blob: c1ca277345e76f164d785a9a243537e5381a1fda [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2018 Eugene Zhulenev <ezhulenev@google.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#define EIGEN_USE_THREADS
#include "main.h"
#include <Eigen/CXX11/Tensor>
using Eigen::Tensor;
using Eigen::RowMajor;
using Eigen::ColMajor;
using Eigen::internal::TiledEvaluation;
// A set of tests to verify that different TensorExecutor strategies yields the
// same results for all the ops, supporting tiled evaluation.
template <int NumDims>
static array<Index, NumDims> RandomDims(int min_dim = 1, int max_dim = 20) {
array<Index, NumDims> dims;
for (int i = 0; i < NumDims; ++i) {
dims[i] = internal::random<int>(min_dim, max_dim);
}
return dims;
}
template <typename T, int NumDims, typename Device, bool Vectorizable,
TiledEvaluation Tiling, int Layout>
static void test_execute_unary_expr(Device d)
{
static constexpr int Options = 0 | Layout;
// Pick a large enough tensor size to bypass small tensor block evaluation
// optimization.
auto dims = RandomDims<NumDims>(50 / NumDims, 100 / NumDims);
Tensor<T, NumDims, Options, Index> src(dims);
Tensor<T, NumDims, Options, Index> dst(dims);
src.setRandom();
const auto expr = src.square();
using Assign = TensorAssignOp<decltype(dst), const decltype(expr)>;
using Executor =
internal::TensorExecutor<const Assign, Device, Vectorizable, Tiling>;
Executor::run(Assign(dst, expr), d);
for (Index i = 0; i < dst.dimensions().TotalSize(); ++i) {
T square = src.coeff(i) * src.coeff(i);
VERIFY_IS_EQUAL(square, dst.coeff(i));
}
}
template <typename T, int NumDims, typename Device, bool Vectorizable,
TiledEvaluation Tiling, int Layout>
static void test_execute_binary_expr(Device d)
{
static constexpr int Options = 0 | Layout;
// Pick a large enough tensor size to bypass small tensor block evaluation
// optimization.
auto dims = RandomDims<NumDims>(50 / NumDims, 100 / NumDims);
Tensor<T, NumDims, Options, Index> lhs(dims);
Tensor<T, NumDims, Options, Index> rhs(dims);
Tensor<T, NumDims, Options, Index> dst(dims);
lhs.setRandom();
rhs.setRandom();
const auto expr = lhs + rhs;
using Assign = TensorAssignOp<decltype(dst), const decltype(expr)>;
using Executor =
internal::TensorExecutor<const Assign, Device, Vectorizable, Tiling>;
Executor::run(Assign(dst, expr), d);
for (Index i = 0; i < dst.dimensions().TotalSize(); ++i) {
T sum = lhs.coeff(i) + rhs.coeff(i);
VERIFY_IS_EQUAL(sum, dst.coeff(i));
}
}
template <typename T, int NumDims, typename Device, bool Vectorizable,
TiledEvaluation Tiling, int Layout>
static void test_execute_broadcasting(Device d)
{
static constexpr int Options = 0 | Layout;
auto dims = RandomDims<NumDims>(1, 10);
Tensor<T, NumDims, Options, Index> src(dims);
src.setRandom();
const auto broadcasts = RandomDims<NumDims>(1, 7);
const auto expr = src.broadcast(broadcasts);
// We assume that broadcasting on a default device is tested and correct, so
// we can rely on it to verify correctness of tensor executor and tiling.
Tensor<T, NumDims, Options, Index> golden;
golden = expr;
// Now do the broadcasting using configured tensor executor.
