ArrayRef& col0, const ArrayRef& diag, const IndicesRef& perm, const VectorType& singVals, |
| const ArrayRef& shifts, const ArrayRef& mus, ArrayRef zhat); |
| void computeSingVecs(const ArrayRef& zhat, const ArrayRef& diag, const IndicesRef& perm, const VectorType& singVals, |
| const ArrayRef& shifts, const ArrayRef& mus, MatrixXr& U, MatrixXr& V); |
| void deflation43(Index firstCol, Index shift, Index i, Index size); |
| void deflation44(Index firstColu, Index firstColm, Index firstRowW, Index firstColW, Index i, Index j, Index size); |
| void deflation(Index firstCol, Index lastCol, Index k, Index firstRowW, Index firstColW, Index shift); |
| template <typename HouseholderU, typename HouseholderV, typename NaiveU, typename NaiveV> |
| void copyUV(const HouseholderU& householderU, const HouseholderV& householderV, const NaiveU& naiveU, |
| const NaiveV& naivev); |
| void structured_update(Block<MatrixXr, Dynamic, Dynamic> A, const MatrixXr& B, Index n1); |
| static RealScalar secularEq(RealScalar x, const ArrayRef& col0, const ArrayRef& diag, const IndicesRef& perm, |
| const ArrayRef& diagShifted, RealScalar shift); |
| template <typename SVDType> |
| void computeBaseCase(SVDType& svd, Index n, Index firstCol, Index firstRowW, Index firstColW, Index shift); |
| |
| protected: |
| void allocate(Index rows, Index cols, unsigned int computationOptions); |
| MatrixXr m_naiveU, m_naiveV; |
| MatrixXr m_computed; |
| Index m_nRec; |
| ArrayXr m_workspace; |
| ArrayXi m_workspaceI; |
| int m_algoswap; |
| bool m_isTranspose, m_compU, m_compV, m_useQrDecomp; |
| JacobiSVD<MatrixType, ComputationOptions> smallSvd; |
| HouseholderQR<MatrixX> qrDecomp; |
| internal::UpperBidiagonalization<MatrixX> bid; |
| MatrixX copyWorkspace; |
| MatrixX reducedTriangle; |
| |
| using Base::m_computationOptions; |
| using Base::m_computeThinU; |
| using Base::m_computeThinV; |
| using Base::m_info; |
| using Base::m_isInitialized; |
| using Base::m_matrixU; |
| using Base::m_matrixV; |
| using Base::m_nonzeroSingularValues; |
| using Base::m_singularValues; |
| |
| public: |
| int m_numIters; |
| }; // end class BDCSVD |
| |
| // Method to allocate and initialize matrix and attributes |
| template <typename MatrixType, int Options> |
| void BDCSVD<MatrixType, Options>::allocate(Index rows, Index cols, unsigned int computationOptions) { |
| if (Base::allocate(rows, cols, computationOptions)) return; |
| |
| if (cols < m_algoswap) |
| internal::allocate_small_svd<MatrixType, ComputationOptions>::run(smallSvd, rows, cols, computationOptions); |
| |
| m_computed = MatrixXr::Zero(diagSize() + 1, diagSize()); |
| m_compU = computeV(); |
| m_compV = computeU(); |
| m_isTranspose = (cols > rows); |
| if (m_isTranspose) std::swap(m_compU, m_compV); |
| |
| // kMinAspectRatio is the crossover point that determines if we perform R-Bidiagonalization |
| // or bidiagonalize the input matrix directly. |
| // It is based off of LAPACK's dgesdd routine, which uses 11.0/6.0 |
| // we use a larger scalar to prevent a regression for relatively square matrices. |
| constexpr Index kMinAspectRatio = 4; |
| constexpr bool disableQrDecomp = static_cast<int>(QRDecomposition) == static_cast<int>(DisableQRDecomposition); |
| m_useQrDecomp = !disableQrDecomp && ((rows / kMinAspectRatio > cols) || (cols / kMinAspectRatio > rows)); |
| if (m_useQrDecomp) { |
| qrDecomp = HouseholderQR<MatrixX>((std::max)(rows, cols), (std::min)(rows, cols)); |
| reducedTriangle = MatrixX(diagSize(), diagSize()); |
| } |
| |
| copyWorkspace = MatrixX(m_isTranspose ? cols : rows, m_isTranspose ? rows : cols); |
| bid = internal::UpperBidiagonalization<MatrixX>(m_useQrDecomp ? diagSize() : copyWorkspace.rows(), |
| m_useQrDecomp ? diagSize() : copyWorkspace.cols()); |
| |
| if (m_compU) |
| m_naiveU = MatrixXr::Zero(diagSize() + 1, diagSize() + 1); |
| else |
| m_naiveU = MatrixXr::Zero(2, diagSize() + 1); |
| |
| if (m_compV) m_naiveV = MatrixXr::Zero(diagSize(), diagSize()); |
| |
| m_workspace.resize((diagSize() + 1) * (diagSize() + 1) * 3); |
| m_workspaceI.resize(3 * diagSize()); |
| } // end allocate |
| |
| template <typename MatrixType, int Options> |
| BDCSVD<MatrixType, Options>& BDCSVD<MatrixType, Options>::compute_impl(const MatrixType& matrix, |
| unsigned int computationOptions) { |
| #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE |
| std::cout << "\n\n\n=================================================================================================" |
| "=====================\n\n\n"; |
| #endif |
| using std::abs; |
| |
| allocate(matrix.rows(), matrix.cols(), computationOptions); |
| |
| const RealScalar considerZero = (std::numeric_limits<RealScalar>::min)(); |
| |
| //**** step -1 - If the problem is too small, directly falls back to JacobiSVD and return |
| if (matrix.cols() < m_algoswap) { |
| smallSvd.compute(matrix); |
| m_isInitialized = true; |
| m_info = smallSvd.info(); |
| if (m_info == Success || m_info == NoConvergence) { |
| if (computeU()) m_matrixU = smallSvd.matrixU(); |
| if (computeV()) m_matrixV = smallSvd.matrixV(); |
| m_singularValues = smallSvd.singularValues(); |
| m_nonzeroSingularValues = smallSvd.nonzeroSingularValues(); |
| } |
| return *this; |
| } |
| |
| //**** step 0 - Copy the input matrix and apply scaling to reduce over/under-flows |
| RealScalar scale = matrix.cwiseAbs().template maxCoeff<PropagateNaN>(); |
| if (!(numext::isfinite)(scale)) { |
| m_isInitialized = true; |
| m_info = InvalidInput; |
| return *this; |
| } |
| |
| if (numext::is_exactly_zero(scale)) scale = Literal(1); |
| |
| if (m_isTranspose) |
| copyWorkspace = matrix.adjoint() / scale; |
| else |
| copyWorkspace = matrix / scale; |
| |
| //**** step 1 - Bidiagonalization. |
| // If the problem is sufficiently rectangular, we perform R-Bidiagonalization: compute A = Q(R/0) |
| // and then bidiagonalize R. Otherwise, if the problem is relatively square, we |
| // bidiagonalize the input matrix directly. |
| if (m_useQrDecomp) { |
| qrDecomp.compute(copyWorkspace); |
| reducedTriangle = qrDecomp.matrixQR().topRows(diagSize()); |
| reducedTriangle.template triangularView<StrictlyLower>().setZero(); |
| bid.compute(reducedTriangle); |
| } else { |
| bid.compute(copyWorkspace); |
| } |
| |
| //**** step 2 - Divide & Conquer |
| m_naiveU.setZero(); |
| m_naiveV.setZero(); |
| // FIXME this line involves a temporary matrix |
| m_computed.topRows(diagSize()) = bid.bidiagonal().toDenseMatrix().transpose(); |
| m_computed.template bottomRows<1>().setZero(); |
| divide(0, diagSize() - 1, 0, 0, 0); |
| if (m_info != Success && m_info != NoConvergence) { |
