blob: 222eaf5f6db64795bda2bbc20957fc417604df83 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_DENSESTORAGEBASE_H
#define EIGEN_DENSESTORAGEBASE_H
#if defined(EIGEN_INITIALIZE_MATRICES_BY_ZERO)
# define EIGEN_INITIALIZE_COEFFS
# define EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED for(Index i=0;i<base().size();++i) coeffRef(i)=Scalar(0);
#elif defined(EIGEN_INITIALIZE_MATRICES_BY_NAN)
# define EIGEN_INITIALIZE_COEFFS
# define EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED for(Index i=0;i<base().size();++i) coeffRef(i)=std::numeric_limits<Scalar>::quiet_NaN();
#else
# undef EIGEN_INITIALIZE_COEFFS
# define EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED
#endif
#include "./InternalHeaderCheck.h"
namespace Eigen {
namespace internal {
template<int MaxSizeAtCompileTime> struct check_rows_cols_for_overflow {
template<typename Index>
EIGEN_DEVICE_FUNC
static EIGEN_ALWAYS_INLINE void run(Index, Index)
{
}
};
template<> struct check_rows_cols_for_overflow<Dynamic> {
template<typename Index>
EIGEN_DEVICE_FUNC
static EIGEN_ALWAYS_INLINE void run(Index rows, Index cols)
{
// http://hg.mozilla.org/mozilla-central/file/6c8a909977d3/xpcom/ds/CheckedInt.h#l242
// we assume Index is signed
Index max_index = (std::size_t(1) << (8 * sizeof(Index) - 1)) - 1; // assume Index is signed
bool error = (rows == 0 || cols == 0) ? false
: (rows > max_index / cols);
if (error)
throw_std_bad_alloc();
}
};
template <typename Derived,
typename OtherDerived = Derived,
bool IsVector = bool(Derived::IsVectorAtCompileTime) && bool(OtherDerived::IsVectorAtCompileTime)>
struct conservative_resize_like_impl;
template<typename MatrixTypeA, typename MatrixTypeB, bool SwapPointers> struct matrix_swap_impl;
} // end namespace internal
#ifdef EIGEN_PARSED_BY_DOXYGEN
namespace doxygen {
// This is a workaround to doxygen not being able to understand the inheritance logic
// when it is hidden by the dense_xpr_base helper struct.
// Moreover, doxygen fails to include members that are not documented in the declaration body of
// MatrixBase if we inherits MatrixBase<Matrix<Scalar_, Rows_, Cols_, Options_, MaxRows_, MaxCols_> >,
// this is why we simply inherits MatrixBase, though this does not make sense.
/** This class is just a workaround for Doxygen and it does not not actually exist. */
template<typename Derived> struct dense_xpr_base_dispatcher;
/** This class is just a workaround for Doxygen and it does not not actually exist. */
template<typename Scalar_, int Rows_, int Cols_, int Options_, int MaxRows_, int MaxCols_>
struct dense_xpr_base_dispatcher<Matrix<Scalar_, Rows_, Cols_, Options_, MaxRows_, MaxCols_> >
: public MatrixBase {};
/** This class is just a workaround for Doxygen and it does not not actually exist. */
template<typename Scalar_, int Rows_, int Cols_, int Options_, int MaxRows_, int MaxCols_>
struct dense_xpr_base_dispatcher<Array<Scalar_, Rows_, Cols_, Options_, MaxRows_, MaxCols_> >
: public ArrayBase {};
} // namespace doxygen
/** \class PlainObjectBase
* \ingroup Core_Module
* \brief %Dense storage base class for matrices and arrays.
*
* This class can be extended with the help of the plugin mechanism described on the page
* \ref TopicCustomizing_Plugins by defining the preprocessor symbol \c EIGEN_PLAINOBJECTBASE_PLUGIN.
*
* \tparam Derived is the derived type, e.g., a Matrix or Array
*
* \sa \ref TopicClassHierarchy
*/
template<typename Derived>
class PlainObjectBase : public doxygen::dense_xpr_base_dispatcher<Derived>
#else
template<typename Derived>
class PlainObjectBase : public internal::dense_xpr_base<Derived>::type
#endif
{
public:
enum { Options = internal::traits<Derived>::Options };
typedef typename internal::dense_xpr_base<Derived>::type Base;
typedef typename internal::traits<Derived>::StorageKind StorageKind;
typedef typename internal::traits<Derived>::Scalar Scalar;
typedef typename internal::packet_traits<Scalar>::type PacketScalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
typedef Derived DenseType;
using Base::RowsAtCompileTime;
using Base::ColsAtCompileTime;
using Base::SizeAtCompileTime;
using Base::MaxRowsAtCompileTime;
using Base::MaxColsAtCompileTime;
using Base::MaxSizeAtCompileTime;
using Base::IsVectorAtCompileTime;
using Base::Flags;
typedef Eigen::Map<Derived, Unaligned> MapType;
typedef const Eigen::Map<const Derived, Unaligned> ConstMapType;
typedef Eigen::Map<Derived, AlignedMax> AlignedMapType;
typedef const Eigen::Map<const Derived, AlignedMax> ConstAlignedMapType;
template<typename StrideType> struct StridedMapType { typedef Eigen::Map<Derived, Unaligned, StrideType> type; };
template<typename StrideType> struct StridedConstMapType { typedef Eigen::Map<const Derived, Unaligned, StrideType> type; };