Tensor<T, NumDims, Options, Index> dst(golden.dimensions());
using Assign = TensorAssignOp<decltype(dst), const decltype(expr)>;
using Executor =
internal::TensorExecutor<const Assign, Device, Vectorizable, Tiling>;
Executor::run(Assign(dst, expr), d);
for (Index i = 0; i < dst.dimensions().TotalSize(); ++i) {
VERIFY_IS_EQUAL(dst.coeff(i), golden.coeff(i));
}
}
template <typename T, int NumDims, typename Device, bool Vectorizable,
TiledEvaluation Tiling, int Layout>
static void test_execute_chipping_rvalue(Device d)
{
auto dims = RandomDims<NumDims>(1, 10);
Tensor<T, NumDims, Layout, Index> src(dims);
src.setRandom();
#define TEST_CHIPPING(CHIP_DIM) \
if (NumDims > (CHIP_DIM)) { \
const auto offset = internal::random<Index>(0, dims[(CHIP_DIM)] - 1); \
const auto expr = src.template chip<(CHIP_DIM)>(offset); \
\
Tensor<T, NumDims - 1, Layout, Index> golden; \
golden = expr; \
\
Tensor<T, NumDims - 1, Layout, Index> dst(golden.dimensions()); \
\
using Assign = TensorAssignOp<decltype(dst), const decltype(expr)>; \
using Executor = internal::TensorExecutor<const Assign, Device, \
Vectorizable, Tiling>; \
\
Executor::run(Assign(dst, expr), d); \
\
for (Index i = 0; i < dst.dimensions().TotalSize(); ++i) { \
VERIFY_IS_EQUAL(dst.coeff(i), golden.coeff(i)); \
} \
}
TEST_CHIPPING(0)
TEST_CHIPPING(1)
TEST_CHIPPING(2)
TEST_CHIPPING(3)
TEST_CHIPPING(4)
TEST_CHIPPING(5)
#undef TEST_CHIPPING
}
template <typename T, int NumDims, typename Device, bool Vectorizable,
TiledEvaluation Tiling, int Layout>
static void test_execute_chipping_lvalue(Device d)
{
auto dims = RandomDims<NumDims>(1, 10);
#define TEST_CHIPPING(CHIP_DIM) \
if (NumDims > (CHIP_DIM)) { \
/* Generate random data that we'll assign to the chipped tensor dim. */ \
array<Index, NumDims - 1> src_dims; \
for (int i = 0; i < NumDims - 1; ++i) { \
int dim = i < (CHIP_DIM) ? i : i + 1; \
src_dims[i] = dims[dim]; \
} \
\
Tensor<T, NumDims - 1, Layout, Index> src(src_dims); \
src.setRandom(); \
\
const auto offset = internal::random<Index>(0, dims[(CHIP_DIM)] - 1); \
\
/* Generate random data to fill non-chipped dimensions*/ \
Tensor<T, NumDims, Layout, Index> random(dims); \
random.setRandom(); \
\
Tensor<T, NumDims, Layout, Index> golden(dims); \
golden = random; \
golden.template chip<(CHIP_DIM)>(offset) = src; \
\
Tensor<T, NumDims, Layout, Index> dst(dims); \
dst = random; \
auto expr = dst.template chip<(CHIP_DIM)>(offset); \
\
using Assign = TensorAssignOp<decltype(expr), const decltype(src)>; \
using Executor = internal::TensorExecutor<const Assign, Device, \
Vectorizable, Tiling>; \
\
Executor::run(Assign(expr, src), d); \
\
for (Index i = 0; i < dst.dimensions().TotalSize(); ++i) { \
VERIFY_IS_EQUAL(dst.coeff(i), golden.coeff(i)); \
} \
}
TEST_CHIPPING(0)
TEST_CHIPPING(1)
TEST_CHIPPING(2)
TEST_CHIPPING(3)
TEST_CHIPPING(4)
TEST_CHIPPING(5)
#undef TEST_CHIPPING
}
template <typename T, int NumDims, typename Device, bool Vectorizable,
TiledEvaluation Tiling, int Layout>
static void test_execute_shuffle_rvalue(Device d)
{
static constexpr int Options = 0 | Layout;
auto dims = RandomDims<NumDims>(1, 10);
Tensor<T, NumDims, Options, Index> src(dims);
src.setRandom();
// Create a random dimension re-ordering/shuffle.
std::vector<Index> shuffle;
for (int i = 0; i < NumDims; ++i) shuffle.push_back(i);
std::shuffle(shuffle.begin(), shuffle.end(), std::mt19937());
const auto expr = src.shuffle(shuffle);
// We assume that shuffling on a default device is tested and correct, so
// we can rely on it to verify correctness of tensor executor and tiling.
Tensor<T, NumDims, Options, Index> golden;
golden = expr;
// Now do the shuffling using configured tensor executor.
Tensor<T, NumDims, Options, Index> dst(golden.dimensions());
using Assign = TensorAssignOp<decltype(dst), const decltype(expr)>;
using Executor =
internal::TensorExecutor<const Assign, Device, Vectorizable, Tiling>;
Executor::run(Assign(dst, expr), d);
for (Index i = 0; i < dst.dimensions().TotalSize(); ++i) {
VERIFY_IS_EQUAL(dst.coeff(i), golden.coeff(i));
}
}
template <typename T, int NumDims, typename Device, bool Vectorizable,
TiledEvaluation Tiling, int Layout>
static void test_execute_shuffle_lvalue(Device d)
{
static constexpr int Options = 0 | Layout;
auto dims = RandomDims<NumDims>(5, 10);
Tensor<T, NumDims, Options, Index> src(dims);
src.setRandom();
// Create a random dimension re-ordering/shuffle.
std::vector<Index> shuffle;
for (int i = 0; i < NumDims; ++i) shuffle.push_back(i);
std::shuffle(shuffle.begin(), shuffle.end(), std::mt19937());
array<Index, NumDims> shuffled_dims;
for (int i = 0; i < NumDims; ++i) shuffled_dims[shuffle[i]] = dims[i];
// We assume that shuffling on a default device is tested and correct, so
// we can rely on it to verify correctness of tensor executor and tiling.
Tensor<T, NumDims, Options, Index> golden(shuffled_dims);
golden.shuffle(shuffle) = src;
// Now do the shuffling using configured tensor executor.
