| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2014 Pedro Gonnet (pedro.gonnet@gmail.com) | 
 | // Copyright (C) 2016 Gael Guennebaud <gael.guennebaud@inria.fr> | 
 | // | 
 | // This Source Code Form is subject to the terms of the Mozilla | 
 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
 |  | 
 | #ifndef EIGEN_MATHFUNCTIONSIMPL_H | 
 | #define EIGEN_MATHFUNCTIONSIMPL_H | 
 |  | 
 | #include "./InternalHeaderCheck.h" | 
 |  | 
 | namespace Eigen { | 
 |  | 
 | namespace internal { | 
 |  | 
 | /** \internal Fast reciprocal using Newton-Raphson's method. | 
 |  | 
 |  Preconditions: | 
 |    1. The starting guess provided in approx_a_recip must have at least half | 
 |       the leading mantissa bits in the correct result, such that a single | 
 |       Newton-Raphson step is sufficient to get within 1-2 ulps of the currect | 
 |       result. | 
 |    2. If a is zero, approx_a_recip must be infinite with the same sign as a. | 
 |    3. If a is infinite, approx_a_recip must be zero with the same sign as a. | 
 |  | 
 |    If the preconditions are satisfied, which they are for for the _*_rcp_ps | 
 |    instructions on x86, the result has a maximum relative error of 2 ulps, | 
 |    and correctly handles reciprocals of zero, infinity, and NaN. | 
 | */ | 
 | template <typename Packet, int Steps> | 
 | struct generic_reciprocal_newton_step { | 
 |   static_assert(Steps > 0, "Steps must be at least 1."); | 
 |   EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE  Packet | 
 |   run(const Packet& a, const Packet& approx_a_recip) { | 
 |     using Scalar = typename unpacket_traits<Packet>::type; | 
 |     const Packet two = pset1<Packet>(Scalar(2)); | 
 |     // Refine the approximation using one Newton-Raphson step: | 
 |     //   x_{i} = x_{i-1} * (2 - a * x_{i-1}) | 
 |      const Packet x = | 
 |          generic_reciprocal_newton_step<Packet,Steps - 1>::run(a, approx_a_recip); | 
 |      const Packet tmp = pnmadd(a, x, two); | 
 |      // If tmp is NaN, it means that a is either +/-0 or +/-Inf. | 
 |      // In this case return the approximation directly. | 
 |      const Packet is_not_nan = pcmp_eq(tmp, tmp); | 
 |      return pselect(is_not_nan, pmul(x, tmp), x); | 
 |   } | 
 | }; | 
 |  | 
 | template<typename Packet> | 
 | struct generic_reciprocal_newton_step<Packet, 0> { | 
 |    EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Packet | 
 |    run(const Packet& /*unused*/, const Packet& approx_rsqrt) { | 
 |     return approx_rsqrt; | 
 |   } | 
 | }; | 
 |  | 
 |  | 
 | /** \internal Fast reciprocal sqrt using Newton-Raphson's method. | 
 |  | 
 |  Preconditions: | 
 |    1. The starting guess provided in approx_a_recip must have at least half | 
 |       the leading mantissa bits in the correct result, such that a single | 
 |       Newton-Raphson step is sufficient to get within 1-2 ulps of the currect | 
 |       result. | 
 |    2. If a is zero, approx_a_recip must be infinite with the same sign as a. | 
 |    3. If a is infinite, approx_a_recip must be zero with the same sign as a. | 
 |  | 
 |    If the preconditions are satisfied, which they are for for the _*_rcp_ps | 
 |    instructions on x86, the result has a maximum relative error of 2 ulps, | 
 |    and correctly handles zero, infinity, and NaN. Positive denormals are | 
 |    treated as zero. | 
 | */ | 
 | template <typename Packet, int Steps> | 
 | struct generic_rsqrt_newton_step { | 
 |   static_assert(Steps > 0, "Steps must be at least 1."); | 
 |  | 
 |   EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE  Packet | 
 |   run(const Packet& a, const Packet& approx_rsqrt) { | 
 |     using Scalar = typename unpacket_traits<Packet>::type; | 
 |     const Packet one_point_five = pset1<Packet>(Scalar(1.5)); | 