template<typename StrideType> struct StridedAlignedMapType { typedef Eigen::Map<Derived, AlignedMax, StrideType> type; };
template<typename StrideType> struct StridedConstAlignedMapType { typedef Eigen::Map<const Derived, AlignedMax, StrideType> type; };
protected:
DenseStorage<Scalar, Base::MaxSizeAtCompileTime, Base::RowsAtCompileTime, Base::ColsAtCompileTime, Options> m_storage;
public:
enum { NeedsToAlign = (SizeAtCompileTime != Dynamic) && (internal::traits<Derived>::Alignment>0) };
EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign)
EIGEN_STATIC_ASSERT(internal::check_implication(MaxRowsAtCompileTime==1 && MaxColsAtCompileTime!=1, (int(Options)&RowMajor)==RowMajor), INVALID_MATRIX_TEMPLATE_PARAMETERS)
EIGEN_STATIC_ASSERT(internal::check_implication(MaxColsAtCompileTime==1 && MaxRowsAtCompileTime!=1, (int(Options)&RowMajor)==0), INVALID_MATRIX_TEMPLATE_PARAMETERS)
EIGEN_STATIC_ASSERT((RowsAtCompileTime == Dynamic) || (RowsAtCompileTime >= 0), INVALID_MATRIX_TEMPLATE_PARAMETERS)
EIGEN_STATIC_ASSERT((ColsAtCompileTime == Dynamic) || (ColsAtCompileTime >= 0), INVALID_MATRIX_TEMPLATE_PARAMETERS)
EIGEN_STATIC_ASSERT((MaxRowsAtCompileTime == Dynamic) || (MaxRowsAtCompileTime >= 0), INVALID_MATRIX_TEMPLATE_PARAMETERS)
EIGEN_STATIC_ASSERT((MaxColsAtCompileTime == Dynamic) || (MaxColsAtCompileTime >= 0), INVALID_MATRIX_TEMPLATE_PARAMETERS)
EIGEN_STATIC_ASSERT((MaxRowsAtCompileTime == RowsAtCompileTime || RowsAtCompileTime==Dynamic), INVALID_MATRIX_TEMPLATE_PARAMETERS)
EIGEN_STATIC_ASSERT((MaxColsAtCompileTime == ColsAtCompileTime || ColsAtCompileTime==Dynamic), INVALID_MATRIX_TEMPLATE_PARAMETERS)
EIGEN_STATIC_ASSERT(((Options & (DontAlign|RowMajor)) == Options), INVALID_MATRIX_TEMPLATE_PARAMETERS)
EIGEN_DEVICE_FUNC
Base& base() { return *static_cast<Base*>(this); }
EIGEN_DEVICE_FUNC
const Base& base() const { return *static_cast<const Base*>(this); }
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE EIGEN_CONSTEXPR
Index rows() const EIGEN_NOEXCEPT { return m_storage.rows(); }
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE EIGEN_CONSTEXPR
Index cols() const EIGEN_NOEXCEPT { return m_storage.cols(); }
/** This is an overloaded version of DenseCoeffsBase<Derived,ReadOnlyAccessors>::coeff(Index,Index) const
* provided to by-pass the creation of an evaluator of the expression, thus saving compilation efforts.
*
* See DenseCoeffsBase<Derived,ReadOnlyAccessors>::coeff(Index) const for details. */
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE const Scalar& coeff(Index rowId, Index colId) const
{
if(Flags & RowMajorBit)
return m_storage.data()[colId + rowId * m_storage.cols()];
else // column-major
return m_storage.data()[rowId + colId * m_storage.rows()];
}
/** This is an overloaded version of DenseCoeffsBase<Derived,ReadOnlyAccessors>::coeff(Index) const
* provided to by-pass the creation of an evaluator of the expression, thus saving compilation efforts.
*
* See DenseCoeffsBase<Derived,ReadOnlyAccessors>::coeff(Index) const for details. */
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE const Scalar& coeff(Index index) const
{
return m_storage.data()[index];
}
/** This is an overloaded version of DenseCoeffsBase<Derived,WriteAccessors>::coeffRef(Index,Index) const
* provided to by-pass the creation of an evaluator of the expression, thus saving compilation efforts.
*
* See DenseCoeffsBase<Derived,WriteAccessors>::coeffRef(Index,Index) const for details. */
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Scalar& coeffRef(Index rowId, Index colId)
{
if(Flags & RowMajorBit)
return m_storage.data()[colId + rowId * m_storage.cols()];
else // column-major
return m_storage.data()[rowId + colId * m_storage.rows()];
}
/** This is an overloaded version of DenseCoeffsBase<Derived,WriteAccessors>::coeffRef(Index) const
* provided to by-pass the creation of an evaluator of the expression, thus saving compilation efforts.
*
* See DenseCoeffsBase<Derived,WriteAccessors>::coeffRef(Index) const for details. */
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Scalar& coeffRef(Index index)
{
return m_storage.data()[index];
}
/** This is the const version of coeffRef(Index,Index) which is thus synonym of coeff(Index,Index).
* It is provided for convenience. */
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE const Scalar& coeffRef(Index rowId, Index colId) const
{
if(Flags & RowMajorBit)
return m_storage.data()[colId + rowId * m_storage.cols()];
else // column-major
return m_storage.data()[rowId + colId * m_storage.rows()];
}
/** This is the const version of coeffRef(Index) which is thus synonym of coeff(Index).
