blob: cee7ae657505cacf9937e8abcec7cbc1e0a8b63f [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
// Copyright (C) 2016 Mehdi Goli, Codeplay Software Ltd <eigen@codeplay.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_CXX11_TENSOR_TENSOR_REDUCTION_H
#define EIGEN_CXX11_TENSOR_TENSOR_REDUCTION_H
// clang is incompatible with the CUDA syntax wrt making a kernel a class friend,
// so we'll use a macro to make clang happy.
#ifndef KERNEL_FRIEND
#if defined(__clang__) && (defined(__CUDA__) || defined(__HIP__))
#define KERNEL_FRIEND friend __global__
#else
#define KERNEL_FRIEND friend
#endif
#endif
namespace Eigen {
/** \class TensorReduction
* \ingroup CXX11_Tensor_Module
*
* \brief Tensor reduction class.
*
*/
namespace internal {
template<typename Op, typename Dims, typename XprType,template <class> class MakePointer_ >
struct traits<TensorReductionOp<Op, Dims, XprType, MakePointer_> >
: traits<XprType>
{
typedef traits<XprType> XprTraits;
typedef typename XprTraits::Scalar Scalar;
typedef typename XprTraits::StorageKind StorageKind;
typedef typename XprTraits::Index Index;
typedef typename XprType::Nested Nested;
static const int NumDimensions = XprTraits::NumDimensions - array_size<Dims>::value;
static const int Layout = XprTraits::Layout;
typedef typename XprTraits::PointerType PointerType;
template <class T> struct MakePointer {
// Intermediate typedef to workaround MSVC issue.
typedef MakePointer_<T> MakePointerT;
typedef typename MakePointerT::Type Type;
};
};
template<typename Op, typename Dims, typename XprType, template <class> class MakePointer_>
struct eval<TensorReductionOp<Op, Dims, XprType, MakePointer_>, Eigen::Dense>
{
typedef const TensorReductionOp<Op, Dims, XprType, MakePointer_>& type;
};
template<typename Op, typename Dims, typename XprType, template <class> class MakePointer_>
struct nested<TensorReductionOp<Op, Dims, XprType, MakePointer_>, 1, typename eval<TensorReductionOp<Op, Dims, XprType, MakePointer_> >::type>
{
typedef TensorReductionOp<Op, Dims, XprType, MakePointer_> type;
};
template <typename OutputDims> struct DimInitializer {
template <typename InputDims, typename ReducedDims> EIGEN_DEVICE_FUNC
static void run(const InputDims& input_dims,
const array<bool, internal::array_size<InputDims>::value>& reduced,
OutputDims* output_dims, ReducedDims* reduced_dims) {
const int NumInputDims = internal::array_size<InputDims>::value;
int outputIndex = 0;
int reduceIndex = 0;
for (int i = 0; i < NumInputDims; ++i) {
if (reduced[i]) {
(*reduced_dims)[reduceIndex] = input_dims[i];
++reduceIndex;
} else {
(*output_dims)[outputIndex] = input_dims[i];
++outputIndex;
}
}
}
};
template <> struct DimInitializer<Sizes<> > {
template <typename InputDims, typename Index, size_t Rank> EIGEN_DEVICE_FUNC
static void run(const InputDims& input_dims, const array<bool, Rank>&,
Sizes<>*, array<Index, Rank>* reduced_dims) {
const int NumInputDims = internal::array_size<InputDims>::value;
for (int i = 0; i < NumInputDims; ++i) {
(*reduced_dims)[i] = input_dims[i];
}
}
};
template <typename ReducedDims, int NumTensorDims, int Layout>
struct are_inner_most_dims {
static const bool value = false;
};
template <typename ReducedDims, int NumTensorDims, int Layout>
struct preserve_inner_most_dims {
static const bool value = false;
};
#if EIGEN_HAS_CONSTEXPR && EIGEN_HAS_VARIADIC_TEMPLATES
template <typename ReducedDims, int NumTensorDims>
struct are_inner_most_dims<ReducedDims, NumTensorDims, ColMajor>{
static const bool tmp1 = indices_statically_known_to_increase<ReducedDims>();
static const bool tmp2 = index_statically_eq<ReducedDims>(0, 0);
static const bool tmp3 = index_statically_eq<ReducedDims>(array_size<ReducedDims>::value-1, array_size<ReducedDims>::value-1);
static const bool value = tmp1 & tmp2 & tmp3;
};
template <typename ReducedDims, int NumTensorDims>
struct are_inner_most_dims<ReducedDims, NumTensorDims, RowMajor>{
static const bool tmp1 = indices_statically_known_to_increase<ReducedDims>();
static const bool tmp2 = index_statically_eq<ReducedDims>(0, NumTensorDims - array_size<ReducedDims>::value);
static const bool tmp3 = index_statically_eq<ReducedDims>(array_size<ReducedDims>::value - 1, NumTensorDims - 1);
static const bool value = tmp1 & tmp2 & tmp3;
};
template <typename ReducedDims, int NumTensorDims>
struct preserve_inner_most_dims<ReducedDims, NumTensorDims, ColMajor>{
static const bool tmp1 = indices_statically_known_to_increase<ReducedDims>();
static const bool tmp2 = index_statically_gt<ReducedDims>(0, 0);
static const bool value = tmp1 & tmp2;
};
template <typename ReducedDims, int NumTensorDims>
struct preserve_inner_most_dims<ReducedDims, NumTensorDims, RowMajor>{
static const bool tmp1 = indices_statically_known_to_increase<ReducedDims>();
static const bool tmp2 = index_statically_lt<ReducedDims>(array_size<ReducedDims>::value - 1, NumTensorDims - 1);
static const bool value = tmp1 & tmp2;
};
#endif
template <int DimIndex, typename Self, typename Op>
struct GenericDimReducer {
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(const Self& self, typename Self::Index firstIndex, Op& reducer, typename Self::CoeffReturnType* accum) {
EIGEN_STATIC_ASSERT((DimIndex > 0), YOU_MADE_A_PROGRAMMING_MISTAKE);
for (int j = 0; j < self.m_reducedDims[DimIndex]; ++j) {
const typename Self::Index input = firstIndex + j * self.m_reducedStrides[DimIndex];
GenericDimReducer<DimIndex-1, Self, Op>::reduce(self, input, reducer, accum);
}
}
};
template <typename Self, typename Op>
struct GenericDimReducer<0, Self, Op> {
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(const Self& self, typename Self::Index firstIndex, Op& reducer, typename Self::CoeffReturnType* accum) {
for (int j = 0; j < self.m_reducedDims[0]; ++j) {
const typename Self::Index input = firstIndex + j * self.m_reducedStrides[0];
reducer.reduce(self.m_impl.coeff(input), accum);
}
}
};
template <typename Self, typename Op>
struct GenericDimReducer<-1, Self, Op> {
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(const Self& self, typename Self::Index index, Op& reducer, typename Self::CoeffReturnType* accum) {
reducer.reduce(self.m_impl.coeff(index), accum);
}
};
template <typename Self, typename Op, bool Vectorizable = (Self::InputPacketAccess && Self::ReducerTraits::PacketAccess),
bool UseTreeReduction = (!Self::ReducerTraits::IsStateful &&
!Self::ReducerTraits::IsExactlyAssociative)>
struct InnerMostDimReducer {
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename Self::CoeffReturnType reduce(const Self& self, typename Self::Index firstIndex, typename Self::Index numValuesToReduce, Op& reducer) {
typename Self::CoeffReturnType accum = reducer.initialize();