Tensor<T, NumDims, Options, Index> dst(shuffled_dims);
auto expr = dst.shuffle(shuffle);
using Assign = TensorAssignOp<decltype(expr), const decltype(src)>;
using Executor =
internal::TensorExecutor<const Assign, Device, Vectorizable, Tiling>;
Executor::run(Assign(expr, src), d);
for (Index i = 0; i < dst.dimensions().TotalSize(); ++i) {
VERIFY_IS_EQUAL(dst.coeff(i), golden.coeff(i));
}
}
template <typename T, int NumDims, typename Device, bool Vectorizable,
TiledEvaluation Tiling, int Layout>
static void test_execute_reduction(Device d)
{
static_assert(NumDims >= 2, "NumDims must be greater or equal than 2");
static constexpr int ReducedDims = NumDims - 2;
static constexpr int Options = 0 | Layout;
auto dims = RandomDims<NumDims>(5, 10);
Tensor<T, NumDims, Options, Index> src(dims);
src.setRandom();
// Pick two random and unique reduction dimensions.
int reduction0 = internal::random<int>(0, NumDims - 1);
int reduction1 = internal::random<int>(0, NumDims - 1);
while (reduction0 == reduction1) {
reduction1 = internal::random<int>(0, NumDims - 1);
}
DSizes<Index, 2> reduction_axis;
reduction_axis[0] = reduction0;
reduction_axis[1] = reduction1;
Tensor<T, ReducedDims, Options, Index> golden = src.sum(reduction_axis);
// Now do the reduction using configured tensor executor.
Tensor<T, ReducedDims, Options, Index> dst(golden.dimensions());
auto expr = src.sum(reduction_axis);
using Assign = TensorAssignOp<decltype(dst), const decltype(expr)>;
using Executor =
internal::TensorExecutor<const Assign, Device, Vectorizable, Tiling>;
Executor::run(Assign(dst, expr), d);
for (Index i = 0; i < dst.dimensions().TotalSize(); ++i) {
VERIFY_IS_EQUAL(dst.coeff(i), golden.coeff(i));
}
}
template <typename T, int NumDims, typename Device, bool Vectorizable,
TiledEvaluation Tiling, int Layout>
static void test_execute_reshape(Device d)
{
static_assert(NumDims >= 2, "NumDims must be greater or equal than 2");
static constexpr int ReshapedDims = NumDims - 1;
static constexpr int Options = 0 | Layout;
auto dims = RandomDims<NumDims>(5, 10);
Tensor<T, NumDims, Options, Index> src(dims);
src.setRandom();
// Multiple 0th dimension and then shuffle.
std::vector<Index> shuffle;
for (int i = 0; i < ReshapedDims; ++i) shuffle.push_back(i);
std::shuffle(shuffle.begin(), shuffle.end(), std::mt19937());
DSizes<Index, ReshapedDims> reshaped_dims;
reshaped_dims[shuffle[0]] = dims[0] * dims[1];
for (int i = 1; i < ReshapedDims; ++i) reshaped_dims[shuffle[i]] = dims[i + 1];
Tensor<T, ReshapedDims, Options, Index> golden = src.reshape(reshaped_dims);
// Now reshape using configured tensor executor.
Tensor<T, ReshapedDims, Options, Index> dst(golden.dimensions());
auto expr = src.reshape(reshaped_dims);
using Assign = TensorAssignOp<decltype(dst), const decltype(expr)>;
using Executor =
internal::TensorExecutor<const Assign, Device, Vectorizable, Tiling>;
Executor::run(Assign(dst, expr), d);
for (Index i = 0; i < dst.dimensions().TotalSize(); ++i) {
VERIFY_IS_EQUAL(dst.coeff(i), golden.coeff(i));
}
}
template <typename T, int NumDims, typename Device, bool Vectorizable,
TiledEvaluation Tiling, int Layout>
static void test_execute_slice_rvalue(Device d)
{
static_assert(NumDims >= 2, "NumDims must be greater or equal than 2");
static constexpr int Options = 0 | Layout;
auto dims = RandomDims<NumDims>(5, 10);
Tensor<T, NumDims, Options, Index> src(dims);
src.setRandom();
// Pick a random slice of src tensor.
auto slice_start = DSizes<Index, NumDims>(RandomDims<NumDims>());
auto slice_size = DSizes<Index, NumDims>(RandomDims<NumDims>());
// Make sure that slice start + size do not overflow tensor dims.
for (int i = 0; i < NumDims; ++i) {
slice_start[i] = numext::mini(dims[i] - 1, slice_start[i]);
slice_size[i] = numext::mini(slice_size[i], dims[i] - slice_start[i]);
}
Tensor<T, NumDims, Options, Index> golden =
src.slice(slice_start, slice_size);
// Now reshape using configured tensor executor.