| m_isInitialized = true; |
| return *this; |
| } |
| |
| //**** step 3 - Copy singular values and vectors |
| for (int i = 0; i < diagSize(); i++) { |
| RealScalar a = abs(m_computed.coeff(i, i)); |
| m_singularValues.coeffRef(i) = a * scale; |
| if (a < considerZero) { |
| m_nonzeroSingularValues = i; |
| m_singularValues.tail(diagSize() - i - 1).setZero(); |
| break; |
| } else if (i == diagSize() - 1) { |
| m_nonzeroSingularValues = i + 1; |
| break; |
| } |
| } |
| |
| //**** step 4 - Finalize unitaries U and V |
| if (m_isTranspose) |
| copyUV(bid.householderV(), bid.householderU(), m_naiveV, m_naiveU); |
| else |
| copyUV(bid.householderU(), bid.householderV(), m_naiveU, m_naiveV); |
| |
| if (m_useQrDecomp) { |
| if (m_isTranspose && computeV()) |
| m_matrixV.applyOnTheLeft(qrDecomp.householderQ()); |
| else if (!m_isTranspose && computeU()) |
| m_matrixU.applyOnTheLeft(qrDecomp.householderQ()); |
| } |
| |
| m_isInitialized = true; |
| return *this; |
| } // end compute |
| |
| template <typename MatrixType, int Options> |
| template <typename HouseholderU, typename HouseholderV, typename NaiveU, typename NaiveV> |
| void BDCSVD<MatrixType, Options>::copyUV(const HouseholderU& householderU, const HouseholderV& householderV, |
| const NaiveU& naiveU, const NaiveV& naiveV) { |
| // Note exchange of U and V: m_matrixU is set from m_naiveV and vice versa |
| if (computeU()) { |
| Index Ucols = m_computeThinU ? diagSize() : rows(); |
| m_matrixU = MatrixX::Identity(rows(), Ucols); |
| m_matrixU.topLeftCorner(diagSize(), diagSize()) = |
| naiveV.template cast<Scalar>().topLeftCorner(diagSize(), diagSize()); |
| // FIXME the following conditionals involve temporary buffers |
| if (m_useQrDecomp) |
| m_matrixU.topLeftCorner(householderU.cols(), diagSize()).applyOnTheLeft(householderU); |
| else |
| m_matrixU.applyOnTheLeft(householderU); |
| } |
| if (computeV()) { |
| Index Vcols = m_computeThinV ? diagSize() : cols(); |
| m_matrixV = MatrixX::Identity(cols(), Vcols); |
| m_matrixV.topLeftCorner(diagSize(), diagSize()) = |
| naiveU.template cast<Scalar>().topLeftCorner(diagSize(), diagSize()); |
| // FIXME the following conditionals involve temporary buffers |
| if (m_useQrDecomp) |
| m_matrixV.topLeftCorner(householderV.cols(), diagSize()).applyOnTheLeft(householderV); |
| else |
| m_matrixV.applyOnTheLeft(householderV); |
| } |
| } |
| |
| /** \internal |
| * Performs A = A * B exploiting the special structure of the matrix A. Splitting A as: |
| * A = [A1] |
| * [A2] |
| * such that A1.rows()==n1, then we assume that at least half of the columns of A1 and A2 are zeros. |
| * We can thus pack them prior to the the matrix product. However, this is only worth the effort if the matrix is large |
| * enough. |
| */ |
| template <typename MatrixType, int Options> |
| void BDCSVD<MatrixType, Options>::structured_update(Block<MatrixXr, Dynamic, Dynamic> A, const MatrixXr& B, Index n1) { |
| Index n = A.rows(); |
| if (n > 100) { |
| // If the matrices are large enough, let's exploit the sparse structure of A by |
| // splitting it in half (wrt n1), and packing the non-zero columns. |
| Index n2 = n - n1; |
| Map<MatrixXr> A1(m_workspace.data(), n1, n); |
| Map<MatrixXr> A2(m_workspace.data() + n1 * n, n2, n); |
| Map<MatrixXr> B1(m_workspace.data() + n * n, n, n); |
| Map<MatrixXr> B2(m_workspace.data() + 2 * n * n, n, n); |
| Index k1 = 0, k2 = 0; |
| for (Index j = 0; j < n; ++j) { |
| if ((A.col(j).head(n1).array() != Literal(0)).any()) { |
| A1.col(k1) = A.col(j).head(n1); |
| B1.row(k1) = B.row(j); |
| ++k1; |
| } |
| if ((A.col(j).tail(n2).array() != Literal(0)).any()) { |
| A2.col(k2) = A.col(j).tail(n2); |
| B2.row(k2) = B.row(j); |
| ++k2; |
| } |
| } |
| |
| A.topRows(n1).noalias() = A1.leftCols(k1) * B1.topRows(k1); |
| A.bottomRows(n2).noalias() = A2.leftCols(k2) * B2.topRows(k2); |
| } else { |
| Map<MatrixXr, Aligned> tmp(m_workspace.data(), n, n); |
| tmp.noalias() = A * B; |
| A = tmp; |
| } |
| } |
| |
| template <typename MatrixType, int Options> |
| template <typename SVDType> |
| void BDCSVD<MatrixType, Options>::computeBaseCase(SVDType& svd, Index n, Index firstCol, Index firstRowW, |
| Index firstColW, Index shift) { |
| svd.compute(m_computed.block(firstCol, firstCol, n + 1, n)); |
| m_info = svd.info(); |
| if (m_info != Success && m_info != NoConvergence) return; |
| if (m_compU) |
| m_naiveU.block(firstCol, firstCol, n + 1, n + 1).real() = svd.matrixU(); |
| else { |
| m_naiveU.row(0).segment(firstCol, n + 1).real() = svd.matrixU().row(0); |
| m_naiveU.row(1).segment(firstCol, n + 1).real() = svd.matrixU().row(n); |
| } |
| if (m_compV) m_naiveV.block(firstRowW, firstColW, n, n).real() = svd.matrixV(); |
| m_computed.block(firstCol + shift, firstCol + shift, n + 1, n).setZero(); |
| m_computed.diagonal().segment(firstCol + shift, n) = svd.singularValues().head(n); |
| } |
| |
| // The divide algorithm is done "in place", we are always working on subsets of the same matrix. The divide methods |
| // takes as argument the place of the submatrix we are currently working on. |
| |
| //@param firstCol : The Index of the first column of the submatrix of m_computed and for m_naiveU; |
| //@param lastCol : The Index of the last column of the submatrix of m_computed and for m_naiveU; |
| // lastCol + 1 - firstCol is the size of the submatrix. |
| //@param firstRowW : The Index of the first row of the matrix W that we are to change. (see the reference paper section |
| // 1 for more information on W) |
| //@param firstColW : Same as firstRowW with the column. |
| //@param shift : Each time one takes the left submatrix, one must add 1 to the shift. Why? Because! We actually want the |
| // last column of the U submatrix |
| // to become the first column (*coeff) and to shift all the other columns to the right. There are more details on the |
| // reference paper. |
| template <typename MatrixType, int Options> |
| void BDCSVD<MatrixType, Options>::divide(Index firstCol, Index lastCol, Index firstRowW, Index firstColW, Index shift) { |
| // requires rows = cols + 1; |
| using std::abs; |
| using std::pow; |
| using std::sqrt; |
| const Index n = lastCol - firstCol + 1; |
| const Index k = n / 2; |
| const RealScalar considerZero = (std::numeric_limits<RealScalar>::min)(); |
| RealScalar alphaK; |
| RealScalar betaK; |
| RealScalar r0; |
| RealScalar lambda, phi, c0, s0; |
| VectorType l, f; |
| // We use the other algorithm which is more efficient for small |
| // matrices. |
| if (n < m_algoswap) { |
| // FIXME this block involves temporaries |