* It is provided for convenience. */
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE const Scalar& coeffRef(Index index) const
{
return m_storage.data()[index];
}
/** \internal */
template<int LoadMode>
EIGEN_STRONG_INLINE PacketScalar packet(Index rowId, Index colId) const
{
return internal::ploadt<PacketScalar, LoadMode>
(m_storage.data() + (Flags & RowMajorBit
? colId + rowId * m_storage.cols()
: rowId + colId * m_storage.rows()));
}
/** \internal */
template<int LoadMode>
EIGEN_STRONG_INLINE PacketScalar packet(Index index) const
{
return internal::ploadt<PacketScalar, LoadMode>(m_storage.data() + index);
}
/** \internal */
template<int StoreMode>
EIGEN_STRONG_INLINE void writePacket(Index rowId, Index colId, const PacketScalar& val)
{
internal::pstoret<Scalar, PacketScalar, StoreMode>
(m_storage.data() + (Flags & RowMajorBit
? colId + rowId * m_storage.cols()
: rowId + colId * m_storage.rows()), val);
}
/** \internal */
template<int StoreMode>
EIGEN_STRONG_INLINE void writePacket(Index index, const PacketScalar& val)
{
internal::pstoret<Scalar, PacketScalar, StoreMode>(m_storage.data() + index, val);
}
/** \returns a const pointer to the data array of this matrix */
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar *data() const
{ return m_storage.data(); }
/** \returns a pointer to the data array of this matrix */
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar *data()
{ return m_storage.data(); }
/** Resizes \c *this to a \a rows x \a cols matrix.
*
* This method is intended for dynamic-size matrices, although it is legal to call it on any
* matrix as long as fixed dimensions are left unchanged. If you only want to change the number
* of rows and/or of columns, you can use resize(NoChange_t, Index), resize(Index, NoChange_t).
*
* If the current number of coefficients of \c *this exactly matches the
* product \a rows * \a cols, then no memory allocation is performed and
* the current values are left unchanged. In all other cases, including
* shrinking, the data is reallocated and all previous values are lost.
*
* Example: \include Matrix_resize_int_int.cpp
* Output: \verbinclude Matrix_resize_int_int.out
*
* \sa resize(Index) for vectors, resize(NoChange_t, Index), resize(Index, NoChange_t)
*/
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE void resize(Index rows, Index cols)
{
eigen_assert(internal::check_implication(RowsAtCompileTime!=Dynamic, rows==RowsAtCompileTime)
&& internal::check_implication(ColsAtCompileTime!=Dynamic, cols==ColsAtCompileTime)
&& internal::check_implication(RowsAtCompileTime==Dynamic && MaxRowsAtCompileTime!=Dynamic, rows<=MaxRowsAtCompileTime)
&& internal::check_implication(ColsAtCompileTime==Dynamic && MaxColsAtCompileTime!=Dynamic, cols<=MaxColsAtCompileTime)
&& rows>=0 && cols>=0 && "Invalid sizes when resizing a matrix or array.");
internal::check_rows_cols_for_overflow<MaxSizeAtCompileTime>::run(rows, cols);
#ifdef EIGEN_INITIALIZE_COEFFS
Index size = rows*cols;
bool size_changed = size != this->size();
m_storage.resize(size, rows, cols);
if(size_changed) EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED
#else
m_storage.resize(rows*cols, rows, cols);
#endif
}
/** Resizes \c *this to a vector of length \a size
*
* \only_for_vectors. This method does not work for
* partially dynamic matrices when the static dimension is anything other
* than 1. For example it will not work with Matrix<double, 2, Dynamic>.
*
* Example: \include Matrix_resize_int.cpp
* Output: \verbinclude Matrix_resize_int.out
*
* \sa resize(Index,Index), resize(NoChange_t, Index), resize(Index, NoChange_t)
*/
EIGEN_DEVICE_FUNC
inline void resize(Index size)
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(PlainObjectBase)
eigen_assert(((SizeAtCompileTime == Dynamic && (MaxSizeAtCompileTime==Dynamic || size<=MaxSizeAtCompileTime)) || SizeAtCompileTime == size) && size>=0);
#ifdef EIGEN_INITIALIZE_COEFFS
bool size_changed = size != this->size();
#endif
if(RowsAtCompileTime == 1)
m_storage.resize(size, 1, size);
else
m_storage.resize(size, size, 1);
#ifdef EIGEN_INITIALIZE_COEFFS
if(size_changed) EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED
#endif
}
/** Resizes the matrix, changing only the number of columns. For the parameter of type NoChange_t, just pass the special value \c NoChange
* as in the example below.
*
* Example: \include Matrix_resize_NoChange_int.cpp
* Output: \verbinclude Matrix_resize_NoChange_int.out
*
* \sa resize(Index,Index)
*/
EIGEN_DEVICE_FUNC
inline void resize(NoChange_t, Index cols)
{
resize(rows(), cols);
}
/** Resizes the matrix, changing only the number of rows. For the parameter of type NoChange_t, just pass the special value \c NoChange
* as in the example below.
*
* Example: \include Matrix_resize_int_NoChange.cpp
* Output: \verbinclude Matrix_resize_int_NoChange.out
*
* \sa resize(Index,Index)
*/
EIGEN_DEVICE_FUNC
inline void resize(Index rows, NoChange_t)
{
resize(rows, cols());
}
/** Resizes \c *this to have the same dimensions as \a other.
* Takes care of doing all the checking that's needed.
*
* Note that copying a row-vector into a vector (and conversely) is allowed.
* The resizing, if any, is then done in the appropriate way so that row-vectors
* remain row-vectors and vectors remain vectors.
*/
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE void resizeLike(const EigenBase<OtherDerived>& _other)
{
const OtherDerived& other = _other.derived();
internal::check_rows_cols_for_overflow<MaxSizeAtCompileTime>::run(other.rows(), other.cols());
const Index othersize = other.rows()*other.cols();
if(RowsAtCompileTime == 1)
{
eigen_assert(other.rows() == 1 || other.cols() == 1);
resize(1, othersize);
}
else if(ColsAtCompileTime == 1)
{
eigen_assert(other.rows() == 1 || other.cols() == 1);
resize(othersize, 1);
}
else resize(other.rows(), other.cols());
}
/** Resizes the matrix to \a rows x \a cols while leaving old values untouched.
*
* The method is intended for matrices of dynamic size. If you only want to change the number
* of rows and/or of columns, you can use conservativeResize(NoChange_t, Index) or
* conservativeResize(Index, NoChange_t).