Tensor<T, NumDims, Options, Index> dst(golden.dimensions());
auto expr = src.slice(slice_start, slice_size);
using Assign = TensorAssignOp<decltype(dst), const decltype(expr)>;
using Executor =
internal::TensorExecutor<const Assign, Device, Vectorizable, Tiling>;
Executor::run(Assign(dst, expr), d);
for (Index i = 0; i < dst.dimensions().TotalSize(); ++i) {
VERIFY_IS_EQUAL(dst.coeff(i), golden.coeff(i));
}
}
template <typename T, int NumDims, typename Device, bool Vectorizable,
TiledEvaluation Tiling, int Layout>
static void test_execute_slice_lvalue(Device d)
{
static_assert(NumDims >= 2, "NumDims must be greater or equal than 2");
static constexpr int Options = 0 | Layout;
auto dims = RandomDims<NumDims>(5, 10);
Tensor<T, NumDims, Options, Index> src(dims);
src.setRandom();
// Pick a random slice of src tensor.
auto slice_start = DSizes<Index, NumDims>(RandomDims<NumDims>(1, 10));
auto slice_size = DSizes<Index, NumDims>(RandomDims<NumDims>(1, 10));
// Make sure that slice start + size do not overflow tensor dims.
for (int i = 0; i < NumDims; ++i) {
slice_start[i] = numext::mini(dims[i] - 1, slice_start[i]);
slice_size[i] = numext::mini(slice_size[i], dims[i] - slice_start[i]);
}
Tensor<T, NumDims, Options, Index> slice(slice_size);
slice.setRandom();
// Assign a slice using default executor.
Tensor<T, NumDims, Options, Index> golden = src;
golden.slice(slice_start, slice_size) = slice;
// And using configured execution strategy.
Tensor<T, NumDims, Options, Index> dst = src;
auto expr = dst.slice(slice_start, slice_size);
using Assign = TensorAssignOp<decltype(expr), const decltype(slice)>;
using Executor =
internal::TensorExecutor<const Assign, Device, Vectorizable, Tiling>;
Executor::run(Assign(expr, slice), d);
for (Index i = 0; i < dst.dimensions().TotalSize(); ++i) {
VERIFY_IS_EQUAL(dst.coeff(i), golden.coeff(i));
}
}
template <typename T, int NumDims, typename Device, bool Vectorizable,
TiledEvaluation Tiling, int Layout>
static void test_execute_broadcasting_of_forced_eval(Device d)
{
static constexpr int Options = 0 | Layout;
auto dims = RandomDims<NumDims>(1, 10);
Tensor<T, NumDims, Options, Index> src(dims);
src.setRandom();
const auto broadcasts = RandomDims<NumDims>(1, 7);
const auto expr = src.square().eval().broadcast(broadcasts);
// We assume that broadcasting on a default device is tested and correct, so
// we can rely on it to verify correctness of tensor executor and tiling.
Tensor<T, NumDims, Options, Index> golden;
golden = expr;
// Now do the broadcasting using configured tensor executor.
Tensor<T, NumDims, Options, Index> dst(golden.dimensions());
using Assign = TensorAssignOp<decltype(dst), const decltype(expr)>;
using Executor =
internal::TensorExecutor<const Assign, Device, Vectorizable, Tiling>;
Executor::run(Assign(dst, expr), d);
for (Index i = 0; i < dst.dimensions().TotalSize(); ++i) {
VERIFY_IS_EQUAL(dst.coeff(i), golden.coeff(i));
}
}
template<typename T, int NumDims>
struct DummyGenerator {
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
T operator()(const array <Index, NumDims>& dims) const {
T result = static_cast<T>(0);
for (int i = 0; i < NumDims; ++i) {
result += static_cast<T>((i + 1) * dims[i]);
}
return result;
}
};
template <typename T, int NumDims, typename Device, bool Vectorizable,
TiledEvaluation Tiling, int Layout>
static void test_execute_generator_op(Device d)
{
static constexpr int Options = 0 | Layout;
auto dims = RandomDims<NumDims>(20, 30);
Tensor<T, NumDims, Options, Index> src(dims);
src.setRandom();
const auto expr = src.generate(DummyGenerator<T, NumDims>());
// We assume that generator on a default device is tested and correct, so
// we can rely on it to verify correctness of tensor executor and tiling.
Tensor<T, NumDims, Options, Index> golden;
golden = expr;
// Now do the broadcasting using configured tensor executor.
Tensor<T, NumDims, Options, Index> dst(golden.dimensions());
using Assign = TensorAssignOp<decltype(dst), const decltype(expr)>;
using Executor =
internal::TensorExecutor<const Assign, Device, Vectorizable, Tiling>;
Executor::run(Assign(dst, expr), d);
for (Index i = 0; i < dst.dimensions().TotalSize(); ++i) {
VERIFY_IS_EQUAL(dst.coeff(i), golden.coeff(i));
}
}
template <typename T, int NumDims, typename Device, bool Vectorizable,
TiledEvaluation Tiling, int Layout>
static void test_execute_reverse_rvalue(Device d)
{
static constexpr int Options = 0 | Layout;
auto dims = RandomDims<NumDims>(1, numext::pow(1000000.0, 1.0 / NumDims));
Tensor <T, NumDims, Options, Index> src(dims);
src.setRandom();
// Reverse half of the dimensions.