| if (m_compV) { |
| JacobiSVD<MatrixXr, ComputeFullU | ComputeFullV> baseSvd; |
| computeBaseCase(baseSvd, n, firstCol, firstRowW, firstColW, shift); |
| } else { |
| JacobiSVD<MatrixXr, ComputeFullU> baseSvd; |
| computeBaseCase(baseSvd, n, firstCol, firstRowW, firstColW, shift); |
| } |
| return; |
| } |
| // We use the divide and conquer algorithm |
| alphaK = m_computed(firstCol + k, firstCol + k); |
| betaK = m_computed(firstCol + k + 1, firstCol + k); |
| // The divide must be done in that order in order to have good results. Divide change the data inside the submatrices |
| // and the divide of the right submatrice reads one column of the left submatrice. That's why we need to treat the |
| // right submatrix before the left one. |
| divide(k + 1 + firstCol, lastCol, k + 1 + firstRowW, k + 1 + firstColW, shift); |
| if (m_info != Success && m_info != NoConvergence) return; |
| divide(firstCol, k - 1 + firstCol, firstRowW, firstColW + 1, shift + 1); |
| if (m_info != Success && m_info != NoConvergence) return; |
| |
| if (m_compU) { |
| lambda = m_naiveU(firstCol + k, firstCol + k); |
| phi = m_naiveU(firstCol + k + 1, lastCol + 1); |
| } else { |
| lambda = m_naiveU(1, firstCol + k); |
| phi = m_naiveU(0, lastCol + 1); |
| } |
| r0 = sqrt((abs(alphaK * lambda) * abs(alphaK * lambda)) + abs(betaK * phi) * abs(betaK * phi)); |
| if (m_compU) { |
| l = m_naiveU.row(firstCol + k).segment(firstCol, k); |
| f = m_naiveU.row(firstCol + k + 1).segment(firstCol + k + 1, n - k - 1); |
| } else { |
| l = m_naiveU.row(1).segment(firstCol, k); |
| f = m_naiveU.row(0).segment(firstCol + k + 1, n - k - 1); |
| } |
| if (m_compV) m_naiveV(firstRowW + k, firstColW) = Literal(1); |
| if (r0 < considerZero) { |
| c0 = Literal(1); |
| s0 = Literal(0); |
| } else { |
| c0 = alphaK * lambda / r0; |
| s0 = betaK * phi / r0; |
| } |
| |
| #ifdef EIGEN_BDCSVD_SANITY_CHECKS |
| eigen_internal_assert(m_naiveU.allFinite()); |
| eigen_internal_assert(m_naiveV.allFinite()); |
| eigen_internal_assert(m_computed.allFinite()); |
| #endif |
| |
| if (m_compU) { |
| MatrixXr q1(m_naiveU.col(firstCol + k).segment(firstCol, k + 1)); |
| // we shiftW Q1 to the right |
| for (Index i = firstCol + k - 1; i >= firstCol; i--) |
| m_naiveU.col(i + 1).segment(firstCol, k + 1) = m_naiveU.col(i).segment(firstCol, k + 1); |
| // we shift q1 at the left with a factor c0 |
| m_naiveU.col(firstCol).segment(firstCol, k + 1) = (q1 * c0); |
| // last column = q1 * - s0 |
| m_naiveU.col(lastCol + 1).segment(firstCol, k + 1) = (q1 * (-s0)); |
| // first column = q2 * s0 |
| m_naiveU.col(firstCol).segment(firstCol + k + 1, n - k) = |
| m_naiveU.col(lastCol + 1).segment(firstCol + k + 1, n - k) * s0; |
| // q2 *= c0 |
| m_naiveU.col(lastCol + 1).segment(firstCol + k + 1, n - k) *= c0; |
| } else { |
| RealScalar q1 = m_naiveU(0, firstCol + k); |
| // we shift Q1 to the right |
| for (Index i = firstCol + k - 1; i >= firstCol; i--) m_naiveU(0, i + 1) = m_naiveU(0, i); |
| // we shift q1 at the left with a factor c0 |
| m_naiveU(0, firstCol) = (q1 * c0); |
| // last column = q1 * - s0 |
| m_naiveU(0, lastCol + 1) = (q1 * (-s0)); |
| // first column = q2 * s0 |
| m_naiveU(1, firstCol) = m_naiveU(1, lastCol + 1) * s0; |
| // q2 *= c0 |
| m_naiveU(1, lastCol + 1) *= c0; |
| m_naiveU.row(1).segment(firstCol + 1, k).setZero(); |
| m_naiveU.row(0).segment(firstCol + k + 1, n - k - 1).setZero(); |
| } |
| |
| #ifdef EIGEN_BDCSVD_SANITY_CHECKS |
| eigen_internal_assert(m_naiveU.allFinite()); |
| eigen_internal_assert(m_naiveV.allFinite()); |
| eigen_internal_assert(m_computed.allFinite()); |
| #endif |
| |
| m_computed(firstCol + shift, firstCol + shift) = r0; |
| m_computed.col(firstCol + shift).segment(firstCol + shift + 1, k) = alphaK * l.transpose().real(); |
| m_computed.col(firstCol + shift).segment(firstCol + shift + k + 1, n - k - 1) = betaK * f.transpose().real(); |
| |
| #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE |
| ArrayXr tmp1 = (m_computed.block(firstCol + shift, firstCol + shift, n, n)).jacobiSvd().singularValues(); |
| #endif |
| // Second part: try to deflate singular values in combined matrix |
| deflation(firstCol, lastCol, k, firstRowW, firstColW, shift); |
| #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE |
| ArrayXr tmp2 = (m_computed.block(firstCol + shift, firstCol + shift, n, n)).jacobiSvd().singularValues(); |
| std::cout << "\n\nj1 = " << tmp1.transpose().format(bdcsvdfmt) << "\n"; |
| std::cout << "j2 = " << tmp2.transpose().format(bdcsvdfmt) << "\n\n"; |
| std::cout << "err: " << ((tmp1 - tmp2).abs() > 1e-12 * tmp2.abs()).transpose() << "\n"; |
| static int count = 0; |
| std::cout << "# " << ++count << "\n\n"; |
| eigen_internal_assert((tmp1 - tmp2).matrix().norm() < 1e-14 * tmp2.matrix().norm()); |
| // eigen_internal_assert(count<681); |
| // eigen_internal_assert(((tmp1-tmp2).abs()<1e-13*tmp2.abs()).all()); |
| #endif |
| |
| // Third part: compute SVD of combined matrix |
| MatrixXr UofSVD, VofSVD; |
| VectorType singVals; |
| computeSVDofM(firstCol + shift, n, UofSVD, singVals, VofSVD); |
| |
| #ifdef EIGEN_BDCSVD_SANITY_CHECKS |
| eigen_internal_assert(UofSVD.allFinite()); |
| eigen_internal_assert(VofSVD.allFinite()); |
| #endif |
| |
| if (m_compU) |
| structured_update(m_naiveU.block(firstCol, firstCol, n + 1, n + 1), UofSVD, (n + 2) / 2); |
| else { |
| Map<Matrix<RealScalar, 2, Dynamic>, Aligned> tmp(m_workspace.data(), 2, n + 1); |
| tmp.noalias() = m_naiveU.middleCols(firstCol, n + 1) * UofSVD; |
| m_naiveU.middleCols(firstCol, n + 1) = tmp; |
| } |
| |
| if (m_compV) structured_update(m_naiveV.block(firstRowW, firstColW, n, n), VofSVD, (n + 1) / 2); |
| |
| #ifdef EIGEN_BDCSVD_SANITY_CHECKS |
| eigen_internal_assert(m_naiveU.allFinite()); |
| eigen_internal_assert(m_naiveV.allFinite()); |
| eigen_internal_assert(m_computed.allFinite()); |
| #endif |
| |
| m_computed.block(firstCol + shift, firstCol + shift, n, n).setZero(); |
| m_computed.block(firstCol + shift, firstCol + shift, n, n).diagonal() = singVals; |
| } // end divide |
| |
| // Compute SVD of m_computed.block(firstCol, firstCol, n + 1, n); this block only has non-zeros in |
| // the first column and on the diagonal and has undergone deflation, so diagonal is in increasing |
| // order except for possibly the (0,0) entry. The computed SVD is stored U, singVals and V, except |
| // that if m_compV is false, then V is not computed. Singular values are sorted in decreasing order. |
| // |
| // TODO Opportunities for optimization: better root finding algo, better stopping criterion, better |