*
* Matrices are resized relative to the top-left element. In case values need to be
* appended to the matrix they will be uninitialized.
*/
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE void conservativeResize(Index rows, Index cols)
{
internal::conservative_resize_like_impl<Derived>::run(*this, rows, cols);
}
/** Resizes the matrix to \a rows x \a cols while leaving old values untouched.
*
* As opposed to conservativeResize(Index rows, Index cols), this version leaves
* the number of columns unchanged.
*
* In case the matrix is growing, new rows will be uninitialized.
*/
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE void conservativeResize(Index rows, NoChange_t)
{
// Note: see the comment in conservativeResize(Index,Index)
conservativeResize(rows, cols());
}
/** Resizes the matrix to \a rows x \a cols while leaving old values untouched.
*
* As opposed to conservativeResize(Index rows, Index cols), this version leaves
* the number of rows unchanged.
*
* In case the matrix is growing, new columns will be uninitialized.
*/
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE void conservativeResize(NoChange_t, Index cols)
{
// Note: see the comment in conservativeResize(Index,Index)
conservativeResize(rows(), cols);
}
/** Resizes the vector to \a size while retaining old values.
*
* \only_for_vectors. This method does not work for
* partially dynamic matrices when the static dimension is anything other
* than 1. For example it will not work with Matrix<double, 2, Dynamic>.
*
* When values are appended, they will be uninitialized.
*/
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE void conservativeResize(Index size)
{
internal::conservative_resize_like_impl<Derived>::run(*this, size);
}
/** Resizes the matrix to \a rows x \a cols of \c other, while leaving old values untouched.
*
* The method is intended for matrices of dynamic size. If you only want to change the number
* of rows and/or of columns, you can use conservativeResize(NoChange_t, Index) or
* conservativeResize(Index, NoChange_t).
*
* Matrices are resized relative to the top-left element. In case values need to be
* appended to the matrix they will copied from \c other.
*/
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE void conservativeResizeLike(const DenseBase<OtherDerived>& other)
{
internal::conservative_resize_like_impl<Derived,OtherDerived>::run(*this, other);
}
/** This is a special case of the templated operator=. Its purpose is to
* prevent a default operator= from hiding the templated operator=.
*/
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Derived& operator=(const PlainObjectBase& other)
{
return _set(other);
}
/** \sa MatrixBase::lazyAssign() */
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Derived& lazyAssign(const DenseBase<OtherDerived>& other)
{
_resize_to_match(other);
return Base::lazyAssign(other.derived());
}
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Derived& operator=(const ReturnByValue<OtherDerived>& func)
{
resize(func.rows(), func.cols());
return Base::operator=(func);
}
// Prevent user from trying to instantiate PlainObjectBase objects
// by making all its constructor protected. See bug 1074.
protected:
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE PlainObjectBase() : m_storage()
{
// EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED
}
#ifndef EIGEN_PARSED_BY_DOXYGEN
// FIXME is it still needed ?
/** \internal */
EIGEN_DEVICE_FUNC
explicit PlainObjectBase(internal::constructor_without_unaligned_array_assert)
: m_storage(internal::constructor_without_unaligned_array_assert())
{
// EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED
}
#endif
EIGEN_DEVICE_FUNC
PlainObjectBase(PlainObjectBase&& other) EIGEN_NOEXCEPT
: m_storage( std::move(other.m_storage) )
{
}
EIGEN_DEVICE_FUNC
PlainObjectBase& operator=(PlainObjectBase&& other) EIGEN_NOEXCEPT
{
m_storage = std::move(other.m_storage);
return *this;
}
/** Copy constructor */
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE PlainObjectBase(const PlainObjectBase& other)
: Base(), m_storage(other.m_storage) { }
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE PlainObjectBase(Index size, Index rows, Index cols)
: m_storage(size, rows, cols)
{
// EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED
}
/** \brief Construct a row of column vector with fixed size from an arbitrary number of coefficients.
*
* \only_for_vectors
*
* This constructor is for 1D array or vectors with more than 4 coefficients.
*
* \warning To construct a column (resp. row) vector of fixed length, the number of values passed to this
* constructor must match the the fixed number of rows (resp. columns) of \c *this.
*/
template <typename... ArgTypes>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
PlainObjectBase(const Scalar& a0, const Scalar& a1, const Scalar& a2, const Scalar& a3, const ArgTypes&... args)
: m_storage()
{
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(PlainObjectBase, sizeof...(args) + 4);
m_storage.data()[0] = a0;
m_storage.data()[1] = a1;
m_storage.data()[2] = a2;
m_storage.data()[3] = a3;
Index i = 4;
auto x = {(m_storage.data()[i++] = args, 0)...};
static_cast<void>(x);
}
/** \brief Constructs a Matrix or Array and initializes it by elements given by an initializer list of initializer
* lists
*/
EIGEN_DEVICE_FUNC
explicit EIGEN_STRONG_INLINE PlainObjectBase(const std::initializer_list<std::initializer_list<Scalar>>& list)
: m_storage()
{
size_t list_size = 0;
if (list.begin() != list.end()) {
list_size = list.begin()->size();
}
// This is to allow syntax like VectorXi {{1, 2, 3, 4}}
if (ColsAtCompileTime == 1 && list.size() == 1) {
eigen_assert(list_size == static_cast<size_t>(RowsAtCompileTime) || RowsAtCompileTime == Dynamic);
resize(list_size, ColsAtCompileTime);
std::copy(list.begin()->begin(), list.begin()->end(), m_storage.data());
} else {
eigen_assert(list.size() == static_cast<size_t>(RowsAtCompileTime) || RowsAtCompileTime == Dynamic);
eigen_assert(list_size == static_cast<size_t>(ColsAtCompileTime) || ColsAtCompileTime == Dynamic);
resize(list.size(), list_size);
Index row_index = 0;
for (const std::initializer_list<Scalar>& row : list) {
eigen_assert(list_size == row.size());
Index col_index = 0;
for (const Scalar& e : row) {
coeffRef(row_index, col_index) = e;
++col_index;
}
++row_index;
}
}
}
/** \sa PlainObjectBase::operator=(const EigenBase<OtherDerived>&) */
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE PlainObjectBase(const DenseBase<OtherDerived> &other)
: m_storage()
{
resizeLike(other);
_set_noalias(other);
}
/** \sa PlainObjectBase::operator=(const EigenBase<OtherDerived>&) */
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE PlainObjectBase(const EigenBase<OtherDerived> &other)
: m_storage()
{
resizeLike(other);
*this = other.derived();
}
/** \brief Copy constructor with in-place evaluation */
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE PlainObjectBase(const ReturnByValue<OtherDerived>& other)
{
// FIXME this does not automatically transpose vectors if necessary
resize(other.rows(), other.cols());
other.evalTo(this->derived());
}
public:
/** \brief Copies the generic expression \a other into *this.