Eigen::array<bool, NumDims> reverse;
for (int i = 0; i < NumDims; ++i) reverse[i] = (dims[i] % 2 == 0);
const auto expr = src.reverse(reverse);
// We assume that reversing on a default device is tested and correct, so
// we can rely on it to verify correctness of tensor executor and tiling.
Tensor <T, NumDims, Options, Index> golden;
golden = expr;
// Now do the reversing using configured tensor executor.
Tensor <T, NumDims, Options, Index> dst(golden.dimensions());
using Assign = TensorAssignOp<decltype(dst), const decltype(expr)>;
using Executor =
internal::TensorExecutor<const Assign, Device, Vectorizable, Tiling>;
Executor::run(Assign(dst, expr), d);
for (Index i = 0; i < dst.dimensions().TotalSize(); ++i) {
VERIFY_IS_EQUAL(dst.coeff(i), golden.coeff(i));
}
}
template <typename T, int NumDims, typename Device, bool Vectorizable,
TiledEvaluation Tiling, int Layout>
static void test_async_execute_unary_expr(Device d)
{
static constexpr int Options = 0 | Layout;
// Pick a large enough tensor size to bypass small tensor block evaluation
// optimization.
auto dims = RandomDims<NumDims>(50 / NumDims, 100 / NumDims);
Tensor<T, NumDims, Options, Index> src(dims);
Tensor<T, NumDims, Options, Index> dst(dims);
src.setRandom();
const auto expr = src.square();
Eigen::Barrier done(1);
auto on_done = [&done]() { done.Notify(); };
using Assign = TensorAssignOp<decltype(dst), const decltype(expr)>;
using DoneCallback = decltype(on_done);
using Executor = internal::TensorAsyncExecutor<const Assign, Device, DoneCallback,
Vectorizable, Tiling>;
Executor::runAsync(Assign(dst, expr), d, on_done);
done.Wait();
for (Index i = 0; i < dst.dimensions().TotalSize(); ++i) {
T square = src.coeff(i) * src.coeff(i);
VERIFY_IS_EQUAL(square, dst.coeff(i));
}
}
template <typename T, int NumDims, typename Device, bool Vectorizable,
TiledEvaluation Tiling, int Layout>
static void test_async_execute_binary_expr(Device d)
{
static constexpr int Options = 0 | Layout;
// Pick a large enough tensor size to bypass small tensor block evaluation
// optimization.
auto dims = RandomDims<NumDims>(50 / NumDims, 100 / NumDims);
Tensor<T, NumDims, Options, Index> lhs(dims);
Tensor<T, NumDims, Options, Index> rhs(dims);
Tensor<T, NumDims, Options, Index> dst(dims);
lhs.setRandom();
rhs.setRandom();
const auto expr = lhs + rhs;
Eigen::Barrier done(1);
auto on_done = [&done]() { done.Notify(); };
using Assign = TensorAssignOp<decltype(dst), const decltype(expr)>;
using DoneCallback = decltype(on_done);
using Executor = internal::TensorAsyncExecutor<const Assign, Device, DoneCallback,
Vectorizable, Tiling>;
Executor::runAsync(Assign(dst, expr), d, on_done);
done.Wait();
for (Index i = 0; i < dst.dimensions().TotalSize(); ++i) {
T sum = lhs.coeff(i) + rhs.coeff(i);
VERIFY_IS_EQUAL(sum, dst.coeff(i));
}
}
#ifdef EIGEN_DONT_VECTORIZE
#define VECTORIZABLE(VAL) !EIGEN_DONT_VECTORIZE && VAL
#else
#define VECTORIZABLE(VAL) VAL
#endif
#define CALL_SUBTEST_PART(PART) \
CALL_SUBTEST_##PART
#define CALL_SUBTEST_COMBINATIONS_V1(PART, NAME, T, NUM_DIMS) \
CALL_SUBTEST_PART(PART)((NAME<T, NUM_DIMS, DefaultDevice, false, TiledEvaluation::Off, ColMajor>(default_device))); \
CALL_SUBTEST_PART(PART)((NAME<T, NUM_DIMS, DefaultDevice, false, TiledEvaluation::Legacy, ColMajor>(default_device))); \
CALL_SUBTEST_PART(PART)((NAME<T, NUM_DIMS, DefaultDevice, VECTORIZABLE(true), TiledEvaluation::Off, ColMajor>(default_device))); \
CALL_SUBTEST_PART(PART)((NAME<T, NUM_DIMS, DefaultDevice, VECTORIZABLE(true), TiledEvaluation::Legacy, ColMajor>(default_device))); \
CALL_SUBTEST_PART(PART)((NAME<T, NUM_DIMS, DefaultDevice, false, TiledEvaluation::Off, RowMajor>(default_device))); \
CALL_SUBTEST_PART(PART)((NAME<T, NUM_DIMS, DefaultDevice, false, TiledEvaluation::Legacy, RowMajor>(default_device))); \
CALL_SUBTEST_PART(PART)((NAME<T, NUM_DIMS, DefaultDevice, VECTORIZABLE(true), TiledEvaluation::Off, RowMajor>(default_device))); \