| // handling of round-off errors, be consistent in ordering |
| // For instance, to solve the secular equation using FMM, see |
| // http://www.stat.uchicago.edu/~lekheng/courses/302/classics/greengard-rokhlin.pdf |
| template <typename MatrixType, int Options> |
| void BDCSVD<MatrixType, Options>::computeSVDofM(Index firstCol, Index n, MatrixXr& U, VectorType& singVals, |
| MatrixXr& V) { |
| const RealScalar considerZero = (std::numeric_limits<RealScalar>::min)(); |
| using std::abs; |
| ArrayRef col0 = m_computed.col(firstCol).segment(firstCol, n); |
| m_workspace.head(n) = m_computed.block(firstCol, firstCol, n, n).diagonal(); |
| ArrayRef diag = m_workspace.head(n); |
| diag(0) = Literal(0); |
| |
| // Allocate space for singular values and vectors |
| singVals.resize(n); |
| U.resize(n + 1, n + 1); |
| if (m_compV) V.resize(n, n); |
| |
| #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE |
| if (col0.hasNaN() || diag.hasNaN()) std::cout << "\n\nHAS NAN\n\n"; |
| #endif |
| |
| // Many singular values might have been deflated, the zero ones have been moved to the end, |
| // but others are interleaved and we must ignore them at this stage. |
| // To this end, let's compute a permutation skipping them: |
| Index actual_n = n; |
| while (actual_n > 1 && numext::is_exactly_zero(diag(actual_n - 1))) { |
| --actual_n; |
| eigen_internal_assert(numext::is_exactly_zero(col0(actual_n))); |
| } |
| Index m = 0; // size of the deflated problem |
| for (Index k = 0; k < actual_n; ++k) |
| if (abs(col0(k)) > considerZero) m_workspaceI(m++) = k; |
| Map<ArrayXi> perm(m_workspaceI.data(), m); |
| |
| Map<ArrayXr> shifts(m_workspace.data() + 1 * n, n); |
| Map<ArrayXr> mus(m_workspace.data() + 2 * n, n); |
| Map<ArrayXr> zhat(m_workspace.data() + 3 * n, n); |
| |
| #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE |
| std::cout << "computeSVDofM using:\n"; |
| std::cout << " z: " << col0.transpose() << "\n"; |
| std::cout << " d: " << diag.transpose() << "\n"; |
| #endif |
| |
| // Compute singVals, shifts, and mus |
| computeSingVals(col0, diag, perm, singVals, shifts, mus); |
| |
| #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE |
| std::cout << " j: " |
| << (m_computed.block(firstCol, firstCol, n, n)).jacobiSvd().singularValues().transpose().reverse() |
| << "\n\n"; |
| std::cout << " sing-val: " << singVals.transpose() << "\n"; |
| std::cout << " mu: " << mus.transpose() << "\n"; |
| std::cout << " shift: " << shifts.transpose() << "\n"; |
| |
| { |
| std::cout << "\n\n mus: " << mus.head(actual_n).transpose() << "\n\n"; |
| std::cout << " check1 (expect0) : " |
| << ((singVals.array() - (shifts + mus)) / singVals.array()).head(actual_n).transpose() << "\n\n"; |
| eigen_internal_assert((((singVals.array() - (shifts + mus)) / singVals.array()).head(actual_n) >= 0).all()); |
| std::cout << " check2 (>0) : " << ((singVals.array() - diag) / singVals.array()).head(actual_n).transpose() |
| << "\n\n"; |
| eigen_internal_assert((((singVals.array() - diag) / singVals.array()).head(actual_n) >= 0).all()); |
| } |
| #endif |
| |
| #ifdef EIGEN_BDCSVD_SANITY_CHECKS |
| eigen_internal_assert(singVals.allFinite()); |
| eigen_internal_assert(mus.allFinite()); |
| eigen_internal_assert(shifts.allFinite()); |
| #endif |
| |
| // Compute zhat |
| perturbCol0(col0, diag, perm, singVals, shifts, mus, zhat); |
| #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE |
| std::cout << " zhat: " << zhat.transpose() << "\n"; |
| #endif |
| |
| #ifdef EIGEN_BDCSVD_SANITY_CHECKS |
| eigen_internal_assert(zhat.allFinite()); |
| #endif |
| |
| computeSingVecs(zhat, diag, perm, singVals, shifts, mus, U, V); |
| |
| #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE |
| std::cout << "U^T U: " << (U.transpose() * U - MatrixXr(MatrixXr::Identity(U.cols(), U.cols()))).norm() << "\n"; |
| std::cout << "V^T V: " << (V.transpose() * V - MatrixXr(MatrixXr::Identity(V.cols(), V.cols()))).norm() << "\n"; |
| #endif |
| |
| #ifdef EIGEN_BDCSVD_SANITY_CHECKS |
| eigen_internal_assert(m_naiveU.allFinite()); |
| eigen_internal_assert(m_naiveV.allFinite()); |
| eigen_internal_assert(m_computed.allFinite()); |
| eigen_internal_assert(U.allFinite()); |
| eigen_internal_assert(V.allFinite()); |
| // eigen_internal_assert((U.transpose() * U - MatrixXr(MatrixXr::Identity(U.cols(),U.cols()))).norm() < |
| // 100*NumTraits<RealScalar>::epsilon() * n); eigen_internal_assert((V.transpose() * V - |
| // MatrixXr(MatrixXr::Identity(V.cols(),V.cols()))).norm() < 100*NumTraits<RealScalar>::epsilon() * n); |
| #endif |
| |
| // Because of deflation, the singular values might not be completely sorted. |
| // Fortunately, reordering them is a O(n) problem |
| for (Index i = 0; i < actual_n - 1; ++i) { |
| if (singVals(i) > singVals(i + 1)) { |
| using std::swap; |
| swap(singVals(i), singVals(i + 1)); |
| U.col(i).swap(U.col(i + 1)); |
| if (m_compV) V.col(i).swap(V.col(i + 1)); |
| } |
| } |
| |
| #ifdef EIGEN_BDCSVD_SANITY_CHECKS |
| { |
| bool singular_values_sorted = |
| (((singVals.segment(1, actual_n - 1) - singVals.head(actual_n - 1))).array() >= 0).all(); |
| if (!singular_values_sorted) |
| std::cout << "Singular values are not sorted: " << singVals.segment(1, actual_n).transpose() << "\n"; |
| eigen_internal_assert(singular_values_sorted); |
| } |
| #endif |
| |
| // Reverse order so that singular values in increased order |
| // Because of deflation, the zeros singular-values are already at the end |
| singVals.head(actual_n).reverseInPlace(); |
| U.leftCols(actual_n).rowwise().reverseInPlace(); |
| if (m_compV) V.leftCols(actual_n).rowwise().reverseInPlace(); |
| |
| #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE |
| JacobiSVD<MatrixXr> jsvd(m_computed.block(firstCol, firstCol, n, n)); |
| std::cout << " * j: " << jsvd.singularValues().transpose() << "\n\n"; |
| std::cout << " * sing-val: " << singVals.transpose() << "\n"; |
| // std::cout << " * err: " << ((jsvd.singularValues()-singVals)>1e-13*singVals.norm()).transpose() << "\n"; |
| #endif |
| } |
| |
| template <typename MatrixType, int Options> |
| typename BDCSVD<MatrixType, Options>::RealScalar BDCSVD<MatrixType, Options>::secularEq( |
| RealScalar mu, const ArrayRef& col0, const ArrayRef& diag, const IndicesRef& perm, const ArrayRef& diagShifted, |
| RealScalar shift) { |
| Index m = perm.size(); |
| RealScalar res = Literal(1); |
| for (Index i = 0; i < m; ++i) { |
| Index j = perm(i); |
| // The following expression could be rewritten to involve only a single division, |
| // but this would make the expression more sensitive to overflow. |