* \copydetails DenseBase::operator=(const EigenBase<OtherDerived> &other)
*/
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Derived& operator=(const EigenBase<OtherDerived> &other)
{
_resize_to_match(other);
Base::operator=(other.derived());
return this->derived();
}
/** \name Map
* These are convenience functions returning Map objects. The Map() static functions return unaligned Map objects,
* while the AlignedMap() functions return aligned Map objects and thus should be called only with 16-byte-aligned
* \a data pointers.
*
* Here is an example using strides:
* \include Matrix_Map_stride.cpp
* Output: \verbinclude Matrix_Map_stride.out
*
* \see class Map
*/
///@{
static inline ConstMapType Map(const Scalar* data)
{ return ConstMapType(data); }
static inline MapType Map(Scalar* data)
{ return MapType(data); }
static inline ConstMapType Map(const Scalar* data, Index size)
{ return ConstMapType(data, size); }
static inline MapType Map(Scalar* data, Index size)
{ return MapType(data, size); }
static inline ConstMapType Map(const Scalar* data, Index rows, Index cols)
{ return ConstMapType(data, rows, cols); }
static inline MapType Map(Scalar* data, Index rows, Index cols)
{ return MapType(data, rows, cols); }
static inline ConstAlignedMapType MapAligned(const Scalar* data)
{ return ConstAlignedMapType(data); }
static inline AlignedMapType MapAligned(Scalar* data)
{ return AlignedMapType(data); }
static inline ConstAlignedMapType MapAligned(const Scalar* data, Index size)
{ return ConstAlignedMapType(data, size); }
static inline AlignedMapType MapAligned(Scalar* data, Index size)
{ return AlignedMapType(data, size); }
static inline ConstAlignedMapType MapAligned(const Scalar* data, Index rows, Index cols)
{ return ConstAlignedMapType(data, rows, cols); }
static inline AlignedMapType MapAligned(Scalar* data, Index rows, Index cols)
{ return AlignedMapType(data, rows, cols); }
template<int Outer, int Inner>
static inline typename StridedConstMapType<Stride<Outer, Inner> >::type Map(const Scalar* data, const Stride<Outer, Inner>& stride)
{ return typename StridedConstMapType<Stride<Outer, Inner> >::type(data, stride); }
template<int Outer, int Inner>
static inline typename StridedMapType<Stride<Outer, Inner> >::type Map(Scalar* data, const Stride<Outer, Inner>& stride)
{ return typename StridedMapType<Stride<Outer, Inner> >::type(data, stride); }
template<int Outer, int Inner>
static inline typename StridedConstMapType<Stride<Outer, Inner> >::type Map(const Scalar* data, Index size, const Stride<Outer, Inner>& stride)
{ return typename StridedConstMapType<Stride<Outer, Inner> >::type(data, size, stride); }
template<int Outer, int Inner>
static inline typename StridedMapType<Stride<Outer, Inner> >::type Map(Scalar* data, Index size, const Stride<Outer, Inner>& stride)
{ return typename StridedMapType<Stride<Outer, Inner> >::type(data, size, stride); }
template<int Outer, int Inner>
static inline typename StridedConstMapType<Stride<Outer, Inner> >::type Map(const Scalar* data, Index rows, Index cols, const Stride<Outer, Inner>& stride)
{ return typename StridedConstMapType<Stride<Outer, Inner> >::type(data, rows, cols, stride); }
template<int Outer, int Inner>
static inline typename StridedMapType<Stride<Outer, Inner> >::type Map(Scalar* data, Index rows, Index cols, const Stride<Outer, Inner>& stride)
{ return typename StridedMapType<Stride<Outer, Inner> >::type(data, rows, cols, stride); }
template<int Outer, int Inner>
static inline typename StridedConstAlignedMapType<Stride<Outer, Inner> >::type MapAligned(const Scalar* data, const Stride<Outer, Inner>& stride)
{ return typename StridedConstAlignedMapType<Stride<Outer, Inner> >::type(data, stride); }
template<int Outer, int Inner>
static inline typename StridedAlignedMapType<Stride<Outer, Inner> >::type MapAligned(Scalar* data, const Stride<Outer, Inner>& stride)
{ return typename StridedAlignedMapType<Stride<Outer, Inner> >::type(data, stride); }
template<int Outer, int Inner>
static inline typename StridedConstAlignedMapType<Stride<Outer, Inner> >::type MapAligned(const Scalar* data, Index size, const Stride<Outer, Inner>& stride)
{ return typename StridedConstAlignedMapType<Stride<Outer, Inner> >::type(data, size, stride); }
template<int Outer, int Inner>
static inline typename StridedAlignedMapType<Stride<Outer, Inner> >::type MapAligned(Scalar* data, Index size, const Stride<Outer, Inner>& stride)
{ return typename StridedAlignedMapType<Stride<Outer, Inner> >::type(data, size, stride); }
template<int Outer, int Inner>
static inline typename StridedConstAlignedMapType<Stride<Outer, Inner> >::type MapAligned(const Scalar* data, Index rows, Index cols, const Stride<Outer, Inner>& stride)
{ return typename StridedConstAlignedMapType<Stride<Outer, Inner> >::type(data, rows, cols, stride); }
template<int Outer, int Inner>
static inline typename StridedAlignedMapType<Stride<Outer, Inner> >::type MapAligned(Scalar* data, Index rows, Index cols, const Stride<Outer, Inner>& stride)
{ return typename StridedAlignedMapType<Stride<Outer, Inner> >::type(data, rows, cols, stride); }