for (typename Self::Index j = 0; j < numValuesToReduce; ++j) {
reducer.reduce(self.m_impl.coeff(firstIndex + j), &accum);
}
return reducer.finalize(accum);
}
};
template <typename Self, typename Op>
struct InnerMostDimReducer<Self, Op, true, false> {
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename Self::CoeffReturnType reduce(const Self& self, typename Self::Index firstIndex, typename Self::Index numValuesToReduce, Op& reducer) {
const typename Self::Index packetSize = internal::unpacket_traits<typename Self::PacketReturnType>::size;
const typename Self::Index VectorizedSize = (numValuesToReduce / packetSize) * packetSize;
typename Self::PacketReturnType paccum = reducer.template initializePacket<typename Self::PacketReturnType>();
for (typename Self::Index j = 0; j < VectorizedSize; j += packetSize) {
reducer.reducePacket(self.m_impl.template packet<Unaligned>(firstIndex + j), &paccum);
}
typename Self::CoeffReturnType accum = reducer.initialize();
for (typename Self::Index j = VectorizedSize; j < numValuesToReduce; ++j) {
reducer.reduce(self.m_impl.coeff(firstIndex + j), &accum);
}
return reducer.finalizeBoth(accum, paccum);
}
};
#if !defined(EIGEN_HIPCC)
static const int kLeafSize = 1024;
template <typename Self, typename Op>
struct InnerMostDimReducer<Self, Op, false, true> {
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename Self::CoeffReturnType
reduce(const Self& self, typename Self::Index firstIndex,
typename Self::Index numValuesToReduce, Op& reducer) {
typename Self::CoeffReturnType accum = reducer.initialize();
if (numValuesToReduce > kLeafSize) {
const typename Self::Index half = numValuesToReduce / 2;
reducer.reduce(reduce(self, firstIndex, half, reducer), &accum);
reducer.reduce(
reduce(self, firstIndex + half, numValuesToReduce - half, reducer),
&accum);
} else {
for (typename Self::Index j = 0; j < numValuesToReduce; ++j) {
reducer.reduce(self.m_impl.coeff(firstIndex + j), &accum);
}
}
return reducer.finalize(accum);
}
};
template <typename Self, typename Op>
struct InnerMostDimReducer<Self, Op, true, true> {
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename Self::CoeffReturnType
reduce(const Self& self, typename Self::Index firstIndex,
typename Self::Index numValuesToReduce, Op& reducer) {
const typename Self::Index packetSize =
internal::unpacket_traits<typename Self::PacketReturnType>::size;
typename Self::CoeffReturnType accum = reducer.initialize();
if (numValuesToReduce > packetSize * kLeafSize) {
// Make sure the split point is aligned on a packet boundary.
const typename Self::Index split =
packetSize *
divup(firstIndex + divup(numValuesToReduce, typename Self::Index(2)),
packetSize);
const typename Self::Index num_left =
numext::mini(split - firstIndex, numValuesToReduce);
reducer.reduce(reduce(self, firstIndex, num_left, reducer), &accum);
if (num_left < numValuesToReduce) {
reducer.reduce(
reduce(self, split, numValuesToReduce - num_left, reducer), &accum);
}
return reducer.finalize(accum);
} else {
const typename Self::Index VectorizedSize =
(numValuesToReduce / packetSize) * packetSize;
typename Self::PacketReturnType paccum =
reducer.template initializePacket<typename Self::PacketReturnType>();
for (typename Self::Index j = 0; j < VectorizedSize; j += packetSize) {
reducer.reducePacket(
self.m_impl.template packet<Unaligned>(firstIndex + j), &paccum);
}
for (typename Self::Index j = VectorizedSize; j < numValuesToReduce;
++j) {
reducer.reduce(self.m_impl.coeff(firstIndex + j), &accum);
}
return reducer.finalizeBoth(accum, paccum);
}
}
};
#endif
template <int DimIndex, typename Self, typename Op, bool vectorizable = (Self::InputPacketAccess && Self::ReducerTraits::PacketAccess)>
struct InnerMostDimPreserver {
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(const Self&, typename Self::Index, Op&, typename Self::PacketReturnType*) {
eigen_assert(false && "should never be called");
}
};
template <int DimIndex, typename Self, typename Op>
struct InnerMostDimPreserver<DimIndex, Self, Op, true> {
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(const Self& self, typename Self::Index firstIndex, Op& reducer, typename Self::PacketReturnType* accum) {
EIGEN_STATIC_ASSERT((DimIndex > 0), YOU_MADE_A_PROGRAMMING_MISTAKE);
for (typename Self::Index j = 0; j < self.m_reducedDims[DimIndex]; ++j) {
const typename Self::Index input = firstIndex + j * self.m_reducedStrides[DimIndex];
InnerMostDimPreserver<DimIndex-1, Self, Op>::reduce(self, input, reducer, accum);
}
}
};
template <typename Self, typename Op>
struct InnerMostDimPreserver<0, Self, Op, true> {
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(const Self& self, typename Self::Index firstIndex, Op& reducer, typename Self::PacketReturnType* accum) {
for (typename Self::Index j = 0; j < self.m_reducedDims[0]; ++j) {
const typename Self::Index input = firstIndex + j * self.m_reducedStrides[0];
reducer.reducePacket(self.m_impl.template packet<Unaligned>(input), accum);
}
}
};
template <typename Self, typename Op>
struct InnerMostDimPreserver<-1, Self, Op, true> {
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(const Self&, typename Self::Index, Op&, typename Self::PacketReturnType*) {
eigen_assert(false && "should never be called");
}
};
// Default full reducer
template <typename Self, typename Op, typename Device, bool Vectorizable = (Self::InputPacketAccess && Self::ReducerTraits::PacketAccess)>
struct FullReducer {
static const bool HasOptimizedImplementation = false;
static EIGEN_DEVICE_FUNC void run(const Self& self, Op& reducer, const Device&, typename Self::EvaluatorPointerType output) {
const typename Self::Index num_coeffs = array_prod(self.m_impl.dimensions());
*output = InnerMostDimReducer<Self, Op, Vectorizable>::reduce(self, 0, num_coeffs, reducer);
}
};
#ifdef EIGEN_USE_THREADS
// Multithreaded full reducers
template <typename Self, typename Op,
bool Vectorizable = (Self::InputPacketAccess && Self::ReducerTraits::PacketAccess)>
struct FullReducerShard {
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void run(const Self& self, typename Self::Index firstIndex,
typename Self::Index numValuesToReduce, Op& reducer,
typename Self::CoeffReturnType* output) {
*output = InnerMostDimReducer<Self, Op, Vectorizable>::reduce(
self, firstIndex, numValuesToReduce, reducer);
}
};
// Multithreaded full reducer
template <typename Self, typename Op, bool Vectorizable>
struct FullReducer<Self, Op, ThreadPoolDevice, Vectorizable> {
static const bool HasOptimizedImplementation = !Self::ReducerTraits::IsStateful;
static const Index PacketSize =
unpacket_traits<typename Self::PacketReturnType>::size;
// launch one reducer per thread and accumulate the result.
