| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_DENSESTORAGEBASE_H |
| #define EIGEN_DENSESTORAGEBASE_H |
| |
| #if defined(EIGEN_INITIALIZE_MATRICES_BY_ZERO) |
| #define EIGEN_INITIALIZE_COEFFS |
| #define EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED \ |
| for (Index i = 0; i < base().size(); ++i) coeffRef(i) = Scalar(0); |
| #elif defined(EIGEN_INITIALIZE_MATRICES_BY_NAN) |
| #define EIGEN_INITIALIZE_COEFFS |
| #define EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED \ |
| for (Index i = 0; i < base().size(); ++i) coeffRef(i) = std::numeric_limits<Scalar>::quiet_NaN(); |
| #else |
| #undef EIGEN_INITIALIZE_COEFFS |
| #define EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED |
| #endif |
| |
| // IWYU pragma: private |
| #include "./InternalHeaderCheck.h" |
| |
| namespace Eigen { |
| |
| namespace internal { |
| |
| #ifndef EIGEN_NO_DEBUG |
| template <int MaxSizeAtCompileTime, int MaxRowsAtCompileTime, int MaxColsAtCompileTime> |
| struct check_rows_cols_for_overflow { |
| EIGEN_STATIC_ASSERT(MaxRowsAtCompileTime* MaxColsAtCompileTime == MaxSizeAtCompileTime, |
| YOU MADE A PROGRAMMING MISTAKE) |
| template <typename Index> |
| EIGEN_DEVICE_FUNC static EIGEN_ALWAYS_INLINE constexpr void run(Index, Index) {} |
| }; |
| |
| template <int MaxRowsAtCompileTime> |
| struct check_rows_cols_for_overflow<Dynamic, MaxRowsAtCompileTime, Dynamic> { |
| template <typename Index> |
| EIGEN_DEVICE_FUNC static EIGEN_ALWAYS_INLINE constexpr void run(Index, Index cols) { |
| constexpr Index MaxIndex = NumTraits<Index>::highest(); |
| bool error = cols > (MaxIndex / MaxRowsAtCompileTime); |
| if (error) throw_std_bad_alloc(); |
| } |
| }; |
| |
| template <int MaxColsAtCompileTime> |
| struct check_rows_cols_for_overflow<Dynamic, Dynamic, MaxColsAtCompileTime> { |
| template <typename Index> |
| EIGEN_DEVICE_FUNC static EIGEN_ALWAYS_INLINE constexpr void run(Index rows, Index) { |
| constexpr Index MaxIndex = NumTraits<Index>::highest(); |
| bool error = rows > (MaxIndex / MaxColsAtCompileTime); |
| if (error) throw_std_bad_alloc(); |
| } |
| }; |
| |
| template <> |
| struct check_rows_cols_for_overflow<Dynamic, Dynamic, Dynamic> { |
| template <typename Index> |
| EIGEN_DEVICE_FUNC static EIGEN_ALWAYS_INLINE constexpr void run(Index rows, Index cols) { |
| constexpr Index MaxIndex = NumTraits<Index>::highest(); |
| bool error = cols == 0 ? false : (rows > (MaxIndex / cols)); |
| if (error) throw_std_bad_alloc(); |
| } |
| }; |
| #endif |
| |
| template <typename Derived, typename OtherDerived = Derived, |
| bool IsVector = bool(Derived::IsVectorAtCompileTime) && bool(OtherDerived::IsVectorAtCompileTime)> |
| struct conservative_resize_like_impl; |
| |
| template <typename MatrixTypeA, typename MatrixTypeB, bool SwapPointers> |
| struct matrix_swap_impl; |
| |
| } // end namespace internal |
| |
| #ifdef EIGEN_PARSED_BY_DOXYGEN |
| namespace doxygen { |
| |
| // This is a workaround to doxygen not being able to understand the inheritance logic |
| // when it is hidden by the dense_xpr_base helper struct. |
| // Moreover, doxygen fails to include members that are not documented in the declaration body of |
| // MatrixBase if we inherits MatrixBase<Matrix<Scalar_, Rows_, Cols_, Options_, MaxRows_, MaxCols_> >, |
| // this is why we simply inherits MatrixBase, though this does not make sense. |
| |
| /** This class is just a workaround for Doxygen and it does not not actually exist. */ |
| template <typename Derived> |