CALL_SUBTEST_PART(PART)((NAME<T, NUM_DIMS, DefaultDevice, VECTORIZABLE(true), TiledEvaluation::Legacy, RowMajor>(default_device))); \
CALL_SUBTEST_PART(PART)((NAME<T, NUM_DIMS, ThreadPoolDevice, false, TiledEvaluation::Off, ColMajor>(tp_device))); \
CALL_SUBTEST_PART(PART)((NAME<T, NUM_DIMS, ThreadPoolDevice, false, TiledEvaluation::Legacy, ColMajor>(tp_device))); \
CALL_SUBTEST_PART(PART)((NAME<T, NUM_DIMS, ThreadPoolDevice, VECTORIZABLE(true), TiledEvaluation::Off, ColMajor>(tp_device))); \
CALL_SUBTEST_PART(PART)((NAME<T, NUM_DIMS, ThreadPoolDevice, VECTORIZABLE(true), TiledEvaluation::Legacy, ColMajor>(tp_device))); \
CALL_SUBTEST_PART(PART)((NAME<T, NUM_DIMS, ThreadPoolDevice, false, TiledEvaluation::Off, RowMajor>(tp_device))); \
CALL_SUBTEST_PART(PART)((NAME<T, NUM_DIMS, ThreadPoolDevice, false, TiledEvaluation::Legacy, RowMajor>(tp_device))); \
CALL_SUBTEST_PART(PART)((NAME<T, NUM_DIMS, ThreadPoolDevice, VECTORIZABLE(true), TiledEvaluation::Off, RowMajor>(tp_device))); \
CALL_SUBTEST_PART(PART)((NAME<T, NUM_DIMS, ThreadPoolDevice, VECTORIZABLE(true), TiledEvaluation::Legacy, RowMajor>(tp_device)))
// NOTE: Tiling V2 currently implemented for a limited types of expression, and only with default device.
#define CALL_SUBTEST_COMBINATIONS_V2(PART, NAME, T, NUM_DIMS) \
CALL_SUBTEST_PART(PART)((NAME<T, NUM_DIMS, DefaultDevice, false, TiledEvaluation::Off, ColMajor>(default_device))); \
CALL_SUBTEST_PART(PART)((NAME<T, NUM_DIMS, DefaultDevice, false, TiledEvaluation::Legacy, ColMajor>(default_device))); \
CALL_SUBTEST_PART(PART)((NAME<T, NUM_DIMS, DefaultDevice, false, TiledEvaluation::On, ColMajor>(default_device))); \
CALL_SUBTEST_PART(PART)((NAME<T, NUM_DIMS, DefaultDevice, VECTORIZABLE(true), TiledEvaluation::Off, ColMajor>(default_device))); \
CALL_SUBTEST_PART(PART)((NAME<T, NUM_DIMS, DefaultDevice, VECTORIZABLE(true), TiledEvaluation::Legacy, ColMajor>(default_device))); \
CALL_SUBTEST_PART(PART)((NAME<T, NUM_DIMS, DefaultDevice, VECTORIZABLE(true), TiledEvaluation::On, ColMajor>(default_device))); \
CALL_SUBTEST_PART(PART)((NAME<T, NUM_DIMS, DefaultDevice, false, TiledEvaluation::Off, RowMajor>(default_device))); \
CALL_SUBTEST_PART(PART)((NAME<T, NUM_DIMS, DefaultDevice, false, TiledEvaluation::Legacy, RowMajor>(default_device))); \
CALL_SUBTEST_PART(PART)((NAME<T, NUM_DIMS, DefaultDevice, false, TiledEvaluation::On, RowMajor>(default_device))); \
CALL_SUBTEST_PART(PART)((NAME<T, NUM_DIMS, DefaultDevice, VECTORIZABLE(true), TiledEvaluation::Off, RowMajor>(default_device))); \
CALL_SUBTEST_PART(PART)((NAME<T, NUM_DIMS, DefaultDevice, VECTORIZABLE(true), TiledEvaluation::Legacy, RowMajor>(default_device))); \
CALL_SUBTEST_PART(PART)((NAME<T, NUM_DIMS, DefaultDevice, VECTORIZABLE(true), TiledEvaluation::On, RowMajor>(default_device))); \
CALL_SUBTEST_PART(PART)((NAME<T, NUM_DIMS, ThreadPoolDevice, false, TiledEvaluation::Off, ColMajor>(tp_device))); \
CALL_SUBTEST_PART(PART)((NAME<T, NUM_DIMS, ThreadPoolDevice, false, TiledEvaluation::Legacy, ColMajor>(tp_device))); \
CALL_SUBTEST_PART(PART)((NAME<T, NUM_DIMS, ThreadPoolDevice, VECTORIZABLE(true), TiledEvaluation::Off, ColMajor>(tp_device))); \
CALL_SUBTEST_PART(PART)((NAME<T, NUM_DIMS, ThreadPoolDevice, VECTORIZABLE(true), TiledEvaluation::Legacy, ColMajor>(tp_device))); \
CALL_SUBTEST_PART(PART)((NAME<T, NUM_DIMS, ThreadPoolDevice, false, TiledEvaluation::Off, RowMajor>(tp_device))); \
CALL_SUBTEST_PART(PART)((NAME<T, NUM_DIMS, ThreadPoolDevice, false, TiledEvaluation::Legacy, RowMajor>(tp_device))); \
CALL_SUBTEST_PART(PART)((NAME<T, NUM_DIMS, ThreadPoolDevice, VECTORIZABLE(true), TiledEvaluation::Off, RowMajor>(tp_device))); \
CALL_SUBTEST_PART(PART)((NAME<T, NUM_DIMS, ThreadPoolDevice, VECTORIZABLE(true), TiledEvaluation::Legacy, RowMajor>(tp_device)))
// NOTE: Currently only ThreadPoolDevice supports async expression evaluation.