static void run(const Self& self, Op& reducer, const ThreadPoolDevice& device,
typename Self::CoeffReturnType* output) {
typedef typename Self::Index Index;
const Index num_coeffs = array_prod(self.m_impl.dimensions());
if (num_coeffs == 0) {
*output = reducer.finalize(reducer.initialize());
return;
}
const TensorOpCost cost =
self.m_impl.costPerCoeff(Vectorizable) +
TensorOpCost(0, 0, internal::functor_traits<Op>::Cost, Vectorizable,
PacketSize);
const int num_threads = TensorCostModel<ThreadPoolDevice>::numThreads(
num_coeffs, cost, device.numThreads());
if (num_threads == 1) {
*output =
InnerMostDimReducer<Self, Op, Vectorizable>::reduce(self, 0, num_coeffs, reducer);
return;
}
const Index blocksize =
std::floor<Index>(static_cast<float>(num_coeffs) / num_threads);
const Index numblocks = blocksize > 0 ? num_coeffs / blocksize : 0;
eigen_assert(num_coeffs >= numblocks * blocksize);
Barrier barrier(internal::convert_index<unsigned int>(numblocks));
MaxSizeVector<typename Self::CoeffReturnType> shards(numblocks, reducer.initialize());
for (Index i = 0; i < numblocks; ++i) {
device.enqueue_with_barrier(&barrier, &FullReducerShard<Self, Op, Vectorizable>::run,
self, i * blocksize, blocksize, reducer,
&shards[i]);
}
typename Self::CoeffReturnType finalShard;
if (numblocks * blocksize < num_coeffs) {
finalShard = InnerMostDimReducer<Self, Op, Vectorizable>::reduce(
self, numblocks * blocksize, num_coeffs - numblocks * blocksize,
reducer);
} else {
finalShard = reducer.initialize();
}
barrier.Wait();
for (Index i = 0; i < numblocks; ++i) {
reducer.reduce(shards[i], &finalShard);
}
*output = reducer.finalize(finalShard);
}
};
#endif
// Default inner reducer
template <typename Self, typename Op, typename Device>
struct InnerReducer {
static const bool HasOptimizedImplementation = false;
EIGEN_DEVICE_FUNC static bool run(const Self&, Op&, const Device&, typename Self::CoeffReturnType*, typename Self::Index, typename Self::Index) {
eigen_assert(false && "Not implemented");
return true;
}
};
// Default outer reducer
template <typename Self, typename Op, typename Device>
struct OuterReducer {
static const bool HasOptimizedImplementation = false;
EIGEN_DEVICE_FUNC static bool run(const Self&, Op&, const Device&, typename Self::CoeffReturnType*, typename Self::Index, typename Self::Index) {
eigen_assert(false && "Not implemented");
return true;
}
};
#ifdef EIGEN_USE_SYCL
// Default Generic reducer
template <typename Self, typename Op, typename Device>
struct GenericReducer {
static const bool HasOptimizedImplementation = false;
EIGEN_DEVICE_FUNC static bool run(const Self&, Op&, const Device&, typename Self::CoeffReturnType*, typename Self::Index, typename Self::Index) {
eigen_assert(false && "Not implemented");
return true;
}
};
#endif
#if defined(EIGEN_USE_GPU) && (defined(EIGEN_GPUCC))
template <int B, int N, typename S, typename R, typename I_>
__global__ void FullReductionKernel(R, const S, I_, typename S::CoeffReturnType*, unsigned int*);
#if defined(EIGEN_HAS_GPU_FP16)
template <typename S, typename R, typename I_>
__global__ void ReductionInitFullReduxKernelHalfFloat(R, const S, I_, half2*);
template <int B, int N, typename S, typename R, typename I_>
__global__ void FullReductionKernelHalfFloat(R, const S, I_, half*, half2*);
template <int NPT, typename S, typename R, typename I_>
__global__ void InnerReductionKernelHalfFloat(R, const S, I_, I_, half*);
#endif
template <int NPT, typename S, typename R, typename I_>
__global__ void InnerReductionKernel(R, const S, I_, I_, typename S::CoeffReturnType*);
template <int NPT, typename S, typename R, typename I_>
__global__ void OuterReductionKernel(R, const S, I_, I_, typename S::CoeffReturnType*);
#endif
/**
* For SYCL, the return type of the reduction is deduced from the initialize method of the given Op.
* This allows the reduction to have a different type for the accumulator than the input data type.
* If this is the case, the functor needs to have two reduce method: one for reducing an element of the input
* with the accumulator and the other for reducing two accumulators.
* Such a reducer can be useful for instance when the accumulator is a boolean or a bitset that checks for
* some properties of the input.
*/
template <typename Op, typename CoeffReturnType>
struct ReductionReturnType {
#if EIGEN_HAS_CXX11 && defined(EIGEN_USE_SYCL)
typedef typename remove_const<decltype(std::declval<Op>().initialize())>::type type;
#else
typedef typename remove_const<CoeffReturnType>::type type;
#endif
};
template <typename Self, typename Op,
bool Vectorizable =
(Self::InputPacketAccess & Self::ReducerTraits::PacketAccess)>
class BlockReducer {
public:
typedef typename Self::Index Index;
typedef typename Self::Scalar Scalar;
typedef typename Self::CoeffReturnType CoeffReturnType;
typedef typename Self::PacketReturnType PacketReturnType;
explicit BlockReducer(const Op& reducer) : op_(reducer) {
accum_ = op_.initialize();
}
void Reduce(Index index, Index num_values_to_reduce, Scalar* data) {
for (Index i = 0; i < num_values_to_reduce; ++i) {
op_.reduce(data[index + i], &accum_);
}
}
CoeffReturnType Finalize() { return op_.finalize(accum_); }
PacketReturnType FinalizePacket() {
// TODO(andydavis) This function should not be called for Scalar
// reductions: clean this up or add an assert here.