| res += (col0(j) / (diagShifted(j) - mu)) * (col0(j) / (diag(j) + shift + mu)); |
| } |
| return res; |
| } |
| |
| template <typename MatrixType, int Options> |
| void BDCSVD<MatrixType, Options>::computeSingVals(const ArrayRef& col0, const ArrayRef& diag, const IndicesRef& perm, |
| VectorType& singVals, ArrayRef shifts, ArrayRef mus) { |
| using std::abs; |
| using std::sqrt; |
| using std::swap; |
| |
| Index n = col0.size(); |
| Index actual_n = n; |
| // Note that here actual_n is computed based on col0(i)==0 instead of diag(i)==0 as above |
| // because 1) we have diag(i)==0 => col0(i)==0 and 2) if col0(i)==0, then diag(i) is already a singular value. |
| while (actual_n > 1 && numext::is_exactly_zero(col0(actual_n - 1))) --actual_n; |
| |
| for (Index k = 0; k < n; ++k) { |
| if (numext::is_exactly_zero(col0(k)) || actual_n == 1) { |
| // if col0(k) == 0, then entry is deflated, so singular value is on diagonal |
| // if actual_n==1, then the deflated problem is already diagonalized |
| singVals(k) = k == 0 ? col0(0) : diag(k); |
| mus(k) = Literal(0); |
| shifts(k) = k == 0 ? col0(0) : diag(k); |
| continue; |
| } |
| |
| // otherwise, use secular equation to find singular value |
| RealScalar left = diag(k); |
| RealScalar right; // was: = (k != actual_n-1) ? diag(k+1) : (diag(actual_n-1) + col0.matrix().norm()); |
| if (k == actual_n - 1) |
| right = (diag(actual_n - 1) + col0.matrix().norm()); |
| else { |
| // Skip deflated singular values, |
| // recall that at this stage we assume that z[j]!=0 and all entries for which z[j]==0 have been put aside. |
| // This should be equivalent to using perm[] |
| Index l = k + 1; |
| while (numext::is_exactly_zero(col0(l))) { |
| ++l; |
| eigen_internal_assert(l < actual_n); |
| } |
| right = diag(l); |
| } |
| |
| // first decide whether it's closer to the left end or the right end |
| RealScalar mid = left + (right - left) / Literal(2); |
| RealScalar fMid = secularEq(mid, col0, diag, perm, diag, Literal(0)); |
| #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE |
| std::cout << "right-left = " << right - left << "\n"; |
| // std::cout << "fMid = " << fMid << " " << secularEq(mid-left, col0, diag, perm, ArrayXr(diag-left), left) |
| // << " " << secularEq(mid-right, col0, diag, perm, ArrayXr(diag-right), right) << |
| // "\n"; |
| std::cout << " = " << secularEq(left + RealScalar(0.000001) * (right - left), col0, diag, perm, diag, 0) << " " |
| << secularEq(left + RealScalar(0.1) * (right - left), col0, diag, perm, diag, 0) << " " |
| << secularEq(left + RealScalar(0.2) * (right - left), col0, diag, perm, diag, 0) << " " |
| << secularEq(left + RealScalar(0.3) * (right - left), col0, diag, perm, diag, 0) << " " |
| << secularEq(left + RealScalar(0.4) * (right - left), col0, diag, perm, diag, 0) << " " |
| << secularEq(left + RealScalar(0.49) * (right - left), col0, diag, perm, diag, 0) << " " |
| << secularEq(left + RealScalar(0.5) * (right - left), col0, diag, perm, diag, 0) << " " |
| << secularEq(left + RealScalar(0.51) * (right - left), col0, diag, perm, diag, 0) << " " |
| << secularEq(left + RealScalar(0.6) * (right - left), col0, diag, perm, diag, 0) << " " |
| << secularEq(left + RealScalar(0.7) * (right - left), col0, diag, perm, diag, 0) << " " |
| << secularEq(left + RealScalar(0.8) * (right - left), col0, diag, perm, diag, 0) << " " |
| << secularEq(left + RealScalar(0.9) * (right - left), col0, diag, perm, diag, 0) << " " |
| << secularEq(left + RealScalar(0.999999) * (right - left), col0, diag, perm, diag, 0) << "\n"; |
| #endif |
| RealScalar shift = (k == actual_n - 1 || fMid > Literal(0)) ? left : right; |
| |
| // measure everything relative to shift |
| Map<ArrayXr> diagShifted(m_workspace.data() + 4 * n, n); |
| diagShifted = diag - shift; |
| |
| if (k != actual_n - 1) { |
| // check that after the shift, f(mid) is still negative: |
| RealScalar midShifted = (right - left) / RealScalar(2); |
| // we can test exact equality here, because shift comes from `... ? left : right` |
| if (numext::equal_strict(shift, right)) midShifted = -midShifted; |
| RealScalar fMidShifted = secularEq(midShifted, col0, diag, perm, diagShifted, shift); |
| if (fMidShifted > 0) { |
| // fMid was erroneous, fix it: |
| shift = fMidShifted > Literal(0) ? left : right; |
| diagShifted = diag - shift; |
| } |
| } |
| |
| // initial guess |
| RealScalar muPrev, muCur; |
| // we can test exact equality here, because shift comes from `... ? left : right` |
| if (numext::equal_strict(shift, left)) { |
| muPrev = (right - left) * RealScalar(0.1); |
| if (k == actual_n - 1) |
| muCur = right - left; |
| else |
| muCur = (right - left) * RealScalar(0.5); |
| } else { |
| muPrev = -(right - left) * RealScalar(0.1); |
| muCur = -(right - left) * RealScalar(0.5); |
| } |
| |
| RealScalar fPrev = secularEq(muPrev, col0, diag, perm, diagShifted, shift); |
| RealScalar fCur = secularEq(muCur, col0, diag, perm, diagShifted, shift); |
| if (abs(fPrev) < abs(fCur)) { |
| swap(fPrev, fCur); |
| swap(muPrev, muCur); |
| } |
| |
| // rational interpolation: fit a function of the form a / mu + b through the two previous |
| // iterates and use its zero to compute the next iterate |
| bool useBisection = fPrev * fCur > Literal(0); |
| while (!numext::is_exactly_zero(fCur) && |
| abs(muCur - muPrev) > |
| Literal(8) * NumTraits<RealScalar>::epsilon() * numext::maxi<RealScalar>(abs(muCur), abs(muPrev)) && |
| abs(fCur - fPrev) > NumTraits<RealScalar>::epsilon() && !useBisection) { |
| ++m_numIters; |
| |
| // Find a and b such that the function f(mu) = a / mu + b matches the current and previous samples. |
| RealScalar a = (fCur - fPrev) / (Literal(1) / muCur - Literal(1) / muPrev); |
| RealScalar b = fCur - a / muCur; |
| // And find mu such that f(mu)==0: |
| RealScalar muZero = -a / b; |
| RealScalar fZero = secularEq(muZero, col0, diag, perm, diagShifted, shift); |
| |
| #ifdef EIGEN_BDCSVD_SANITY_CHECKS |
| eigen_internal_assert((numext::isfinite)(fZero)); |
| #endif |
| |
| muPrev = muCur; |
| fPrev = fCur; |
| muCur = muZero; |
| fCur = fZero; |
| |
| // we can test exact equality here, because shift comes from `... ? left : right` |
| if (numext::equal_strict(shift, left) && (muCur < Literal(0) || muCur > right - left)) useBisection = true; |
| if (numext::equal_strict(shift, right) && (muCur < -(right - left) || muCur > Literal(0))) useBisection = true; |
| if (abs(fCur) > abs(fPrev)) useBisection = true; |
| } |
| |
| // fall back on bisection method if rational interpolation did not work |
| if (useBisection) { |
| #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE |
