| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2015 Ke Yang <yangke@gmail.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_CXX11_TENSOR_TENSOR_INFLATION_H |
| #define EIGEN_CXX11_TENSOR_TENSOR_INFLATION_H |
| |
| namespace Eigen { |
| |
| /** \class TensorInflation |
| * \ingroup CXX11_Tensor_Module |
| * |
| * \brief Tensor inflation class. |
| * |
| * |
| */ |
| namespace internal { |
| template<typename Strides, typename XprType> |
| struct traits<TensorInflationOp<Strides, XprType> > : public traits<XprType> |
| { |
| typedef typename XprType::Scalar Scalar; |
| typedef traits<XprType> XprTraits; |
| typedef typename XprTraits::StorageKind StorageKind; |
| typedef typename XprTraits::Index Index; |
| typedef typename XprType::Nested Nested; |
| typedef typename remove_reference<Nested>::type _Nested; |
| static const int NumDimensions = XprTraits::NumDimensions; |
| static const int Layout = XprTraits::Layout; |
| typedef typename XprTraits::PointerType PointerType; |
| }; |
| |
| template<typename Strides, typename XprType> |
| struct eval<TensorInflationOp<Strides, XprType>, Eigen::Dense> |
| { |
| typedef const TensorInflationOp<Strides, XprType>& type; |
| }; |
| |
| template<typename Strides, typename XprType> |
| struct nested<TensorInflationOp<Strides, XprType>, 1, typename eval<TensorInflationOp<Strides, XprType> >::type> |
| { |
| typedef TensorInflationOp<Strides, XprType> type; |
| }; |
| |
| } // end namespace internal |
| |
| template<typename Strides, typename XprType> |
| class TensorInflationOp : public TensorBase<TensorInflationOp<Strides, XprType>, ReadOnlyAccessors> |
| { |
| public: |
| typedef typename Eigen::internal::traits<TensorInflationOp>::Scalar Scalar; |
| typedef typename Eigen::NumTraits<Scalar>::Real RealScalar; |
| typedef typename XprType::CoeffReturnType CoeffReturnType; |
| typedef typename Eigen::internal::nested<TensorInflationOp>::type Nested; |
| typedef typename Eigen::internal::traits<TensorInflationOp>::StorageKind StorageKind; |
| typedef typename Eigen::internal::traits<TensorInflationOp>::Index Index; |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorInflationOp(const XprType& expr, const Strides& strides) |
| : m_xpr(expr), m_strides(strides) {} |
| |
| EIGEN_DEVICE_FUNC |
| const Strides& strides() const { return m_strides; } |
| |
| EIGEN_DEVICE_FUNC |
| const typename internal::remove_all<typename XprType::Nested>::type& |
| expression() const { return m_xpr; } |
| |
| protected: |
| typename XprType::Nested m_xpr; |
| const Strides m_strides; |
| }; |
| |
| // Eval as rvalue |
| template<typename Strides, typename ArgType, typename Device> |
| struct TensorEvaluator<const TensorInflationOp<Strides, ArgType>, Device> |
| { |
| typedef TensorInflationOp<Strides, ArgType> XprType; |
| typedef typename XprType::Index Index; |
| static const int NumDims = internal::array_size<typename TensorEvaluator<ArgType, Device>::Dimensions>::value; |
| typedef DSizes<Index, NumDims> Dimensions; |
| typedef typename XprType::Scalar Scalar; |
| typedef typename XprType::CoeffReturnType CoeffReturnType; |
| typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType; |
| static const int PacketSize = PacketType<CoeffReturnType, Device>::size; |
| typedef StorageMemory<CoeffReturnType, Device> Storage; |
| typedef typename Storage::Type EvaluatorPointerType; |
| |
| enum { |
| IsAligned = /*TensorEvaluator<ArgType, Device>::IsAligned*/ false, |
| PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess, |
| BlockAccess = false, |
| BlockAccessV2 = false, |
| PreferBlockAccess = false, |
| Layout = TensorEvaluator<ArgType, Device>::Layout, |
| CoordAccess = false, // to be implemented |
| RawAccess = false |
| }; |
| |
| //===- Tensor block evaluation strategy (see TensorBlock.h) -------------===// |
| typedef internal::TensorBlockNotImplemented TensorBlockV2; |
| //===--------------------------------------------------------------------===// |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device) |
| : m_impl(op.expression(), device), m_strides(op.strides()) |
| { |
| m_dimensions = m_impl.dimensions(); |
| // Expand each dimension to the inflated dimension. |
| for (int i = 0; i < NumDims; ++i) { |
| m_dimensions[i] = (m_dimensions[i] - 1) * op.strides()[i] + 1; |
| } |
| |
| // Remember the strides for fast division. |
| for (int i = 0; i < NumDims; ++i) { |