///@}
using Base::setConstant;
EIGEN_DEVICE_FUNC Derived& setConstant(Index size, const Scalar& val);
EIGEN_DEVICE_FUNC Derived& setConstant(Index rows, Index cols, const Scalar& val);
EIGEN_DEVICE_FUNC Derived& setConstant(NoChange_t, Index cols, const Scalar& val);
EIGEN_DEVICE_FUNC Derived& setConstant(Index rows, NoChange_t, const Scalar& val);
using Base::setZero;
EIGEN_DEVICE_FUNC Derived& setZero(Index size);
EIGEN_DEVICE_FUNC Derived& setZero(Index rows, Index cols);
EIGEN_DEVICE_FUNC Derived& setZero(NoChange_t, Index cols);
EIGEN_DEVICE_FUNC Derived& setZero(Index rows, NoChange_t);
using Base::setOnes;
EIGEN_DEVICE_FUNC Derived& setOnes(Index size);
EIGEN_DEVICE_FUNC Derived& setOnes(Index rows, Index cols);
EIGEN_DEVICE_FUNC Derived& setOnes(NoChange_t, Index cols);
EIGEN_DEVICE_FUNC Derived& setOnes(Index rows, NoChange_t);
using Base::setRandom;
Derived& setRandom(Index size);
Derived& setRandom(Index rows, Index cols);
Derived& setRandom(NoChange_t, Index cols);
Derived& setRandom(Index rows, NoChange_t);
#ifdef EIGEN_PLAINOBJECTBASE_PLUGIN
#include EIGEN_PLAINOBJECTBASE_PLUGIN
#endif
protected:
/** \internal Resizes *this in preparation for assigning \a other to it.
* Takes care of doing all the checking that's needed.
*
* Note that copying a row-vector into a vector (and conversely) is allowed.
* The resizing, if any, is then done in the appropriate way so that row-vectors
* remain row-vectors and vectors remain vectors.
*/
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE void _resize_to_match(const EigenBase<OtherDerived>& other)
{
#ifdef EIGEN_NO_AUTOMATIC_RESIZING
eigen_assert((this->size()==0 || (IsVectorAtCompileTime ? (this->size() == other.size())
: (rows() == other.rows() && cols() == other.cols())))
&& "Size mismatch. Automatic resizing is disabled because EIGEN_NO_AUTOMATIC_RESIZING is defined");
EIGEN_ONLY_USED_FOR_DEBUG(other);
#else
resizeLike(other);
#endif
}
/**
* \brief Copies the value of the expression \a other into \c *this with automatic resizing.
*
* *this might be resized to match the dimensions of \a other. If *this was a null matrix (not already initialized),
* it will be initialized.
*
* Note that copying a row-vector into a vector (and conversely) is allowed.
* The resizing, if any, is then done in the appropriate way so that row-vectors
* remain row-vectors and vectors remain vectors.
*
* \sa operator=(const MatrixBase<OtherDerived>&), _set_noalias()
*
* \internal
*/
// aliasing is dealt once in internal::call_assignment
// so at this stage we have to assume aliasing... and resising has to be done later.
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Derived& _set(const DenseBase<OtherDerived>& other)
{
internal::call_assignment(this->derived(), other.derived());
return this->derived();
}
/** \internal Like _set() but additionally makes the assumption that no aliasing effect can happen (which
* is the case when creating a new matrix) so one can enforce lazy evaluation.
*
* \sa operator=(const MatrixBase<OtherDerived>&), _set()
*/
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Derived& _set_noalias(const DenseBase<OtherDerived>& other)
{
// I don't think we need this resize call since the lazyAssign will anyways resize
// and lazyAssign will be called by the assign selector.
//_resize_to_match(other);
// the 'false' below means to enforce lazy evaluation. We don't use lazyAssign() because
// it wouldn't allow to copy a row-vector into a column-vector.
internal::call_assignment_no_alias(this->derived(), other.derived(), internal::assign_op<Scalar,typename OtherDerived::Scalar>());
return this->derived();
}
template<typename T0, typename T1>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE void _init2(Index rows, Index cols, std::enable_if_t<Base::SizeAtCompileTime!=2,T0>* = 0)
{
const bool t0_is_integer_alike = internal::is_valid_index_type<T0>::value;
const bool t1_is_integer_alike = internal::is_valid_index_type<T1>::value;
EIGEN_STATIC_ASSERT(t0_is_integer_alike &&
t1_is_integer_alike,
FLOATING_POINT_ARGUMENT_PASSED__INTEGER_WAS_EXPECTED)
resize(rows,cols);
}
template<typename T0, typename T1>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE void _init2(const T0& val0, const T1& val1, std::enable_if_t<Base::SizeAtCompileTime==2,T0>* = 0)
{
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(PlainObjectBase, 2)
m_storage.data()[0] = Scalar(val0);
m_storage.data()[1] = Scalar(val1);
}
template<typename T0, typename T1>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE void _init2(const Index& val0, const Index& val1,
std::enable_if_t< (!internal::is_same<Index,Scalar>::value)
&& (internal::is_same<T0,Index>::value)
&& (internal::is_same<T1,Index>::value)
&& Base::SizeAtCompileTime==2,T1>* = 0)
{
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(PlainObjectBase, 2)
m_storage.data()[0] = Scalar(val0);
m_storage.data()[1] = Scalar(val1);
}
// The argument is convertible to the Index type and we either have a non 1x1 Matrix, or a dynamic-sized Array,
// then the argument is meant to be the size of the object.