 |     const Packet minus_half = pset1<Packet>(Scalar(-0.5)); | 
 |      | 
 |     // Refine the approximation using one Newton-Raphson step: | 
 |     //   x_{n+1} = x_n * (1.5 + (-0.5 * x_n) * (a * x_n)). | 
 |     // The approximation is expressed this way to avoid over/under-flows.   | 
 |     Packet x_newton  = pmul(approx_rsqrt, pmadd(pmul(minus_half, approx_rsqrt), pmul(a, approx_rsqrt), one_point_five)); | 
 |     for (int step = 1; step < Steps; ++step) { | 
 |       x_newton  = pmul(x_newton, pmadd(pmul(minus_half, x_newton), pmul(a, x_newton), one_point_five)); | 
 |     } | 
 |      | 
 |     // If approx_rsqrt is 0 or +/-inf, we should return it as is.  Note: | 
 |     // on intel, approx_rsqrt can be inf for small denormal values. | 
 |     const Packet return_approx = por(pcmp_eq(approx_rsqrt, pzero(a)), | 
 |                                      pcmp_eq(pabs(approx_rsqrt), pset1<Packet>(NumTraits<Scalar>::infinity()))); | 
 |     return pselect(return_approx, approx_rsqrt, x_newton); | 
 |   } | 
 | }; | 
 |  | 
 | template<typename Packet> | 
 | struct generic_rsqrt_newton_step<Packet, 0> { | 
 |    EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Packet | 
 |    run(const Packet& /*unused*/, const Packet& approx_rsqrt) { | 
 |     return approx_rsqrt; | 
 |   } | 
 | }; | 
 |  | 
 |  | 
 | /** \internal Fast sqrt using Newton-Raphson's method. | 
 |  | 
 |  Preconditions: | 
 |    1. The starting guess for the reciprocal sqrt provided in approx_rsqrt must | 
 |       have at least half the leading mantissa bits in the correct result, such | 
 |       that a single Newton-Raphson step is sufficient to get within 1-2 ulps of | 
 |       the currect result. | 
 |    2. If a is zero, approx_rsqrt must be infinite. | 
 |    3. If a is infinite, approx_rsqrt must be zero. | 
 |  | 
 |    If the preconditions are satisfied, which they are for for the _*_rsqrt_ps | 
 |    instructions on x86, the result has a maximum relative error of 2 ulps, | 
 |    and correctly handles zero and infinity, and NaN. Positive denormal inputs | 
 |    are treated as zero. | 
 | */ | 
 | template <typename Packet, int Steps=1> | 
 | struct generic_sqrt_newton_step { | 
 |   static_assert(Steps > 0, "Steps must be at least 1."); | 
 |  | 
 |   EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE  Packet | 
 |   run(const Packet& a, const Packet& approx_rsqrt) { | 
 |     using Scalar = typename unpacket_traits<Packet>::type; | 
 |     const Packet one_point_five = pset1<Packet>(Scalar(1.5)); | 
 |     const Packet minus_half = pset1<Packet>(Scalar(-0.5)); | 
 |     // If a is inf or zero, return a directly. | 
 |     const Packet inf_mask = pcmp_eq(a, pset1<Packet>(NumTraits<Scalar>::infinity())); | 
 |     const Packet return_a = por(pcmp_eq(a, pzero(a)), inf_mask); | 
 |     // Do a single step of Newton's iteration for reciprocal square root: | 
 |     //   x_{n+1} = x_n * (1.5 + (-0.5 * x_n) * (a * x_n))). | 
 |     // The Newton's step is computed this way to avoid over/under-flows. | 
 |     Packet rsqrt = pmul(approx_rsqrt, pmadd(pmul(minus_half, approx_rsqrt), pmul(a, approx_rsqrt), one_point_five)); | 
 |     for (int step = 1; step < Steps; ++step) { | 
 |       rsqrt = pmul(rsqrt, pmadd(pmul(minus_half, rsqrt), pmul(a, rsqrt), one_point_five)); | 
 |     } | 
 |  | 
 |     // Return sqrt(x) = x * rsqrt(x) for non-zero finite positive arguments. | 
 |     // Return a itself for 0 or +inf, NaN for negative arguments. | 
 |     return pselect(return_a, a, pmul(a, rsqrt)); | 
 |   } | 
 | }; | 
 |  | 
 | /** \internal \returns the hyperbolic tan of \a a (coeff-wise) | 
 |     Doesn't do anything fancy, just a 13/6-degree rational interpolant which | 
 |     is accurate up to a couple of ulps in the (approximate) range [-8, 8], | 