#define CALL_ASYNC_SUBTEST_COMBINATIONS(PART, NAME, T, NUM_DIMS) \
CALL_SUBTEST_PART(PART)((NAME<T, NUM_DIMS, ThreadPoolDevice, false, TiledEvaluation::Off, ColMajor>(tp_device))); \
CALL_SUBTEST_PART(PART)((NAME<T, NUM_DIMS, ThreadPoolDevice, false, TiledEvaluation::Legacy, ColMajor>(tp_device))); \
CALL_SUBTEST_PART(PART)((NAME<T, NUM_DIMS, ThreadPoolDevice, VECTORIZABLE(true), TiledEvaluation::Off, ColMajor>(tp_device))); \
CALL_SUBTEST_PART(PART)((NAME<T, NUM_DIMS, ThreadPoolDevice, VECTORIZABLE(true), TiledEvaluation::Legacy, ColMajor>(tp_device))); \
CALL_SUBTEST_PART(PART)((NAME<T, NUM_DIMS, ThreadPoolDevice, false, TiledEvaluation::Off, RowMajor>(tp_device))); \
CALL_SUBTEST_PART(PART)((NAME<T, NUM_DIMS, ThreadPoolDevice, false, TiledEvaluation::Legacy, RowMajor>(tp_device))); \
CALL_SUBTEST_PART(PART)((NAME<T, NUM_DIMS, ThreadPoolDevice, VECTORIZABLE(true), TiledEvaluation::Off, RowMajor>(tp_device))); \
CALL_SUBTEST_PART(PART)((NAME<T, NUM_DIMS, ThreadPoolDevice, VECTORIZABLE(true), TiledEvaluation::Legacy, RowMajor>(tp_device)))
EIGEN_DECLARE_TEST(cxx11_tensor_executor) {
Eigen::DefaultDevice default_device;
// Default device is unused in ASYNC tests.
EIGEN_UNUSED_VARIABLE(default_device);
const auto num_threads = internal::random<int>(20, 24);
Eigen::ThreadPool tp(num_threads);
Eigen::ThreadPoolDevice tp_device(&tp, num_threads);
CALL_SUBTEST_COMBINATIONS_V2(1, test_execute_unary_expr, float, 3);
CALL_SUBTEST_COMBINATIONS_V2(1, test_execute_unary_expr, float, 4);
CALL_SUBTEST_COMBINATIONS_V2(1, test_execute_unary_expr, float, 5);
CALL_SUBTEST_COMBINATIONS_V2(2, test_execute_binary_expr, float, 3);
CALL_SUBTEST_COMBINATIONS_V2(2, test_execute_binary_expr, float, 4);
CALL_SUBTEST_COMBINATIONS_V2(2, test_execute_binary_expr, float, 5);
CALL_SUBTEST_COMBINATIONS_V2(3, test_execute_broadcasting, float, 3);
CALL_SUBTEST_COMBINATIONS_V2(3, test_execute_broadcasting, float, 4);
CALL_SUBTEST_COMBINATIONS_V2(3, test_execute_broadcasting, float, 5);
CALL_SUBTEST_COMBINATIONS_V1(4, test_execute_chipping_rvalue, float, 3);
CALL_SUBTEST_COMBINATIONS_V1(4, test_execute_chipping_rvalue, float, 4);
CALL_SUBTEST_COMBINATIONS_V1(4, test_execute_chipping_rvalue, float, 5);
CALL_SUBTEST_COMBINATIONS_V1(5, test_execute_chipping_lvalue, float, 3);
CALL_SUBTEST_COMBINATIONS_V1(5, test_execute_chipping_lvalue, float, 4);
CALL_SUBTEST_COMBINATIONS_V1(5, test_execute_chipping_lvalue, float, 5);
CALL_SUBTEST_COMBINATIONS_V1(6, test_execute_shuffle_rvalue, float, 3);
CALL_SUBTEST_COMBINATIONS_V1(6, test_execute_shuffle_rvalue, float, 4);
CALL_SUBTEST_COMBINATIONS_V1(6, test_execute_shuffle_rvalue, float, 5);
CALL_SUBTEST_COMBINATIONS_V1(7, test_execute_shuffle_lvalue, float, 3);
CALL_SUBTEST_COMBINATIONS_V1(7, test_execute_shuffle_lvalue, float, 4);