template<typename T>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE void _init1(Index size, std::enable_if_t< (Base::SizeAtCompileTime!=1 || !internal::is_convertible<T, Scalar>::value)
&& ((!internal::is_same<typename internal::traits<Derived>::XprKind,ArrayXpr>::value || Base::SizeAtCompileTime==Dynamic)),T>* = 0)
{
// NOTE MSVC 2008 complains if we directly put bool(NumTraits<T>::IsInteger) as the EIGEN_STATIC_ASSERT argument.
const bool is_integer_alike = internal::is_valid_index_type<T>::value;
EIGEN_UNUSED_VARIABLE(is_integer_alike);
EIGEN_STATIC_ASSERT(is_integer_alike,
FLOATING_POINT_ARGUMENT_PASSED__INTEGER_WAS_EXPECTED)
resize(size);
}
// We have a 1x1 matrix/array => the argument is interpreted as the value of the unique coefficient (case where scalar type can be implicitly converted)
template<typename T>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE void _init1(const Scalar& val0, std::enable_if_t<Base::SizeAtCompileTime==1 && internal::is_convertible<T, Scalar>::value,T>* = 0)
{
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(PlainObjectBase, 1)
m_storage.data()[0] = val0;
}
// We have a 1x1 matrix/array => the argument is interpreted as the value of the unique coefficient (case where scalar type match the index type)
template<typename T>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE void _init1(const Index& val0,
std::enable_if_t< (!internal::is_same<Index,Scalar>::value)
&& (internal::is_same<Index,T>::value)
&& Base::SizeAtCompileTime==1
&& internal::is_convertible<T, Scalar>::value,T*>* = 0)
{
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(PlainObjectBase, 1)
m_storage.data()[0] = Scalar(val0);
}
// Initialize a fixed size matrix from a pointer to raw data
template<typename T>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE void _init1(const Scalar* data){
this->_set_noalias(ConstMapType(data));
}
// Initialize an arbitrary matrix from a dense expression
template<typename T, typename OtherDerived>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE void _init1(const DenseBase<OtherDerived>& other){
this->_set_noalias(other);
}
// Initialize an arbitrary matrix from an object convertible to the Derived type.
template<typename T>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE void _init1(const Derived& other){
this->_set_noalias(other);
}
// Initialize an arbitrary matrix from a generic Eigen expression
template<typename T, typename OtherDerived>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE void _init1(const EigenBase<OtherDerived>& other){
this->derived() = other;
}
template<typename T, typename OtherDerived>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE void _init1(const ReturnByValue<OtherDerived>& other)
{
resize(other.rows(), other.cols());
other.evalTo(this->derived());
}
template<typename T, typename OtherDerived, int ColsAtCompileTime>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE void _init1(const RotationBase<OtherDerived,ColsAtCompileTime>& r)
{
this->derived() = r;
}
// For fixed-size Array<Scalar,...>
template<typename T>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE void _init1(const Scalar& val0,
std::enable_if_t< Base::SizeAtCompileTime!=Dynamic
&& Base::SizeAtCompileTime!=1
&& internal::is_convertible<T, Scalar>::value
&& internal::is_same<typename internal::traits<Derived>::XprKind,ArrayXpr>::value,T>* = 0)
{
Base::setConstant(val0);
}
// For fixed-size Array<Index,...>
template<typename T>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE void _init1(const Index& val0,
std::enable_if_t< (!internal::is_same<Index,Scalar>::value)
&& (internal::is_same<Index,T>::value)
&& Base::SizeAtCompileTime!=Dynamic
&& Base::SizeAtCompileTime!=1
&& internal::is_convertible<T, Scalar>::value
&& internal::is_same<typename internal::traits<Derived>::XprKind,ArrayXpr>::value,T*>* = 0)
{
Base::setConstant(val0);
}
template<typename MatrixTypeA, typename MatrixTypeB, bool SwapPointers>
friend struct internal::matrix_swap_impl;
public:
#ifndef EIGEN_PARSED_BY_DOXYGEN
/** \internal
* \brief Override DenseBase::swap() since for dynamic-sized matrices
* of same type it is enough to swap the data pointers.
*/
template<typename OtherDerived>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
void swap(DenseBase<OtherDerived> & other)
{
enum { SwapPointers = internal::is_same<Derived, OtherDerived>::value && Base::SizeAtCompileTime==Dynamic };
internal::matrix_swap_impl<Derived, OtherDerived, bool(SwapPointers)>::run(this->derived(), other.derived());
}
/** \internal
* \brief const version forwarded to DenseBase::swap
*/
template<typename OtherDerived>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
void swap(DenseBase<OtherDerived> const & other)
{ Base::swap(other.derived()); }
enum { IsPlainObjectBase = 1 };
#endif
public:
// These apparently need to be down here for nvcc+icc to prevent duplicate
// Map symbol.
template<typename PlainObjectType, int MapOptions, typename StrideType> friend class Eigen::Map;
friend class Eigen::Map<Derived, Unaligned>;
friend class Eigen::Map<const Derived, Unaligned>;
#if EIGEN_MAX_ALIGN_BYTES>0
// for EIGEN_MAX_ALIGN_BYTES==0, AlignedMax==Unaligned, and many compilers generate warnings for friend-ing a class twice.