 |     outside of which tanh(x) = +/-1 in single precision. The input is clamped | 
 |     to the range [-c, c]. The value c is chosen as the smallest value where | 
 |     the approximation evaluates to exactly 1. In the reange [-0.0004, 0.0004] | 
 |     the approximation tanh(x) ~= x is used for better accuracy as x tends to zero. | 
 |  | 
 |     This implementation works on both scalars and packets. | 
 | */ | 
 | template<typename T> | 
 | T generic_fast_tanh_float(const T& a_x) | 
 | { | 
 |   // Clamp the inputs to the range [-c, c] | 
 | #ifdef EIGEN_VECTORIZE_FMA | 
 |   const T plus_clamp = pset1<T>(7.99881172180175781f); | 
 |   const T minus_clamp = pset1<T>(-7.99881172180175781f); | 
 | #else | 
 |   const T plus_clamp = pset1<T>(7.90531110763549805f); | 
 |   const T minus_clamp = pset1<T>(-7.90531110763549805f); | 
 | #endif | 
 |   const T tiny = pset1<T>(0.0004f); | 
 |   const T x = pmax(pmin(a_x, plus_clamp), minus_clamp); | 
 |   const T tiny_mask = pcmp_lt(pabs(a_x), tiny); | 
 |   // The monomial coefficients of the numerator polynomial (odd). | 
 |   const T alpha_1 = pset1<T>(4.89352455891786e-03f); | 
 |   const T alpha_3 = pset1<T>(6.37261928875436e-04f); | 
 |   const T alpha_5 = pset1<T>(1.48572235717979e-05f); | 
 |   const T alpha_7 = pset1<T>(5.12229709037114e-08f); | 
 |   const T alpha_9 = pset1<T>(-8.60467152213735e-11f); | 
 |   const T alpha_11 = pset1<T>(2.00018790482477e-13f); | 
 |   const T alpha_13 = pset1<T>(-2.76076847742355e-16f); | 
 |  | 
 |   // The monomial coefficients of the denominator polynomial (even). | 
 |   const T beta_0 = pset1<T>(4.89352518554385e-03f); | 
 |   const T beta_2 = pset1<T>(2.26843463243900e-03f); | 
 |   const T beta_4 = pset1<T>(1.18534705686654e-04f); | 
 |   const T beta_6 = pset1<T>(1.19825839466702e-06f); | 
 |  | 
 |   // Since the polynomials are odd/even, we need x^2. | 
 |   const T x2 = pmul(x, x); | 
 |  | 
 |   // Evaluate the numerator polynomial p. | 
 |   T p = pmadd(x2, alpha_13, alpha_11); | 
 |   p = pmadd(x2, p, alpha_9); | 
 |   p = pmadd(x2, p, alpha_7); | 
 |   p = pmadd(x2, p, alpha_5); | 
 |   p = pmadd(x2, p, alpha_3); | 
 |   p = pmadd(x2, p, alpha_1); | 
 |   p = pmul(x, p); | 
 |  | 
 |   // Evaluate the denominator polynomial q. | 
 |   T q = pmadd(x2, beta_6, beta_4); | 
 |   q = pmadd(x2, q, beta_2); | 
 |   q = pmadd(x2, q, beta_0); | 
 |  | 
 |   // Divide the numerator by the denominator. | 
 |   return pselect(tiny_mask, x, pdiv(p, q)); | 
 | } | 
 |  | 
 | template<typename RealScalar> | 
 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE | 
 | RealScalar positive_real_hypot(const RealScalar& x, const RealScalar& y) | 
 | { | 
 |   // IEEE IEC 6059 special cases. | 
 |   if ((numext::isinf)(x) || (numext::isinf)(y)) | 
 |     return NumTraits<RealScalar>::infinity(); | 
 |   if ((numext::isnan)(x) || (numext::isnan)(y)) | 
 |     return NumTraits<RealScalar>::quiet_NaN(); | 
 |      | 
 |   EIGEN_USING_STD(sqrt); | 
 |   RealScalar p, qp; | 
 |   p = numext::maxi(x,y); | 
 |   if(numext::is_exactly_zero(p)) return RealScalar(0); | 
 |   qp = numext::mini(y,x) / p; | 
 |   return p * sqrt(RealScalar(1) + qp*qp); | 
 | } | 
 |  | 
 | template<typename Scalar> | 
 | struct hypot_impl | 
 | { | 
 |   typedef typename NumTraits<Scalar>::Real RealScalar; | 
 |   static EIGEN_DEVICE_FUNC | 
 |   inline RealScalar run(const Scalar& x, const Scalar& y) | 
 |   { | 
 |     EIGEN_USING_STD(abs); | 
 |     return positive_real_hypot<RealScalar>(abs(x), abs(y)); | 
 |   } | 
 | }; | 
 |  | 
 | // Generic complex sqrt implementation that correctly handles corner cases | 
 | // according to https://en.cppreference.com/w/cpp/numeric/complex/sqrt | 
 | template<typename T> | 
 | EIGEN_DEVICE_FUNC std::complex<T> complex_sqrt(const std::complex<T>& z) { | 
 |   // Computes the principal sqrt of the input. | 