| struct dense_xpr_base_dispatcher; |
| /** This class is just a workaround for Doxygen and it does not not actually exist. */ |
| template <typename Scalar_, int Rows_, int Cols_, int Options_, int MaxRows_, int MaxCols_> |
| struct dense_xpr_base_dispatcher<Matrix<Scalar_, Rows_, Cols_, Options_, MaxRows_, MaxCols_>> : public MatrixBase {}; |
| /** This class is just a workaround for Doxygen and it does not not actually exist. */ |
| template <typename Scalar_, int Rows_, int Cols_, int Options_, int MaxRows_, int MaxCols_> |
| struct dense_xpr_base_dispatcher<Array<Scalar_, Rows_, Cols_, Options_, MaxRows_, MaxCols_>> : public ArrayBase {}; |
| |
| } // namespace doxygen |
| |
| /** \class PlainObjectBase |
| * \ingroup Core_Module |
| * \brief %Dense storage base class for matrices and arrays. |
| * |
| * This class can be extended with the help of the plugin mechanism described on the page |
| * \ref TopicCustomizing_Plugins by defining the preprocessor symbol \c EIGEN_PLAINOBJECTBASE_PLUGIN. |
| * |
| * \tparam Derived is the derived type, e.g., a Matrix or Array |
| * |
| * \sa \ref TopicClassHierarchy |
| */ |
| template <typename Derived> |
| class PlainObjectBase : public doxygen::dense_xpr_base_dispatcher<Derived> |
| #else |
| template <typename Derived> |
| class PlainObjectBase : public internal::dense_xpr_base<Derived>::type |
| #endif |
| { |
| public: |
| enum { Options = internal::traits<Derived>::Options }; |
| typedef typename internal::dense_xpr_base<Derived>::type Base; |
| |
| typedef typename internal::traits<Derived>::StorageKind StorageKind; |
| typedef typename internal::traits<Derived>::Scalar Scalar; |
| |
| typedef typename internal::packet_traits<Scalar>::type PacketScalar; |
| typedef typename NumTraits<Scalar>::Real RealScalar; |
| typedef Derived DenseType; |
| |
| using Base::ColsAtCompileTime; |
| using Base::Flags; |
| using Base::IsVectorAtCompileTime; |
| using Base::MaxColsAtCompileTime; |
| using Base::MaxRowsAtCompileTime; |
| using Base::MaxSizeAtCompileTime; |
| using Base::RowsAtCompileTime; |
| using Base::SizeAtCompileTime; |
| |
| typedef Eigen::Map<Derived, Unaligned> MapType; |
| typedef const Eigen::Map<const Derived, Unaligned> ConstMapType; |
| typedef Eigen::Map<Derived, AlignedMax> AlignedMapType; |
| typedef const Eigen::Map<const Derived, AlignedMax> ConstAlignedMapType; |
| template <typename StrideType> |
| struct StridedMapType { |
| typedef Eigen::Map<Derived, Unaligned, StrideType> type; |
| }; |
| template <typename StrideType> |
| struct StridedConstMapType { |
| typedef Eigen::Map<const Derived, Unaligned, StrideType> type; |
| }; |
| template <typename StrideType> |
| struct StridedAlignedMapType { |
| typedef Eigen::Map<Derived, AlignedMax, StrideType> type; |
| }; |
| template <typename StrideType> |
| struct StridedConstAlignedMapType { |
| typedef Eigen::Map<const Derived, AlignedMax, StrideType> type; |
| }; |
| |
| protected: |
| DenseStorage<Scalar, Base::MaxSizeAtCompileTime, Base::RowsAtCompileTime, Base::ColsAtCompileTime, Options> m_storage; |
| |
| public: |
| enum { NeedsToAlign = (SizeAtCompileTime != Dynamic) && (internal::traits<Derived>::Alignment > 0) }; |
| EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign) |
| |
| EIGEN_STATIC_ASSERT(internal::check_implication(MaxRowsAtCompileTime == 1 && MaxColsAtCompileTime != 1, |
| (int(Options) & RowMajor) == RowMajor), |
| INVALID_MATRIX_TEMPLATE_PARAMETERS) |