return PacketReturnType();
}
private:
CoeffReturnType accum_;
Op op_;
};
template <typename Self, typename Op>
class BlockReducer<Self, Op, true> {
public:
typedef typename Self::Index Index;
typedef typename Self::Scalar Scalar;
typedef typename Self::CoeffReturnType CoeffReturnType;
typedef typename Self::PacketReturnType PacketReturnType;
static const Index PacketSize =
internal::unpacket_traits<PacketReturnType>::size;
explicit BlockReducer(const Op& reducer) : op_(reducer) {
vaccum_ = op_.template initializePacket<PacketReturnType>();
accum_ = op_.initialize();
}
void Reduce(Index index, Index num_values_to_reduce, Scalar* data) {
const Index vectorized_size =
(num_values_to_reduce / PacketSize) * PacketSize;
for (Index i = 0; i < vectorized_size; i += PacketSize) {
op_.reducePacket(
internal::ploadt<PacketReturnType, Unaligned>(&data[index + i]),
&vaccum_);
}
for (Index i = vectorized_size; i < num_values_to_reduce; ++i) {
op_.reduce(data[index + i], &accum_);
}
}
CoeffReturnType Finalize() { return op_.finalizeBoth(accum_, vaccum_); }
PacketReturnType FinalizePacket() { return op_.finalizePacket(vaccum_); }
private:
PacketReturnType vaccum_;
CoeffReturnType accum_;
Op op_;
};
} // end namespace internal
template <typename Op, typename Dims, typename XprType, template <class> class MakePointer_>
class TensorReductionOp : public TensorBase<TensorReductionOp<Op, Dims, XprType, MakePointer_>, ReadOnlyAccessors> {
public:
typedef typename Eigen::internal::traits<TensorReductionOp>::Scalar Scalar;
typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
typedef typename internal::remove_const<typename XprType::CoeffReturnType>::type CoeffReturnType;
typedef typename Eigen::internal::nested<TensorReductionOp>::type Nested;
typedef typename Eigen::internal::traits<TensorReductionOp>::StorageKind StorageKind;
typedef typename Eigen::internal::traits<TensorReductionOp>::Index Index;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
TensorReductionOp(const XprType& expr, const Dims& dims) : m_expr(expr), m_dims(dims)
{ }
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
TensorReductionOp(const XprType& expr, const Dims& dims, const Op& reducer) : m_expr(expr), m_dims(dims), m_reducer(reducer)
{ }
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
const XprType& expression() const { return m_expr; }
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
const Dims& dims() const { return m_dims; }
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
const Op& reducer() const { return m_reducer; }
protected:
typename XprType::Nested m_expr;
const Dims m_dims;
const Op m_reducer;
};
template<typename ArgType, typename Device>
struct TensorReductionEvaluatorBase;
// Eval as rvalue
template<typename Op, typename Dims, typename ArgType, template <class> class MakePointer_, typename Device>
struct TensorReductionEvaluatorBase<const TensorReductionOp<Op, Dims, ArgType, MakePointer_>, Device>
{
typedef internal::reducer_traits<Op, Device> ReducerTraits;
typedef Dims ReducedDims;
typedef TensorReductionOp<Op, Dims, ArgType, MakePointer_> XprType;
typedef typename XprType::Index Index;
typedef ArgType ChildType;
typedef typename TensorEvaluator<ArgType, Device>::Dimensions InputDimensions;
static const int NumInputDims = internal::array_size<InputDimensions>::value;
static const int NumReducedDims = internal::array_size<Dims>::value;
static const int NumOutputDims = NumInputDims - NumReducedDims;
typedef typename internal::conditional<NumOutputDims==0, Sizes<>, DSizes<Index, NumOutputDims> >::type Dimensions;
typedef typename XprType::Scalar Scalar;
typedef TensorReductionEvaluatorBase<const TensorReductionOp<Op, Dims, ArgType, MakePointer_>, Device> Self;
static const bool InputPacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess;
typedef typename internal::ReductionReturnType<Op, typename XprType::CoeffReturnType>::type CoeffReturnType;
typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
static const Index PacketSize = PacketType<CoeffReturnType, Device>::size;
typedef typename Eigen::internal::traits<XprType>::PointerType TensorPointerType;
typedef StorageMemory<CoeffReturnType, Device> Storage;
typedef typename Storage::Type EvaluatorPointerType;
// Subset of strides of the input tensor for the non-reduced dimensions.
// Indexed by output dimensions.
static const int NumPreservedStrides = max_n_1<NumOutputDims>::size;
enum {
IsAligned = false,
PacketAccess = Self::InputPacketAccess && ReducerTraits::PacketAccess,
BlockAccess = false,
BlockAccessV2 = false,
PreferBlockAccess = true,
Layout = TensorEvaluator<ArgType, Device>::Layout,
CoordAccess = false, // to be implemented
RawAccess = false
};
typedef typename internal::remove_const<Scalar>::type ScalarNoConst;
typedef internal::TensorBlock<ScalarNoConst, Index, NumOutputDims, Layout>
OutputTensorBlock;
typedef internal::TensorBlock<ScalarNoConst, Index, NumInputDims, Layout>
InputTensorBlock;
//===- Tensor block evaluation strategy (see TensorBlock.h) -------------===//
typedef internal::TensorBlockNotImplemented TensorBlockV2;
//===--------------------------------------------------------------------===//
static const bool ReducingInnerMostDims = internal::are_inner_most_dims<Dims, NumInputDims, Layout>::value;
static const bool PreservingInnerMostDims = internal::preserve_inner_most_dims<Dims, NumInputDims, Layout>::value;
static const bool RunningFullReduction = (NumOutputDims==0);
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorReductionEvaluatorBase(const XprType& op, const Device& device)
: m_impl(op.expression(), device), m_reducer(op.reducer()), m_result(NULL), m_device(device)
{
EIGEN_STATIC_ASSERT((NumInputDims >= NumReducedDims), YOU_MADE_A_PROGRAMMING_MISTAKE);
EIGEN_STATIC_ASSERT((!ReducingInnerMostDims | !PreservingInnerMostDims | (NumReducedDims == NumInputDims)),
YOU_MADE_A_PROGRAMMING_MISTAKE);
// Build the bitmap indicating if an input dimension is reduced or not.
for (int i = 0; i < NumInputDims; ++i) {
m_reduced[i] = false;
}
for (int i = 0; i < NumReducedDims; ++i) {
eigen_assert(op.dims()[i] >= 0);
eigen_assert(op.dims()[i] < NumInputDims);
m_reduced[op.dims()[i]] = true;
}
const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions();
internal::DimInitializer<Dimensions>::run(input_dims, m_reduced, &m_dimensions, &m_reducedDims);
// Precompute output strides.
if (NumOutputDims > 0) {
if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
m_outputStrides[0] = 1;
for (int i = 1; i < NumOutputDims; ++i) {
m_outputStrides[i] = m_outputStrides[i - 1] * m_dimensions[i - 1];
m_fastOutputStrides[i] = internal::TensorIntDivisor<Index>(m_outputStrides[i]);
}
} else {
m_outputStrides[NumOutputDims - 1] = 1;
for (int i = NumOutputDims - 2; i >= 0; --i) {
m_outputStrides[i] = m_outputStrides[i + 1] * m_dimensions[i + 1];
m_fastOutputStrides[i] = internal::TensorIntDivisor<Index>(m_outputStrides[i]);
}
}
}
// Precompute input strides.
if (NumInputDims > 0) {
array<Index, NumInputDims> input_strides;
if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
input_strides[0] = 1;
for (int i = 1; i < NumInputDims; ++i) {
input_strides[i] = input_strides[i-1] * input_dims[i-1];
}
} else {
input_strides.back() = 1;
for (int i = NumInputDims - 2; i >= 0; --i) {
input_strides[i] = input_strides[i + 1] * input_dims[i + 1];
}
}
int outputIndex = 0;
int reduceIndex = 0;
for (int i = 0; i < NumInputDims; ++i) {
if (m_reduced[i]) {
m_reducedStrides[reduceIndex] = input_strides[i];
++reduceIndex;
} else {
m_preservedStrides[outputIndex] = input_strides[i];
m_output_to_input_dim_map[outputIndex] = i;
++outputIndex;
}
}
}
// Special case for full reductions
if (NumOutputDims == 0) {
m_preservedStrides[0] = internal::array_prod(input_dims);
}
m_numValuesToReduce =
NumOutputDims == 0
? internal::array_prod(input_dims)
: (static_cast<int>(Layout) == static_cast<int>(ColMajor))
? m_preservedStrides[0]
: m_preservedStrides[NumOutputDims - 1];
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }
EIGEN_STRONG_INLINE
#if !defined(EIGEN_HIPCC)
// Marking this as EIGEN_DEVICE_FUNC for HIPCC requires also doing the same for all the functions
// being called within here, which then leads to proliferation of EIGEN_DEVICE_FUNC markings, one
// of which will eventually result in an NVCC error
EIGEN_DEVICE_FUNC
#endif
bool evalSubExprsIfNeeded(EvaluatorPointerType data) {
m_impl.evalSubExprsIfNeeded(NULL);
// Use the FullReducer if possible.