 |   // | 
 |   // For a complex square root of the number x + i*y. We want to find real | 
 |   // numbers u and v such that | 
 |   //    (u + i*v)^2 = x + i*y  <=> | 
 |   //    u^2 - v^2 + i*2*u*v = x + i*v. | 
 |   // By equating the real and imaginary parts we get: | 
 |   //    u^2 - v^2 = x | 
 |   //    2*u*v = y. | 
 |   // | 
 |   // For x >= 0, this has the numerically stable solution | 
 |   //    u = sqrt(0.5 * (x + sqrt(x^2 + y^2))) | 
 |   //    v = y / (2 * u) | 
 |   // and for x < 0, | 
 |   //    v = sign(y) * sqrt(0.5 * (-x + sqrt(x^2 + y^2))) | 
 |   //    u = y / (2 * v) | 
 |   // | 
 |   // Letting w = sqrt(0.5 * (|x| + |z|)), | 
 |   //   if x == 0: u = w, v = sign(y) * w | 
 |   //   if x > 0:  u = w, v = y / (2 * w) | 
 |   //   if x < 0:  u = |y| / (2 * w), v = sign(y) * w | 
 |  | 
 |   const T x = numext::real(z); | 
 |   const T y = numext::imag(z); | 
 |   const T zero = T(0); | 
 |   const T w = numext::sqrt(T(0.5) * (numext::abs(x) + numext::hypot(x, y))); | 
 |  | 
 |   return | 
 |     (numext::isinf)(y) ? std::complex<T>(NumTraits<T>::infinity(), y) | 
 |       : numext::is_exactly_zero(x) ? std::complex<T>(w, y < zero ? -w : w) | 
 |                                    : x > zero ? std::complex<T>(w, y / (2 * w)) | 
 |       : std::complex<T>(numext::abs(y) / (2 * w), y < zero ? -w : w ); | 
 | } | 
 |  | 
 | // Generic complex rsqrt implementation. | 
 | template<typename T> | 
 | EIGEN_DEVICE_FUNC std::complex<T> complex_rsqrt(const std::complex<T>& z) { | 
 |   // Computes the principal reciprocal sqrt of the input. | 
 |   // | 
 |   // For a complex reciprocal square root of the number z = x + i*y. We want to | 
 |   // find real numbers u and v such that | 
 |   //    (u + i*v)^2 = 1 / (x + i*y)  <=> | 
 |   //    u^2 - v^2 + i*2*u*v = x/|z|^2 - i*v/|z|^2. | 
 |   // By equating the real and imaginary parts we get: | 
 |   //    u^2 - v^2 = x/|z|^2 | 
 |   //    2*u*v = y/|z|^2. | 
 |   // | 
 |   // For x >= 0, this has the numerically stable solution | 
 |   //    u = sqrt(0.5 * (x + |z|)) / |z| | 
 |   //    v = -y / (2 * u * |z|) | 
 |   // and for x < 0, | 
 |   //    v = -sign(y) * sqrt(0.5 * (-x + |z|)) / |z| | 
 |   //    u = -y / (2 * v * |z|) | 
 |   // | 
 |   // Letting w = sqrt(0.5 * (|x| + |z|)), | 
 |   //   if x == 0: u = w / |z|, v = -sign(y) * w / |z| | 
 |   //   if x > 0:  u = w / |z|, v = -y / (2 * w * |z|) | 
 |   //   if x < 0:  u = |y| / (2 * w * |z|), v = -sign(y) * w / |z| | 
 |  | 
 |   const T x = numext::real(z); | 
 |   const T y = numext::imag(z); | 
 |   const T zero = T(0); | 
 |  | 
 |   const T abs_z = numext::hypot(x, y); | 
 |   const T w = numext::sqrt(T(0.5) * (numext::abs(x) + abs_z)); | 
 |   const T woz = w / abs_z; | 
 |   // Corner cases consistent with 1/sqrt(z) on gcc/clang. | 
 |   return | 
 |           numext::is_exactly_zero(abs_z) ? std::complex<T>(NumTraits<T>::infinity(), NumTraits<T>::quiet_NaN()) | 
 |                                          : ((numext::isinf)(x) || (numext::isinf)(y)) ? std::complex<T>(zero, zero) | 
 |       : numext::is_exactly_zero(x) ? std::complex<T>(woz, y < zero ? woz : -woz) | 
 |                                    : x > zero ? std::complex<T>(woz, -y / (2 * w * abs_z)) | 
 |       : std::complex<T>(numext::abs(y) / (2 * w * abs_z), y < zero ? woz : -woz ); | 
 | } | 
 |  | 
 | template<typename T> | 
 | EIGEN_DEVICE_FUNC std::complex<T> complex_log(const std::complex<T>& z) { | 
 |   // Computes complex log. | 
 |   T a = numext::abs(z); | 
 |   EIGEN_USING_STD(atan2); | 
 |   T b = atan2(z.imag(), z.real()); | 
 |   return std::complex<T>(numext::log(a), b); | 
 | } | 
 |  | 
 | } // end namespace internal | 
 |  | 
 | } // end namespace Eigen | 
 |  | 
 | #endif // EIGEN_MATHFUNCTIONSIMPL_H |