| std::cout << "useBisection for k = " << k << ", actual_n = " << actual_n << "\n"; |
| #endif |
| RealScalar leftShifted, rightShifted; |
| // we can test exact equality here, because shift comes from `... ? left : right` |
| if (numext::equal_strict(shift, left)) { |
| // to avoid overflow, we must have mu > max(real_min, |z(k)|/sqrt(real_max)), |
| // the factor 2 is to be more conservative |
| leftShifted = |
| numext::maxi<RealScalar>((std::numeric_limits<RealScalar>::min)(), |
| Literal(2) * abs(col0(k)) / sqrt((std::numeric_limits<RealScalar>::max)())); |
| |
| // check that we did it right: |
| eigen_internal_assert( |
| (numext::isfinite)((col0(k) / leftShifted) * (col0(k) / (diag(k) + shift + leftShifted)))); |
| // I don't understand why the case k==0 would be special there: |
| // if (k == 0) rightShifted = right - left; else |
| rightShifted = (k == actual_n - 1) |
| ? right |
| : ((right - left) * RealScalar(0.51)); // theoretically we can take 0.5, but let's be safe |
| } else { |
| leftShifted = -(right - left) * RealScalar(0.51); |
| if (k + 1 < n) |
| rightShifted = -numext::maxi<RealScalar>((std::numeric_limits<RealScalar>::min)(), |
| abs(col0(k + 1)) / sqrt((std::numeric_limits<RealScalar>::max)())); |
| else |
| rightShifted = -(std::numeric_limits<RealScalar>::min)(); |
| } |
| |
| RealScalar fLeft = secularEq(leftShifted, col0, diag, perm, diagShifted, shift); |
| eigen_internal_assert(fLeft < Literal(0)); |
| |
| #if defined EIGEN_BDCSVD_DEBUG_VERBOSE || defined EIGEN_BDCSVD_SANITY_CHECKS || defined EIGEN_INTERNAL_DEBUGGING |
| RealScalar fRight = secularEq(rightShifted, col0, diag, perm, diagShifted, shift); |
| #endif |
| |
| #ifdef EIGEN_BDCSVD_SANITY_CHECKS |
| if (!(numext::isfinite)(fLeft)) |
| std::cout << "f(" << leftShifted << ") =" << fLeft << " ; " << left << " " << shift << " " << right << "\n"; |
| eigen_internal_assert((numext::isfinite)(fLeft)); |
| |
| if (!(numext::isfinite)(fRight)) |
| std::cout << "f(" << rightShifted << ") =" << fRight << " ; " << left << " " << shift << " " << right << "\n"; |
| // eigen_internal_assert((numext::isfinite)(fRight)); |
| #endif |
| |
| #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE |
| if (!(fLeft * fRight < 0)) { |
| std::cout << "f(leftShifted) using leftShifted=" << leftShifted |
| << " ; diagShifted(1:10):" << diagShifted.head(10).transpose() << "\n ; " |
| << "left==shift=" << bool(left == shift) << " ; left-shift = " << (left - shift) << "\n"; |
| std::cout << "k=" << k << ", " << fLeft << " * " << fRight << " == " << fLeft * fRight << " ; " |
| << "[" << left << " .. " << right << "] -> [" << leftShifted << " " << rightShifted |
| << "], shift=" << shift << " , f(right)=" << secularEq(0, col0, diag, perm, diagShifted, shift) |
| << " == " << secularEq(right, col0, diag, perm, diag, 0) << " == " << fRight << "\n"; |
| } |
| #endif |
| eigen_internal_assert(fLeft * fRight < Literal(0)); |
| |
| if (fLeft < Literal(0)) { |
| while (rightShifted - leftShifted > Literal(2) * NumTraits<RealScalar>::epsilon() * |
| numext::maxi<RealScalar>(abs(leftShifted), abs(rightShifted))) { |
| RealScalar midShifted = (leftShifted + rightShifted) / Literal(2); |
| fMid = secularEq(midShifted, col0, diag, perm, diagShifted, shift); |
| eigen_internal_assert((numext::isfinite)(fMid)); |
| |
| if (fLeft * fMid < Literal(0)) { |
| rightShifted = midShifted; |
| } else { |
| leftShifted = midShifted; |
| fLeft = fMid; |
| } |
| } |
| muCur = (leftShifted + rightShifted) / Literal(2); |
| } else { |
| // We have a problem as shifting on the left or right give either a positive or negative value |
| // at the middle of [left,right]... |
| // Instead fo abbording or entering an infinite loop, |
| // let's just use the middle as the estimated zero-crossing: |
| muCur = (right - left) * RealScalar(0.5); |
| // we can test exact equality here, because shift comes from `... ? left : right` |
| if (numext::equal_strict(shift, right)) muCur = -muCur; |
| } |
| } |
| |
| singVals[k] = shift + muCur; |
| shifts[k] = shift; |
| mus[k] = muCur; |
| |
| #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE |
| if (k + 1 < n) |
| std::cout << "found " << singVals[k] << " == " << shift << " + " << muCur << " from " << diag(k) << " .. " |
| << diag(k + 1) << "\n"; |
| #endif |
| #ifdef EIGEN_BDCSVD_SANITY_CHECKS |
| eigen_internal_assert(k == 0 || singVals[k] >= singVals[k - 1]); |
| eigen_internal_assert(singVals[k] >= diag(k)); |
| #endif |
| |
| // perturb singular value slightly if it equals diagonal entry to avoid division by zero later |
| // (deflation is supposed to avoid this from happening) |
| // - this does no seem to be necessary anymore - |
| // if (singVals[k] == left) singVals[k] *= 1 + NumTraits<RealScalar>::epsilon(); |
| // if (singVals[k] == right) singVals[k] *= 1 - NumTraits<RealScalar>::epsilon(); |
| } |
| } |
| |
| // zhat is perturbation of col0 for which singular vectors can be computed stably (see Section 3.1) |
| template <typename MatrixType, int Options> |
| void BDCSVD<MatrixType, Options>::perturbCol0(const ArrayRef& col0, const ArrayRef& diag, const IndicesRef& perm, |
| const VectorType& singVals, const ArrayRef& shifts, const ArrayRef& mus, |
| ArrayRef zhat) { |
| using std::sqrt; |
| Index n = col0.size(); |
| Index m = perm.size(); |
| if (m == 0) { |
| zhat.setZero(); |
| return; |
| } |
| Index lastIdx = perm(m - 1); |
| // The offset permits to skip deflated entries while computing zhat |
| for (Index k = 0; k < n; ++k) { |
| if (numext::is_exactly_zero(col0(k))) // deflated |
| zhat(k) = Literal(0); |
| else { |
| // see equation (3.6) |
| RealScalar dk = diag(k); |
| RealScalar prod = (singVals(lastIdx) + dk) * (mus(lastIdx) + (shifts(lastIdx) - dk)); |
| #ifdef EIGEN_BDCSVD_SANITY_CHECKS |
| if (prod < 0) { |
| std::cout << "k = " << k << " ; z(k)=" << col0(k) << ", diag(k)=" << dk << "\n"; |
| std::cout << "prod = " |
| << "(" << singVals(lastIdx) << " + " << dk << ") * (" << mus(lastIdx) << " + (" << shifts(lastIdx) |
| << " - " << dk << "))" |
| << "\n"; |
| std::cout << " = " << singVals(lastIdx) + dk << " * " << mus(lastIdx) + (shifts(lastIdx) - dk) << "\n"; |
| } |
| eigen_internal_assert(prod >= 0); |
| #endif |
| |
| for (Index l = 0; l < m; ++l) { |
| Index i = perm(l); |
| if (i != k) { |
| #ifdef EIGEN_BDCSVD_SANITY_CHECKS |
| if (i >= k && (l == 0 || l - 1 >= m)) { |
| std::cout << "Error in perturbCol0\n"; |
| std::cout << " " << k << "/" << n << " " << l << "/" << m << " " << i << "/" << n << " ; " << col0(k) |
| << " " << diag(k) << " " |
| << "\n"; |