if ((RunningFullReduction && RunningOnSycl) ||(RunningFullReduction &&
internal::FullReducer<Self, Op, Device>::HasOptimizedImplementation &&
((RunningOnGPU && (m_device.majorDeviceVersion() >= 3)) ||
!RunningOnGPU))) {
bool need_assign = false;
if (!data) {
m_result = static_cast<EvaluatorPointerType>(m_device.get((CoeffReturnType*)m_device.allocate_temp(sizeof(CoeffReturnType))));
data = m_result;
need_assign = true;
}
Op reducer(m_reducer);
internal::FullReducer<Self, Op, Device>::run(*this, reducer, m_device, data);
return need_assign;
}
// Attempt to use an optimized reduction.
else if ((RunningOnGPU && (m_device.majorDeviceVersion() >= 3)) || (RunningOnSycl)) {
bool reducing_inner_dims = true;
for (int i = 0; i < NumReducedDims; ++i) {
if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
reducing_inner_dims &= m_reduced[i];
} else {
reducing_inner_dims &= m_reduced[NumInputDims - 1 - i];
}
}
if (internal::InnerReducer<Self, Op, Device>::HasOptimizedImplementation &&
(reducing_inner_dims || ReducingInnerMostDims)) {
const Index num_values_to_reduce = internal::array_prod(m_reducedDims);
const Index num_coeffs_to_preserve = internal::array_prod(m_dimensions);
if (!data) {
if ((num_coeffs_to_preserve < 1024 && num_values_to_reduce > num_coeffs_to_preserve && num_values_to_reduce > 128) || (RunningOnSycl)) {
data = static_cast<EvaluatorPointerType>(m_device.get((CoeffReturnType*)m_device.allocate_temp(sizeof(CoeffReturnType) * num_coeffs_to_preserve)));
m_result = data;
}
else {
return true;
}
}
Op reducer(m_reducer);
// For SYCL this if always return false
if (internal::InnerReducer<Self, Op, Device>::run(*this, reducer, m_device, data, num_values_to_reduce, num_coeffs_to_preserve)) {
if (m_result) {
m_device.deallocate_temp(m_result);
m_result = NULL;
}
return true;
} else {
return (m_result != NULL);
}
}
bool preserving_inner_dims = true;
for (int i = 0; i < NumReducedDims; ++i) {
if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
preserving_inner_dims &= m_reduced[NumInputDims - 1 - i];
} else {
preserving_inner_dims &= m_reduced[i];
}
}
if (internal::OuterReducer<Self, Op, Device>::HasOptimizedImplementation &&
preserving_inner_dims) {
const Index num_values_to_reduce = internal::array_prod(m_reducedDims);
const Index num_coeffs_to_preserve = internal::array_prod(m_dimensions);
if (!data) {
if ((num_coeffs_to_preserve < 1024 && num_values_to_reduce > num_coeffs_to_preserve && num_values_to_reduce > 32) || (RunningOnSycl)) {
data = static_cast<EvaluatorPointerType>(m_device.get((CoeffReturnType*)m_device.allocate_temp(sizeof(CoeffReturnType) * num_coeffs_to_preserve)));
m_result = data;
}
else {
return true;
}
}
Op reducer(m_reducer);
// For SYCL this if always return false
if (internal::OuterReducer<Self, Op, Device>::run(*this, reducer, m_device, data, num_values_to_reduce, num_coeffs_to_preserve)) {
if (m_result) {
m_device.deallocate_temp(m_result);
m_result = NULL;
}
return true;
} else {
return (m_result != NULL);
}
}
#if defined(EIGEN_USE_SYCL)
// If there is no Optimised version for SYCL, the reduction expression
// must break into two subexpression and use the SYCL generic Reducer on the device.
if(RunningOnSycl) {
const Index num_values_to_reduce = internal::array_prod(m_reducedDims);
const Index num_coeffs_to_preserve = internal::array_prod(m_dimensions);
if (!data) {
data = static_cast<EvaluatorPointerType>(m_device.get((CoeffReturnType*)m_device.allocate_temp(sizeof(CoeffReturnType) * num_coeffs_to_preserve)));
m_result = data;
}
Op reducer(m_reducer);
internal::GenericReducer<Self, Op, Device>::run(*this, reducer, m_device, data, num_values_to_reduce, num_coeffs_to_preserve);
return (m_result != NULL);
}
#endif
}
return true;
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
m_impl.cleanup();
if (m_result) {
m_device.deallocate_temp(m_result);
m_result = NULL;
}
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
{
if (( RunningFullReduction || RunningOnGPU) && m_result ) {
return *(m_result + index);
}
Op reducer(m_reducer);
if (ReducingInnerMostDims || RunningFullReduction) {
const Index num_values_to_reduce =
(static_cast<int>(Layout) == static_cast<int>(ColMajor)) ? m_preservedStrides[0] : m_preservedStrides[NumPreservedStrides - 1];
return internal::InnerMostDimReducer<Self, Op>::reduce(*this, firstInput(index),
num_values_to_reduce, reducer);
} else {
typename Self::CoeffReturnType accum = reducer.initialize();
internal::GenericDimReducer<NumReducedDims-1, Self, Op>::reduce(*this, firstInput(index), reducer, &accum);
return reducer.finalize(accum);
}
}
// TODO(bsteiner): provide a more efficient implementation.
template<int LoadMode>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
{
EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE)
eigen_assert(index + PacketSize - 1 < Index(internal::array_prod(dimensions())));
if (RunningOnGPU && m_result) {
return internal::pload<PacketReturnType>(m_result + index);
}
EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type values[PacketSize];
if (ReducingInnerMostDims) {
const Index num_values_to_reduce =
(static_cast<int>(Layout) == static_cast<int>(ColMajor)) ? m_preservedStrides[0] : m_preservedStrides[NumPreservedStrides - 1];
const Index firstIndex = firstInput(index);
for (Index i = 0; i < PacketSize; ++i) {
Op reducer(m_reducer);
values[i] = internal::InnerMostDimReducer<Self, Op>::reduce(*this, firstIndex + i * num_values_to_reduce,
num_values_to_reduce, reducer);
}
} else if (PreservingInnerMostDims) {
const Index firstIndex = firstInput(index);
const int innermost_dim = (static_cast<int>(Layout) == static_cast<int>(ColMajor)) ? 0 : NumOutputDims - 1;
// TBD: extend this the the n innermost dimensions that we preserve.
if (((firstIndex % m_dimensions[innermost_dim]) + PacketSize - 1) < m_dimensions[innermost_dim]) {
Op reducer(m_reducer);
typename Self::PacketReturnType accum = reducer.template initializePacket<typename Self::PacketReturnType>();
internal::InnerMostDimPreserver<NumReducedDims-1, Self, Op>::reduce(*this, firstIndex, reducer, &accum);
return reducer.finalizePacket(accum);
} else {
for (int i = 0; i < PacketSize; ++i) {
values[i] = coeff(index + i);
}
}
} else {
for (int i = 0; i < PacketSize; ++i) {
values[i] = coeff(index + i);
}
}
PacketReturnType rslt = internal::pload<PacketReturnType>(values);
return rslt;
}
// Must be called after evalSubExprsIfNeeded().