friend class Eigen::Map<Derived, AlignedMax>;
friend class Eigen::Map<const Derived, AlignedMax>;
#endif
};
namespace internal {
template <typename Derived, typename OtherDerived, bool IsVector>
struct conservative_resize_like_impl
{
static constexpr bool IsRelocatable = std::is_trivially_copyable<typename Derived::Scalar>::value;
static void run(DenseBase<Derived>& _this, Index rows, Index cols)
{
if (_this.rows() == rows && _this.cols() == cols) return;
EIGEN_STATIC_ASSERT_DYNAMIC_SIZE(Derived)
if ( IsRelocatable
&& (( Derived::IsRowMajor && _this.cols() == cols) || // row-major and we change only the number of rows
(!Derived::IsRowMajor && _this.rows() == rows) )) // column-major and we change only the number of columns
{
internal::check_rows_cols_for_overflow<Derived::MaxSizeAtCompileTime>::run(rows, cols);
_this.derived().m_storage.conservativeResize(rows*cols,rows,cols);
}
else
{
// The storage order does not allow us to use reallocation.
Derived tmp(rows,cols);
const Index common_rows = numext::mini(rows, _this.rows());
const Index common_cols = numext::mini(cols, _this.cols());
tmp.block(0,0,common_rows,common_cols) = _this.block(0,0,common_rows,common_cols);
_this.derived().swap(tmp);
}
}
static void run(DenseBase<Derived>& _this, const DenseBase<OtherDerived>& other)
{
if (_this.rows() == other.rows() && _this.cols() == other.cols()) return;
// Note: Here is space for improvement. Basically, for conservativeResize(Index,Index),
// neither RowsAtCompileTime or ColsAtCompileTime must be Dynamic. If only one of the
// dimensions is dynamic, one could use either conservativeResize(Index rows, NoChange_t) or
// conservativeResize(NoChange_t, Index cols). For these methods new static asserts like
// EIGEN_STATIC_ASSERT_DYNAMIC_ROWS and EIGEN_STATIC_ASSERT_DYNAMIC_COLS would be good.
EIGEN_STATIC_ASSERT_DYNAMIC_SIZE(Derived)
EIGEN_STATIC_ASSERT_DYNAMIC_SIZE(OtherDerived)
if ( IsRelocatable &&
(( Derived::IsRowMajor && _this.cols() == other.cols()) || // row-major and we change only the number of rows
(!Derived::IsRowMajor && _this.rows() == other.rows()) )) // column-major and we change only the number of columns
{
const Index new_rows = other.rows() - _this.rows();
const Index new_cols = other.cols() - _this.cols();
_this.derived().m_storage.conservativeResize(other.size(),other.rows(),other.cols());
if (new_rows>0)
_this.bottomRightCorner(new_rows, other.cols()) = other.bottomRows(new_rows);
else if (new_cols>0)
_this.bottomRightCorner(other.rows(), new_cols) = other.rightCols(new_cols);
}
else
{
// The storage order does not allow us to use reallocation.
Derived tmp(other);
const Index common_rows = numext::mini(tmp.rows(), _this.rows());
const Index common_cols = numext::mini(tmp.cols(), _this.cols());
tmp.block(0,0,common_rows,common_cols) = _this.block(0,0,common_rows,common_cols);
_this.derived().swap(tmp);
}
}
};
// Here, the specialization for vectors inherits from the general matrix case
// to allow calling .conservativeResize(rows,cols) on vectors.
template <typename Derived, typename OtherDerived>
struct conservative_resize_like_impl<Derived,OtherDerived,true>
: conservative_resize_like_impl<Derived,OtherDerived,false>
{
typedef conservative_resize_like_impl<Derived,OtherDerived,false> Base;
using Base::run;
using Base::IsRelocatable;
static void run(DenseBase<Derived>& _this, Index size)
{
const Index new_rows = Derived::RowsAtCompileTime==1 ? 1 : size;
const Index new_cols = Derived::RowsAtCompileTime==1 ? size : 1;
if(IsRelocatable)
_this.derived().m_storage.conservativeResize(size,new_rows,new_cols);
else
Base::run(_this.derived(), new_rows, new_cols);
}
static void run(DenseBase<Derived>& _this, const DenseBase<OtherDerived>& other)
{
if (_this.rows() == other.rows() && _this.cols() == other.cols()) return;
const Index num_new_elements = other.size() - _this.size();
const Index new_rows = Derived::RowsAtCompileTime==1 ? 1 : other.rows();
const Index new_cols = Derived::RowsAtCompileTime==1 ? other.cols() : 1;
if(IsRelocatable)
_this.derived().m_storage.conservativeResize(other.size(),new_rows,new_cols);
else
Base::run(_this.derived(), new_rows, new_cols);
if (num_new_elements > 0)
_this.tail(num_new_elements) = other.tail(num_new_elements);
}
};
template<typename MatrixTypeA, typename MatrixTypeB, bool SwapPointers>
struct matrix_swap_impl
{
EIGEN_DEVICE_FUNC
static EIGEN_STRONG_INLINE void run(MatrixTypeA& a, MatrixTypeB& b)
{
a.base().swap(b);
}
};
template<typename MatrixTypeA, typename MatrixTypeB>
struct matrix_swap_impl<MatrixTypeA, MatrixTypeB, true>
{
EIGEN_DEVICE_FUNC
static inline void run(MatrixTypeA& a, MatrixTypeB& b)
{
static_cast<typename MatrixTypeA::Base&>(a).m_storage.swap(static_cast<typename MatrixTypeB::Base&>(b).m_storage);
}
};
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_DENSESTORAGEBASE_H