| std::cout << " " << diag(i) << "\n"; |
| Index j = (i < k /*|| l==0*/) ? i : perm(l - 1); |
| std::cout << " " |
| << "j=" << j << "\n"; |
| } |
| #endif |
| Index j = i < k ? i : l > 0 ? perm(l - 1) : i; |
| #ifdef EIGEN_BDCSVD_SANITY_CHECKS |
| if (!(dk != Literal(0) || diag(i) != Literal(0))) { |
| std::cout << "k=" << k << ", i=" << i << ", l=" << l << ", perm.size()=" << perm.size() << "\n"; |
| } |
| eigen_internal_assert(dk != Literal(0) || diag(i) != Literal(0)); |
| #endif |
| prod *= ((singVals(j) + dk) / ((diag(i) + dk))) * ((mus(j) + (shifts(j) - dk)) / ((diag(i) - dk))); |
| #ifdef EIGEN_BDCSVD_SANITY_CHECKS |
| eigen_internal_assert(prod >= 0); |
| #endif |
| #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE |
| if (i != k && |
| numext::abs(((singVals(j) + dk) * (mus(j) + (shifts(j) - dk))) / ((diag(i) + dk) * (diag(i) - dk)) - 1) > |
| 0.9) |
| std::cout << " " |
| << ((singVals(j) + dk) * (mus(j) + (shifts(j) - dk))) / ((diag(i) + dk) * (diag(i) - dk)) |
| << " == (" << (singVals(j) + dk) << " * " << (mus(j) + (shifts(j) - dk)) << ") / (" |
| << (diag(i) + dk) << " * " << (diag(i) - dk) << ")\n"; |
| #endif |
| } |
| } |
| #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE |
| std::cout << "zhat(" << k << ") = sqrt( " << prod << ") ; " << (singVals(lastIdx) + dk) << " * " |
| << mus(lastIdx) + shifts(lastIdx) << " - " << dk << "\n"; |
| #endif |
| RealScalar tmp = sqrt(prod); |
| #ifdef EIGEN_BDCSVD_SANITY_CHECKS |
| eigen_internal_assert((numext::isfinite)(tmp)); |
| #endif |
| zhat(k) = col0(k) > Literal(0) ? RealScalar(tmp) : RealScalar(-tmp); |
| } |
| } |
| } |
| |
| // compute singular vectors |
| template <typename MatrixType, int Options> |
| void BDCSVD<MatrixType, Options>::computeSingVecs(const ArrayRef& zhat, const ArrayRef& diag, const IndicesRef& perm, |
| const VectorType& singVals, const ArrayRef& shifts, |
| const ArrayRef& mus, MatrixXr& U, MatrixXr& V) { |
| Index n = zhat.size(); |
| Index m = perm.size(); |
| |
| for (Index k = 0; k < n; ++k) { |
| if (numext::is_exactly_zero(zhat(k))) { |
| U.col(k) = VectorType::Unit(n + 1, k); |
| if (m_compV) V.col(k) = VectorType::Unit(n, k); |
| } else { |
| U.col(k).setZero(); |
| for (Index l = 0; l < m; ++l) { |
| Index i = perm(l); |
| U(i, k) = zhat(i) / (((diag(i) - shifts(k)) - mus(k))) / ((diag(i) + singVals[k])); |
| } |
| U(n, k) = Literal(0); |
| U.col(k).normalize(); |
| |
| if (m_compV) { |
| V.col(k).setZero(); |
| for (Index l = 1; l < m; ++l) { |
| Index i = perm(l); |
| V(i, k) = diag(i) * zhat(i) / (((diag(i) - shifts(k)) - mus(k))) / ((diag(i) + singVals[k])); |
| } |
| V(0, k) = Literal(-1); |
| V.col(k).normalize(); |
| } |
| } |
| } |
| U.col(n) = VectorType::Unit(n + 1, n); |
| } |
| |
| // page 12_13 |
| // i >= 1, di almost null and zi non null. |
| // We use a rotation to zero out zi applied to the left of M, and set di = 0. |
| template <typename MatrixType, int Options> |
| void BDCSVD<MatrixType, Options>::deflation43(Index firstCol, Index shift, Index i, Index size) { |
| using std::abs; |
| using std::pow; |
| using std::sqrt; |
| Index start = firstCol + shift; |
| RealScalar c = m_computed(start, start); |
| RealScalar s = m_computed(start + i, start); |
| RealScalar r = numext::hypot(c, s); |
| if (numext::is_exactly_zero(r)) { |
| m_computed(start + i, start + i) = Literal(0); |
| return; |
| } |
| m_computed(start, start) = r; |
| m_computed(start + i, start) = Literal(0); |
| m_computed(start + i, start + i) = Literal(0); |
| |
| JacobiRotation<RealScalar> J(c / r, -s / r); |
| if (m_compU) |
| m_naiveU.middleRows(firstCol, size + 1).applyOnTheRight(firstCol, firstCol + i, J); |
| else |
| m_naiveU.applyOnTheRight(firstCol, firstCol + i, J); |
| } // end deflation 43 |
| |
| // page 13 |
| // i,j >= 1, i > j, and |di - dj| < epsilon * norm2(M) |
| // We apply two rotations to have zi = 0, and dj = di. |
| template <typename MatrixType, int Options> |
| void BDCSVD<MatrixType, Options>::deflation44(Index firstColu, Index firstColm, Index firstRowW, Index firstColW, |
| Index i, Index j, Index size) { |
| using std::abs; |
| using std::conj; |
| using std::pow; |
| using std::sqrt; |
| |
| RealScalar s = m_computed(firstColm + i, firstColm); |
| RealScalar c = m_computed(firstColm + j, firstColm); |
| RealScalar r = numext::hypot(c, s); |
| #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE |
| std::cout << "deflation 4.4: " << i << "," << j << " -> " << c << " " << s << " " << r << " ; " |
| << m_computed(firstColm + i - 1, firstColm) << " " << m_computed(firstColm + i, firstColm) << " " |
| << m_computed(firstColm + i + 1, firstColm) << " " << m_computed(firstColm + i + 2, firstColm) << "\n"; |
| std::cout << m_computed(firstColm + i - 1, firstColm + i - 1) << " " << m_computed(firstColm + i, firstColm + i) |
| << " " << m_computed(firstColm + i + 1, firstColm + i + 1) << " " |
| << m_computed(firstColm + i + 2, firstColm + i + 2) << "\n"; |
| #endif |
| if (numext::is_exactly_zero(r)) { |
| m_computed(firstColm + j, firstColm + j) = m_computed(firstColm + i, firstColm + i); |
| return; |
| } |
| c /= r; |
| s /= r; |
| m_computed(firstColm + j, firstColm) = r; |
| m_computed(firstColm + j, firstColm + j) = m_computed(firstColm + i, firstColm + i); |
| m_computed(firstColm + i, firstColm) = Literal(0); |
| |
| JacobiRotation<RealScalar> J(c, -s); |
| if (m_compU) |
| m_naiveU.middleRows(firstColu, size + 1).applyOnTheRight(firstColu + j, firstColu + i, J); |
| else |
| m_naiveU.applyOnTheRight(firstColu + j, firstColu + i, J); |
| if (m_compV) m_naiveV.middleRows(firstRowW, size).applyOnTheRight(firstColW + j, firstColW + i, J); |
| } // end deflation 44 |
| |
| // acts on block from (firstCol+shift, firstCol+shift) to (lastCol+shift, lastCol+shift) [inclusive] |
| template <typename MatrixType, int Options> |
| void BDCSVD<MatrixType, Options>::deflation(Index firstCol, Index lastCol, Index k, Index firstRowW, Index firstColW, |
| Index shift) { |
| using std::abs; |
| using std::sqrt; |
| const Index length = lastCol + 1 - firstCol; |
| |
| Block<MatrixXr, Dynamic, 1> col0(m_computed, firstCol + shift, firstCol + shift, length, 1); |
| Diagonal<MatrixXr> fulldiag(m_computed); |
| VectorBlock<Diagonal<MatrixXr>, Dynamic> diag(fulldiag, firstCol + shift, length); |
| |
| const RealScalar considerZero = (std::numeric_limits<RealScalar>::min)(); |
| RealScalar maxDiag = diag.tail((std::max)(Index(1), length - 1)).cwiseAbs().maxCoeff(); |
| RealScalar epsilon_strict = numext::maxi<RealScalar>(considerZero, NumTraits<RealScalar>::epsilon() * maxDiag); |