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const {
if (RunningFullReduction && m_result) {
return TensorOpCost(sizeof(CoeffReturnType), 0, 0, vectorized, PacketSize);
} else {
const Index num_values_to_reduce = internal::array_prod(m_reducedDims);
const double compute_cost = num_values_to_reduce * internal::functor_traits<Op>::Cost;
return m_impl.costPerCoeff(vectorized) * num_values_to_reduce +
TensorOpCost(0, 0, compute_cost, vectorized, PacketSize);
}
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void getResourceRequirements(
std::vector<internal::TensorOpResourceRequirements>* resources) const {
Eigen::Index block_total_size_max = numext::maxi<Eigen::Index>(
1, m_device.lastLevelCacheSize() / sizeof(Scalar));
resources->push_back(internal::TensorOpResourceRequirements(
internal::kSkewedInnerDims, block_total_size_max));
m_impl.getResourceRequirements(resources);
}
EIGEN_DEVICE_FUNC EIGEN_DONT_INLINE void block(
OutputTensorBlock* output_block) const {
// Special case full reductions to avoid input block copy below.
if (NumInputDims == NumReducedDims) {
eigen_assert(output_block->first_coeff_index() == 0);
eigen_assert(output_block->block_sizes().TotalSize() == 1);
Op reducer(m_reducer);
output_block->data()[0] = internal::InnerMostDimReducer<Self, Op>::reduce(
*this, 0, m_numValuesToReduce, reducer);
return;
}
// Calculate input tensor 'slice' required to reduce output block coeffs.
DSizes<Index, NumInputDims> input_slice_sizes(m_impl.dimensions());
for (int i = 0; i < NumOutputDims; ++i) {
// Clip preserved input dimensions by output block size.
input_slice_sizes[m_output_to_input_dim_map[i]] =
output_block->block_sizes()[i];
}
// Shard input tensor slice into blocks (because it could be large if we
// need to reduce along several dimensions to calculate required output
// coefficients).
const Index max_coeff_count =
numext::mini<Index>(((m_device.firstLevelCacheSize()) / sizeof(Scalar)),
input_slice_sizes.TotalSize());
// Calculate max output shard size needed to keep working set of reducers
// in L1, while leaving enough space for reducer overhead and 'PacketSize'
// reductions.
DSizes<Index, NumInputDims> target_input_block_sizes;
CalculateTargetInputBlockShape(max_coeff_count, input_slice_sizes,
&target_input_block_sizes);
// Calculate indices for first preserved dimension.
const Index first_preserved_dim_output_index =
static_cast<int>(Layout) == static_cast<int>(ColMajor)
? 0
: NumOutputDims - 1;
const Index first_preserved_dim_input_index =
m_output_to_input_dim_map[first_preserved_dim_output_index];
const bool inner_most_dim_preserved =
PreservingInnerMostDims ||
(first_preserved_dim_input_index ==
(static_cast<int>(Layout) == static_cast<int>(ColMajor)
? 0
: NumInputDims - 1));
// Calculate output block inner/outer dimension sizes.
const Index output_block_inner_dim_size =
output_block->block_sizes()[first_preserved_dim_output_index];
const Index output_block_outer_dim_size =
output_block->block_sizes().TotalSize() / output_block_inner_dim_size;
// Calculate shard size for first preserved dimension.
const Index output_shard_size =
target_input_block_sizes[first_preserved_dim_input_index];
const Index num_output_shards =
(output_block_inner_dim_size + output_shard_size - 1) /
output_shard_size;
// Initialize 'tensor_slice_offsets' from input coords of output index.
DSizes<Index, NumInputDims> tensor_slice_offsets;
GetInputCoordsForOutputIndex(output_block->first_coeff_index(),
&tensor_slice_offsets);
// Store tensor slice offset in first preserved dimension to be used
// to update tensor slice extents in loop below.
const Index first_preserved_dim_offset_start =
tensor_slice_offsets[first_preserved_dim_input_index];
array<BlockIteratorState, NumOutputDims> block_iter_state;
// Initialize state used to iterate through output coefficients
// and update 'tensor_slice_offsets' in outer preserved dims.
for (int i = 0; i < NumOutputDims - 1; ++i) {
const int dim = static_cast<int>(Layout) == static_cast<int>(ColMajor)
? i + 1
: NumOutputDims - i - 2;
block_iter_state[i].input_dim = m_output_to_input_dim_map[dim];
block_iter_state[i].output_size = output_block->block_sizes()[dim];
block_iter_state[i].output_count = 0;
}
// Allocate input block memory.
ScalarNoConst* input_block_data = static_cast<ScalarNoConst*>(
m_device.allocate(max_coeff_count * sizeof(Scalar)));
// Allocate reducer memory.
const bool packet_reductions_enabled =
(Self::InputPacketAccess & Self::ReducerTraits::PacketAccess);
const Index num_reducers =
(inner_most_dim_preserved && packet_reductions_enabled)
? (output_shard_size / PacketSize + output_shard_size % PacketSize +
PacketSize)
: output_shard_size;
typedef internal::BlockReducer<Self, Op> BlockReducer;
BlockReducer* reducers = static_cast<BlockReducer*>(
m_device.allocate(num_reducers * sizeof(BlockReducer)));
InputDimensions input_tensor_dims(m_impl.dimensions());
for (Index output_outer_index = 0;
output_outer_index < output_block_outer_dim_size;
++output_outer_index) {
for (Index output_shard_index = 0; output_shard_index < num_output_shards;
++output_shard_index) {
// Initialize 'tensor_slice_extents' for this output shard.
DSizes<Index, NumInputDims> tensor_slice_extents(input_slice_sizes);
for (int i = 0; i < NumInputDims; ++i) {
if (i == first_preserved_dim_input_index) {
// Clip first preserved dim size to output shard size.
tensor_slice_extents[i] = numext::mini(
output_shard_size,
input_slice_sizes[i] - (tensor_slice_offsets[i] -
first_preserved_dim_offset_start));
} else if (!m_reduced[i]) {
// Clip outer preserved dims to size 1, so that we reduce a
// contiguous set of output coefficients.
tensor_slice_extents[i] = 1;
}
}
// Initialize output coefficient reducers.
for (int i = 0; i < num_reducers; ++i) {
new (&reducers[i]) BlockReducer(m_reducer);
}
typedef internal::TensorSliceBlockMapper<ScalarNoConst, Index,
NumInputDims, Layout>
TensorSliceBlockMapper;
// TODO(andydavis) Consider removing 'input_block_stride_order' if we
// find that scattered reads are not worth supporting in
// TensorSliceBlockMapper.