| m_fastStrides[i] = internal::TensorIntDivisor<Index>(m_strides[i]); |
| } |
| |
| const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions(); |
| if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { |
| m_outputStrides[0] = 1; |
| m_inputStrides[0] = 1; |
| for (int i = 1; i < NumDims; ++i) { |
| m_outputStrides[i] = m_outputStrides[i-1] * m_dimensions[i-1]; |
| m_inputStrides[i] = m_inputStrides[i-1] * input_dims[i-1]; |
| } |
| } else { // RowMajor |
| m_outputStrides[NumDims-1] = 1; |
| m_inputStrides[NumDims-1] = 1; |
| for (int i = NumDims - 2; i >= 0; --i) { |
| m_outputStrides[i] = m_outputStrides[i+1] * m_dimensions[i+1]; |
| m_inputStrides[i] = m_inputStrides[i+1] * input_dims[i+1]; |
| } |
| } |
| } |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; } |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(EvaluatorPointerType /*data*/) { |
| m_impl.evalSubExprsIfNeeded(NULL); |
| return true; |
| } |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() { |
| m_impl.cleanup(); |
| } |
| |
| // Computes the input index given the output index. Returns true if the output |
| // index doesn't fall into a hole. |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool getInputIndex(Index index, Index* inputIndex) const |
| { |
| eigen_assert(index < dimensions().TotalSize()); |
| *inputIndex = 0; |
| if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { |
| EIGEN_UNROLL_LOOP |
| for (int i = NumDims - 1; i > 0; --i) { |
| const Index idx = index / m_outputStrides[i]; |
| if (idx != idx / m_fastStrides[i] * m_strides[i]) { |
| return false; |
| } |
| *inputIndex += idx / m_strides[i] * m_inputStrides[i]; |
| index -= idx * m_outputStrides[i]; |
| } |
| if (index != index / m_fastStrides[0] * m_strides[0]) { |
| return false; |
| } |
| *inputIndex += index / m_strides[0]; |
| return true; |
| } else { |
| EIGEN_UNROLL_LOOP |
| for (int i = 0; i < NumDims - 1; ++i) { |
| const Index idx = index / m_outputStrides[i]; |
| if (idx != idx / m_fastStrides[i] * m_strides[i]) { |
| return false; |
| } |
| *inputIndex += idx / m_strides[i] * m_inputStrides[i]; |
| index -= idx * m_outputStrides[i]; |
| } |
| if (index != index / m_fastStrides[NumDims-1] * m_strides[NumDims-1]) { |
| return false; |
| } |
| *inputIndex += index / m_strides[NumDims - 1]; |
| } |
| return true; |
| } |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const |
| { |
| Index inputIndex = 0; |
| if (getInputIndex(index, &inputIndex)) { |
| return m_impl.coeff(inputIndex); |
| } else { |
| return Scalar(0); |
| } |
| } |
| |
| // TODO(yangke): optimize this function so that we can detect and produce |
| // all-zero packets |
| template<int LoadMode> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const |
| { |
| EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE) |
| eigen_assert(index+PacketSize-1 < dimensions().TotalSize()); |
| |
| EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type values[PacketSize]; |
| EIGEN_UNROLL_LOOP |
| for (int i = 0; i < PacketSize; ++i) { |
| values[i] = coeff(index+i); |
| } |
| PacketReturnType rslt = internal::pload<PacketReturnType>(values); |
| return rslt; |
| } |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const { |
| const double compute_cost = NumDims * (3 * TensorOpCost::DivCost<Index>() + |
| 3 * TensorOpCost::MulCost<Index>() + |
| 2 * TensorOpCost::AddCost<Index>()); |
| const double input_size = m_impl.dimensions().TotalSize(); |
| const double output_size = m_dimensions.TotalSize(); |
| if (output_size == 0) |
| return TensorOpCost(); |
| return m_impl.costPerCoeff(vectorized) + |
| TensorOpCost(sizeof(CoeffReturnType) * input_size / output_size, 0, |
| compute_cost, vectorized, PacketSize); |
| } |
| |
| EIGEN_DEVICE_FUNC EvaluatorPointerType data() const { return NULL; } |
| |
| #ifdef EIGEN_USE_SYCL |
| // binding placeholder accessors to a command group handler for SYCL |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void bind(cl::sycl::handler &cgh) const { |
| m_impl.bind(cgh); |
| } |
| #endif |
| |
| protected: |
| Dimensions m_dimensions; |
| array<Index, NumDims> m_outputStrides; |
| array<Index, NumDims> m_inputStrides; |
| TensorEvaluator<ArgType, Device> m_impl; |
| const Strides m_strides; |
| array<internal::TensorIntDivisor<Index>, NumDims> m_fastStrides; |
| }; |
| |
| } // end namespace Eigen |
| |
| #endif // EIGEN_CXX11_TENSOR_TENSOR_INFLATION_H |