| RealScalar epsilon_coarse = |
| Literal(8) * NumTraits<RealScalar>::epsilon() * numext::maxi<RealScalar>(col0.cwiseAbs().maxCoeff(), maxDiag); |
| |
| #ifdef EIGEN_BDCSVD_SANITY_CHECKS |
| eigen_internal_assert(m_naiveU.allFinite()); |
| eigen_internal_assert(m_naiveV.allFinite()); |
| eigen_internal_assert(m_computed.allFinite()); |
| #endif |
| |
| #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE |
| std::cout << "\ndeflate:" << diag.head(k + 1).transpose() << " | " |
| << diag.segment(k + 1, length - k - 1).transpose() << "\n"; |
| #endif |
| |
| // condition 4.1 |
| if (diag(0) < epsilon_coarse) { |
| #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE |
| std::cout << "deflation 4.1, because " << diag(0) << " < " << epsilon_coarse << "\n"; |
| #endif |
| diag(0) = epsilon_coarse; |
| } |
| |
| // condition 4.2 |
| for (Index i = 1; i < length; ++i) |
| if (abs(col0(i)) < epsilon_strict) { |
| #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE |
| std::cout << "deflation 4.2, set z(" << i << ") to zero because " << abs(col0(i)) << " < " << epsilon_strict |
| << " (diag(" << i << ")=" << diag(i) << ")\n"; |
| #endif |
| col0(i) = Literal(0); |
| } |
| |
| // condition 4.3 |
| for (Index i = 1; i < length; i++) |
| if (diag(i) < epsilon_coarse) { |
| #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE |
| std::cout << "deflation 4.3, cancel z(" << i << ")=" << col0(i) << " because diag(" << i << ")=" << diag(i) |
| << " < " << epsilon_coarse << "\n"; |
| #endif |
| deflation43(firstCol, shift, i, length); |
| } |
| |
| #ifdef EIGEN_BDCSVD_SANITY_CHECKS |
| eigen_internal_assert(m_naiveU.allFinite()); |
| eigen_internal_assert(m_naiveV.allFinite()); |
| eigen_internal_assert(m_computed.allFinite()); |
| #endif |
| #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE |
| std::cout << "to be sorted: " << diag.transpose() << "\n\n"; |
| std::cout << " : " << col0.transpose() << "\n\n"; |
| #endif |
| { |
| // Check for total deflation: |
| // If we have a total deflation, then we have to consider col0(0)==diag(0) as a singular value during sorting. |
| const bool total_deflation = (col0.tail(length - 1).array().abs() < considerZero).all(); |
| |
| // Sort the diagonal entries, since diag(1:k-1) and diag(k:length) are already sorted, let's do a sorted merge. |
| // First, compute the respective permutation. |
| Index* permutation = m_workspaceI.data(); |
| { |
| permutation[0] = 0; |
| Index p = 1; |
| |
| // Move deflated diagonal entries at the end. |
| for (Index i = 1; i < length; ++i) |
| if (diag(i) < considerZero) permutation[p++] = i; |
| |
| Index i = 1, j = k + 1; |
| for (; p < length; ++p) { |
| if (i > k) |
| permutation[p] = j++; |
| else if (j >= length) |
| permutation[p] = i++; |
| else if (diag(i) < diag(j)) |
| permutation[p] = j++; |
| else |
| permutation[p] = i++; |
| } |
| } |
| |
| // If we have a total deflation, then we have to insert diag(0) at the right place |
| if (total_deflation) { |
| for (Index i = 1; i < length; ++i) { |
| Index pi = permutation[i]; |
| if (diag(pi) < considerZero || diag(0) < diag(pi)) |
| permutation[i - 1] = permutation[i]; |
| else { |
| permutation[i - 1] = 0; |
| break; |
| } |
| } |
| } |
| |
| // Current index of each col, and current column of each index |
| Index* realInd = m_workspaceI.data() + length; |
| Index* realCol = m_workspaceI.data() + 2 * length; |
| |
| for (int pos = 0; pos < length; pos++) { |
| realCol[pos] = pos; |
| realInd[pos] = pos; |
| } |
| |
| for (Index i = total_deflation ? 0 : 1; i < length; i++) { |
| const Index pi = permutation[length - (total_deflation ? i + 1 : i)]; |
| const Index J = realCol[pi]; |
| |
| using std::swap; |
| // swap diagonal and first column entries: |
| swap(diag(i), diag(J)); |
| if (i != 0 && J != 0) swap(col0(i), col0(J)); |
| |
| // change columns |
| if (m_compU) |
| m_naiveU.col(firstCol + i) |
| .segment(firstCol, length + 1) |
| .swap(m_naiveU.col(firstCol + J).segment(firstCol, length + 1)); |
| else |
| m_naiveU.col(firstCol + i).segment(0, 2).swap(m_naiveU.col(firstCol + J).segment(0, 2)); |
| if (m_compV) |
| m_naiveV.col(firstColW + i) |
| .segment(firstRowW, length) |
| .swap(m_naiveV.col(firstColW + J).segment(firstRowW, length)); |
| |
| // update real pos |
| const Index realI = realInd[i]; |
| realCol[realI] = J; |
| realCol[pi] = i; |
| realInd[J] = realI; |
| realInd[i] = pi; |
| } |
| } |
| #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE |
| std::cout << "sorted: " << diag.transpose().format(bdcsvdfmt) << "\n"; |
| std::cout << " : " << col0.transpose() << "\n\n"; |
| #endif |
| |
| // condition 4.4 |
| { |
| Index i = length - 1; |
| // Find last non-deflated entry. |
| while (i > 0 && (diag(i) < considerZero || abs(col0(i)) < considerZero)) --i; |
| |
| for (; i > 1; --i) |
| if ((diag(i) - diag(i - 1)) < epsilon_strict) { |
| #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE |
| std::cout << "deflation 4.4 with i = " << i << " because " << diag(i) << " - " << diag(i - 1) |
| << " == " << (diag(i) - diag(i - 1)) << " < " << epsilon_strict << "\n"; |
| #endif |
| eigen_internal_assert(abs(diag(i) - diag(i - 1)) < epsilon_coarse && |
| " diagonal entries are not properly sorted"); |
| deflation44(firstCol, firstCol + shift, firstRowW, firstColW, i, i - 1, length); |
| } |
| } |
| |
| #ifdef EIGEN_BDCSVD_SANITY_CHECKS |
| for (Index j = 2; j < length; ++j) eigen_internal_assert(diag(j - 1) <= diag(j) || abs(diag(j)) < considerZero); |
| #endif |
| |
| #ifdef EIGEN_BDCSVD_SANITY_CHECKS |
| eigen_internal_assert(m_naiveU.allFinite()); |
| eigen_internal_assert(m_naiveV.allFinite()); |
| eigen_internal_assert(m_computed.allFinite()); |
| #endif |
| } // end deflation |
| |
| /** \svd_module |
| * |
| * \return the singular value decomposition of \c *this computed by Divide & Conquer algorithm |
| * |
| * \sa class BDCSVD |
| */ |
| template <typename Derived> |
| template <int Options> |
| BDCSVD<typename MatrixBase<Derived>::PlainObject, Options> MatrixBase<Derived>::bdcSvd() const { |
| return BDCSVD<PlainObject, Options>(*this); |
| } |
| |
| /** \svd_module |
| * |
| * \return the singular value decomposition of \c *this computed by Divide & Conquer algorithm |
| * |
| * \sa class BDCSVD |
| */ |
| template <typename Derived> |
| template <int Options> |
| BDCSVD<typename MatrixBase<Derived>::PlainObject, Options> MatrixBase<Derived>::bdcSvd( |
| unsigned int computationOptions) const { |
| return BDCSVD<PlainObject, Options>(*this, computationOptions); |
| } |
| |
| } // end namespace Eigen |
| |
| #endif |