TensorSliceBlockMapper block_mapper(
typename TensorSliceBlockMapper::Dimensions(input_tensor_dims),
tensor_slice_offsets, tensor_slice_extents,
target_input_block_sizes, DimensionList<Index, NumInputDims>());
const Index num_outputs_to_update =
tensor_slice_extents[first_preserved_dim_input_index];
const Index preserved_dim_vector_reducer_count =
(inner_most_dim_preserved && packet_reductions_enabled)
? num_outputs_to_update / PacketSize
: 0;
const Index preserved_dim_vector_coeff_count =
inner_most_dim_preserved
? preserved_dim_vector_reducer_count * PacketSize
: 0;
const Index preserved_dim_reducer_limit =
(inner_most_dim_preserved && packet_reductions_enabled)
? (preserved_dim_vector_reducer_count +
num_outputs_to_update % PacketSize)
: num_outputs_to_update;
const Index total_block_count = block_mapper.total_block_count();
for (Index b = 0; b < total_block_count; ++b) {
InputTensorBlock input_block =
block_mapper.GetBlockForIndex(b, input_block_data);
// Read.
m_impl.block(&input_block);
Index num_values_to_reduce = 1;
for (Index i = 0; i < NumInputDims; ++i) {
if (m_reduced[i]) {
num_values_to_reduce *= input_block.block_sizes()[i];
}
}
// Reduce.
if (inner_most_dim_preserved) {
const Index input_outer_dim_size =
input_block.block_sizes().TotalSize() / num_outputs_to_update;
for (Index input_outer_dim_index = 0;
input_outer_dim_index < input_outer_dim_size;
++input_outer_dim_index) {
const Index input_outer_dim_base =
input_outer_dim_index * num_outputs_to_update;
for (Index i = 0; i < preserved_dim_vector_reducer_count; ++i) {
reducers[i].Reduce(input_outer_dim_base + i * PacketSize,
PacketSize, input_block.data());
}
const Index scalar_reducer_base =
input_outer_dim_base + preserved_dim_vector_coeff_count;
for (Index i = preserved_dim_vector_reducer_count;
i < preserved_dim_reducer_limit; ++i) {
reducers[i].Reduce(scalar_reducer_base + i -
preserved_dim_vector_reducer_count,
1, input_block.data());
}
}
} else {
for (Index i = 0; i < num_outputs_to_update; ++i) {
reducers[i].Reduce(i * num_values_to_reduce, num_values_to_reduce,
input_block.data());
}
}
}
// Finalize all reducers for this output shard.
const Index output_base_index =
output_outer_index * output_block_inner_dim_size +
output_shard_index * output_shard_size;
if (inner_most_dim_preserved) {
EIGEN_ALIGN_MAX
typename internal::remove_const<CoeffReturnType>::type
values[PacketSize];
for (Index i = 0; i < preserved_dim_vector_reducer_count; ++i) {
const Index reducer_base = output_base_index + i * PacketSize;
internal::pstore<CoeffReturnType, PacketReturnType>(
values, reducers[i].FinalizePacket());
for (Index j = 0; j < PacketSize; ++j) {
output_block->data()[reducer_base + j] = values[j];
}
}
const Index scalar_reducer_base =
output_base_index + preserved_dim_vector_coeff_count;
for (Index i = preserved_dim_vector_reducer_count;
i < preserved_dim_reducer_limit; ++i) {
output_block->data()[scalar_reducer_base + i -
preserved_dim_vector_reducer_count] =
reducers[i].Finalize();
}
} else {
for (int i = 0; i < num_outputs_to_update; ++i) {
output_block->data()[output_base_index + i] =
reducers[i].Finalize();
}
}
// Update 'tensor_slice_offsets' by num outputs for this output shard.
tensor_slice_offsets[first_preserved_dim_input_index] +=
num_outputs_to_update;
}
// Update slice offset for inner preserved dim.
tensor_slice_offsets[first_preserved_dim_input_index] -=
output_block_inner_dim_size;
// Update slice offsets for remaining output dims.
for (int i = 0; i < NumOutputDims - 1; ++i) {
BlockIteratorState& b = block_iter_state[i];
if (++b.output_count < b.output_size) {
++tensor_slice_offsets[b.input_dim];
break;
}
b.output_count = 0;
tensor_slice_offsets[b.input_dim] -= b.output_size - 1;
}
}
// Free memory.
m_device.deallocate(input_block_data);
m_device.deallocate(reducers);
}
EIGEN_DEVICE_FUNC EvaluatorPointerType data() const { return m_result; }
EIGEN_DEVICE_FUNC const TensorEvaluator<ArgType, Device>& impl() const { return m_impl; }
EIGEN_DEVICE_FUNC const Device& device() const { return m_device; }
#ifdef EIGEN_USE_SYCL
// binding placeholder accessors to a command group handler for SYCL
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void bind(cl::sycl::handler &cgh) const {
m_impl.bind(cgh);
m_result.bind(cgh);
}
#endif
private:
template <int, typename, typename> friend struct internal::GenericDimReducer;
template <typename, typename, bool, bool> friend struct internal::InnerMostDimReducer;
template <int, typename, typename, bool> friend struct internal::InnerMostDimPreserver;
template <typename S, typename O, typename D, bool V> friend struct internal::FullReducer;
#ifdef EIGEN_USE_THREADS
template <typename S, typename O, bool V> friend struct internal::FullReducerShard;
#endif
#if defined(EIGEN_USE_GPU) && (defined(EIGEN_GPUCC))
template <int B, int N, typename S, typename R, typename I_> KERNEL_FRIEND void internal::FullReductionKernel(R, const S, I_, typename S::CoeffReturnType*, unsigned int*);
#if defined(EIGEN_HAS_GPU_FP16)
template <typename S, typename R, typename I_> KERNEL_FRIEND void internal::ReductionInitFullReduxKernelHalfFloat(R, const S, I_, half2*);
template <int B, int N, typename S, typename R, typename I_> KERNEL_FRIEND void internal::FullReductionKernelHalfFloat(R, const S, I_, half*, half2*);
template <int NPT, typename S, typename R, typename I_> KERNEL_FRIEND void internal::InnerReductionKernelHalfFloat(R, const S, I_, I_, half*);
#endif
template <int NPT, typename S, typename R, typename I_> KERNEL_FRIEND void internal::InnerReductionKernel(R, const S, I_, I_, typename S::CoeffReturnType*);
template <int NPT, typename S, typename R, typename I_> KERNEL_FRIEND void internal::OuterReductionKernel(R, const S, I_, I_, typename S::CoeffReturnType*);
#endif
#if defined(EIGEN_USE_SYCL)
template < typename Evaluator_, typename Op__> friend class TensorSycl::internal::ReductionFunctor;
// SYCL need the Generic reducer for the case the recution algorithm is neither inner, outer, and full reducer
template <typename, typename, typename> friend struct internal::GenericReducer;
#endif
template <typename S, typename O, typename D> friend struct internal::InnerReducer;
struct BlockIteratorState {
Index input_dim;
Index output_size;
Index output_count;
};
// Returns the Index in the input tensor of the first value that needs to be
// used to compute the reduction at output index "index".
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index firstInput(Index index) const {
if (ReducingInnerMostDims) {
if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
return index * m_preservedStrides[0];
} else {
return index * m_preservedStrides[NumPreservedStrides - 1];
}
}
// TBD: optimize the case where we preserve the innermost dimensions.