CALL_SUBTEST_COMBINATIONS_V1(7, test_execute_shuffle_lvalue, float, 5);
CALL_SUBTEST_COMBINATIONS_V1(8, test_execute_reduction, float, 2);
CALL_SUBTEST_COMBINATIONS_V1(8, test_execute_reduction, float, 3);
CALL_SUBTEST_COMBINATIONS_V1(8, test_execute_reduction, float, 4);
CALL_SUBTEST_COMBINATIONS_V1(8, test_execute_reduction, float, 5);
CALL_SUBTEST_COMBINATIONS_V1(9, test_execute_reshape, float, 2);
CALL_SUBTEST_COMBINATIONS_V1(9, test_execute_reshape, float, 3);
CALL_SUBTEST_COMBINATIONS_V1(9, test_execute_reshape, float, 4);
CALL_SUBTEST_COMBINATIONS_V1(9, test_execute_reshape, float, 5);
CALL_SUBTEST_COMBINATIONS_V1(10, test_execute_slice_rvalue, float, 2);
CALL_SUBTEST_COMBINATIONS_V1(10, test_execute_slice_rvalue, float, 3);
CALL_SUBTEST_COMBINATIONS_V1(10, test_execute_slice_rvalue, float, 4);
CALL_SUBTEST_COMBINATIONS_V1(10, test_execute_slice_rvalue, float, 5);
CALL_SUBTEST_COMBINATIONS_V1(11, test_execute_slice_lvalue, float, 2);
CALL_SUBTEST_COMBINATIONS_V1(11, test_execute_slice_lvalue, float, 3);
CALL_SUBTEST_COMBINATIONS_V1(11, test_execute_slice_lvalue, float, 4);
CALL_SUBTEST_COMBINATIONS_V1(11, test_execute_slice_lvalue, float, 5);
CALL_SUBTEST_COMBINATIONS_V1(12, test_execute_broadcasting_of_forced_eval, float, 2);
CALL_SUBTEST_COMBINATIONS_V1(12, test_execute_broadcasting_of_forced_eval, float, 3);
CALL_SUBTEST_COMBINATIONS_V1(12, test_execute_broadcasting_of_forced_eval, float, 4);
CALL_SUBTEST_COMBINATIONS_V1(12, test_execute_broadcasting_of_forced_eval, float, 5);
CALL_SUBTEST_COMBINATIONS_V1(13, test_execute_generator_op, float, 2);
CALL_SUBTEST_COMBINATIONS_V1(13, test_execute_generator_op, float, 3);
CALL_SUBTEST_COMBINATIONS_V1(13, test_execute_generator_op, float, 4);
CALL_SUBTEST_COMBINATIONS_V1(13, test_execute_generator_op, float, 5);
CALL_SUBTEST_COMBINATIONS_V1(14, test_execute_reverse_rvalue, float, 1);
CALL_SUBTEST_COMBINATIONS_V1(14, test_execute_reverse_rvalue, float, 2);
CALL_SUBTEST_COMBINATIONS_V1(14, test_execute_reverse_rvalue, float, 3);
CALL_SUBTEST_COMBINATIONS_V1(14, test_execute_reverse_rvalue, float, 4);
CALL_SUBTEST_COMBINATIONS_V1(14, test_execute_reverse_rvalue, float, 5);
CALL_ASYNC_SUBTEST_COMBINATIONS(15, test_async_execute_unary_expr, float, 3);
CALL_ASYNC_SUBTEST_COMBINATIONS(15, test_async_execute_unary_expr, float, 4);
CALL_ASYNC_SUBTEST_COMBINATIONS(15, test_async_execute_unary_expr, float, 5);
CALL_ASYNC_SUBTEST_COMBINATIONS(16, test_async_execute_binary_expr, float, 3);
CALL_ASYNC_SUBTEST_COMBINATIONS(16, test_async_execute_binary_expr, float, 4);
CALL_ASYNC_SUBTEST_COMBINATIONS(16, test_async_execute_binary_expr, float, 5);
// Force CMake to split this test.
// EIGEN_SUFFIXES;1;2;3;4;5;6;7;8;9;10;11;12;13;14;15;16
}