Index startInput = 0;
if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
for (int i = NumOutputDims - 1; i > 0; --i) {
// This is index_i in the output tensor.
const Index idx = index / m_outputStrides[i];
startInput += idx * m_preservedStrides[i];
index -= idx * m_outputStrides[i];
}
if (PreservingInnerMostDims) {
eigen_assert(m_preservedStrides[0] == 1);
startInput += index;
} else {
startInput += index * m_preservedStrides[0];
}
} else {
for (int i = 0; i < NumOutputDims - 1; ++i) {
// This is index_i in the output tensor.
const Index idx = index / m_outputStrides[i];
startInput += idx * m_preservedStrides[i];
index -= idx * m_outputStrides[i];
}
if (PreservingInnerMostDims) {
eigen_assert(m_preservedStrides[NumPreservedStrides - 1] == 1);
startInput += index;
} else {
startInput += index * m_preservedStrides[NumPreservedStrides - 1];
}
}
return startInput;
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void GetInputCoordsForOutputIndex(
Index index,
DSizes<Index, NumInputDims>* coords) const {
for (int i = 0; i < NumInputDims; ++i) {
(*coords)[i] = 0;
}
if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
for (int i = NumOutputDims - 1; i > 0; --i) {
const Index idx = index / m_fastOutputStrides[i];
(*coords)[m_output_to_input_dim_map[i]] = idx;
index -= idx * m_outputStrides[i];
}
(*coords)[m_output_to_input_dim_map[0]] = index;
} else {
for (int i = 0; i < NumOutputDims - 1; ++i) {
const Index idx = index / m_fastOutputStrides[i];
(*coords)[m_output_to_input_dim_map[i]] = idx;
index -= idx * m_outputStrides[i];
}
(*coords)[m_output_to_input_dim_map[NumOutputDims-1]] = index;
}
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void CalculateTargetInputBlockShape(
const Index max_coeff_count,
const DSizes<Index, NumInputDims>& input_slice_sizes,
DSizes<Index, NumInputDims>* target_input_block_sizes) const {
typedef internal::BlockReducer<Self, Op> BlockReducer;
// TODO(andydavis) Compute reducer overhead correctly for the case where
// we are preserving the inner most dimension, and a single reducer
// reduces a packet's worth of output coefficients.
const Index reducer_overhead = sizeof(BlockReducer) / sizeof(Scalar);
Index coeff_to_allocate = max_coeff_count;
bool first_preserved_dim_allocated = false;
bool first_reduced_dim_allocated = false;
for (int i = 0; i < NumInputDims; ++i) {
const int dim = static_cast<int>(Layout) == static_cast<int>(ColMajor)
? i
: NumInputDims - i - 1;
(*target_input_block_sizes)[dim] = 1;
if (m_reduced[dim]) {
// TODO(andydavis) Consider allocating to multiple reduced dimensions.
// Watch out for cases where reduced dimensions are not contiguous,
// which induces scattered reads.
if (!first_reduced_dim_allocated) {
(*target_input_block_sizes)[dim] =
numext::mini(input_slice_sizes[dim], coeff_to_allocate);
coeff_to_allocate /= (*target_input_block_sizes)[dim];
first_reduced_dim_allocated = true;
}
} else if (!first_preserved_dim_allocated) {
// TODO(andydavis) Include output block size in this L1 working set
// calculation.
const Index alloc_size = numext::maxi(
static_cast<Index>(1), coeff_to_allocate / reducer_overhead);
(*target_input_block_sizes)[dim] =
numext::mini(input_slice_sizes[dim], alloc_size);
coeff_to_allocate = numext::maxi(
static_cast<Index>(1),
coeff_to_allocate /
((*target_input_block_sizes)[dim] * reducer_overhead));
first_preserved_dim_allocated = true;
}
}
}
// Bitmap indicating if an input dimension is reduced or not.
array<bool, NumInputDims> m_reduced;
// Dimensions of the output of the operation.
Dimensions m_dimensions;
// Precomputed strides for the output tensor.
array<Index, NumOutputDims> m_outputStrides;
array<internal::TensorIntDivisor<Index>, NumOutputDims> m_fastOutputStrides;
array<Index, NumPreservedStrides> m_preservedStrides;
// Map from output to input dimension index.
array<Index, NumOutputDims> m_output_to_input_dim_map;
// How many values go into each reduction
Index m_numValuesToReduce;
// Subset of strides of the input tensor for the reduced dimensions.
// Indexed by reduced dimensions.
array<Index, NumReducedDims> m_reducedStrides;
// Size of the input dimensions that are reduced.
// Indexed by reduced dimensions.
array<Index, NumReducedDims> m_reducedDims;
// Evaluator for the input expression.
TensorEvaluator<ArgType, Device> m_impl;
// Operation to apply for computing the reduction.
Op m_reducer;
// For full reductions
#if defined(EIGEN_USE_GPU) && (defined(EIGEN_GPUCC))
static const bool RunningOnGPU = internal::is_same<Device, Eigen::GpuDevice>::value;
static const bool RunningOnSycl = false;
#elif defined(EIGEN_USE_SYCL)
static const bool RunningOnSycl = internal::is_same<typename internal::remove_all<Device>::type, Eigen::SyclDevice>::value;
static const bool RunningOnGPU = false;
#else
static const bool RunningOnGPU = false;
static const bool RunningOnSycl = false;
#endif
EvaluatorPointerType m_result;
const Device EIGEN_DEVICE_REF m_device;
};
template<typename Op, typename Dims, typename ArgType, template <class> class MakePointer_, typename Device>
struct TensorEvaluator<const TensorReductionOp<Op, Dims, ArgType, MakePointer_>, Device>
: public TensorReductionEvaluatorBase<const TensorReductionOp<Op, Dims, ArgType, MakePointer_>, Device> {
typedef TensorReductionEvaluatorBase<const TensorReductionOp<Op, Dims, ArgType, MakePointer_>, Device> Base;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const typename Base::XprType& op, const Device& device) : Base(op, device){}
};
template<typename Op, typename Dims, typename ArgType, template <class> class MakePointer_>
struct TensorEvaluator<const TensorReductionOp<Op, Dims, ArgType, MakePointer_>, Eigen::SyclDevice>
: public TensorReductionEvaluatorBase<const TensorReductionOp<Op, Dims, ArgType, MakePointer_>, Eigen::SyclDevice> {
typedef TensorReductionEvaluatorBase<const TensorReductionOp<Op, Dims, ArgType, MakePointer_>, Eigen::SyclDevice> Base;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const typename Base::XprType& op, const Eigen::SyclDevice& device) : Base(op, device){}
// The coeff function in the base the recursive method which is not an standard layout and cannot be used in the SYCL kernel
//Therefore the coeff function should be overridden by for SYCL kernel
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename Base::CoeffReturnType coeff(typename Base::Index index) const {
return *(this->data() + index);
}
// The packet function in the base the recursive method which is not an standard layout and cannot be used in the SYCL kernel
//Therefore the packet function should be overridden by for SYCL kernel
template<int LoadMode>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename Base::PacketReturnType packet(typename Base::Index index) const {
return internal::pload<typename Base::PacketReturnType>(this->data() + index);
}
};
} // end namespace Eigen
#endif // EIGEN_CXX11_TENSOR_TENSOR_REDUCTION_H