| EIGEN_STATIC_ASSERT(internal::check_implication(MaxColsAtCompileTime == 1 && MaxRowsAtCompileTime != 1, |
| (int(Options) & RowMajor) == 0), |
| INVALID_MATRIX_TEMPLATE_PARAMETERS) |
| EIGEN_STATIC_ASSERT((RowsAtCompileTime == Dynamic) || (RowsAtCompileTime >= 0), INVALID_MATRIX_TEMPLATE_PARAMETERS) |
| EIGEN_STATIC_ASSERT((ColsAtCompileTime == Dynamic) || (ColsAtCompileTime >= 0), INVALID_MATRIX_TEMPLATE_PARAMETERS) |
| EIGEN_STATIC_ASSERT((MaxRowsAtCompileTime == Dynamic) || (MaxRowsAtCompileTime >= 0), |
| INVALID_MATRIX_TEMPLATE_PARAMETERS) |
| EIGEN_STATIC_ASSERT((MaxColsAtCompileTime == Dynamic) || (MaxColsAtCompileTime >= 0), |
| INVALID_MATRIX_TEMPLATE_PARAMETERS) |
| EIGEN_STATIC_ASSERT((MaxRowsAtCompileTime == RowsAtCompileTime || RowsAtCompileTime == Dynamic), |
| INVALID_MATRIX_TEMPLATE_PARAMETERS) |
| EIGEN_STATIC_ASSERT((MaxColsAtCompileTime == ColsAtCompileTime || ColsAtCompileTime == Dynamic), |
| INVALID_MATRIX_TEMPLATE_PARAMETERS) |
| EIGEN_STATIC_ASSERT(((Options & (DontAlign | RowMajor)) == Options), INVALID_MATRIX_TEMPLATE_PARAMETERS) |
| |
| EIGEN_DEVICE_FUNC Base& base() { return *static_cast<Base*>(this); } |
| EIGEN_DEVICE_FUNC const Base& base() const { return *static_cast<const Base*>(this); } |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE EIGEN_CONSTEXPR Index rows() const EIGEN_NOEXCEPT { return m_storage.rows(); } |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE EIGEN_CONSTEXPR Index cols() const EIGEN_NOEXCEPT { return m_storage.cols(); } |
| |
| /** This is an overloaded version of DenseCoeffsBase<Derived,ReadOnlyAccessors>::coeff(Index,Index) const |
| * provided to by-pass the creation of an evaluator of the expression, thus saving compilation efforts. |
| * |
| * See DenseCoeffsBase<Derived,ReadOnlyAccessors>::coeff(Index) const for details. */ |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr const Scalar& coeff(Index rowId, Index colId) const { |
| if (Flags & RowMajorBit) |
| return m_storage.data()[colId + rowId * m_storage.cols()]; |
| else // column-major |
| return m_storage.data()[rowId + colId * m_storage.rows()]; |
| } |
| |
| /** This is an overloaded version of DenseCoeffsBase<Derived,ReadOnlyAccessors>::coeff(Index) const |
| * provided to by-pass the creation of an evaluator of the expression, thus saving compilation efforts. |
| * |
| * See DenseCoeffsBase<Derived,ReadOnlyAccessors>::coeff(Index) const for details. */ |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr const Scalar& coeff(Index index) const { |
| return m_storage.data()[index]; |
| } |
| |
| /** This is an overloaded version of DenseCoeffsBase<Derived,WriteAccessors>::coeffRef(Index,Index) const |
| * provided to by-pass the creation of an evaluator of the expression, thus saving compilation efforts. |
| * |
| * See DenseCoeffsBase<Derived,WriteAccessors>::coeffRef(Index,Index) const for details. */ |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr Scalar& coeffRef(Index rowId, Index colId) { |
| if (Flags & RowMajorBit) |
| return m_storage.data()[colId + rowId * m_storage.cols()]; |
| else // column-major |
| return m_storage.data()[rowId + colId * m_storage.rows()]; |
| } |
| |
| /** This is an overloaded version of DenseCoeffsBase<Derived,WriteAccessors>::coeffRef(Index) const |
| * provided to by-pass the creation of an evaluator of the expression, thus saving compilation efforts. |
| * |
| * See DenseCoeffsBase<Derived,WriteAccessors>::coeffRef(Index) const for details. */ |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr Scalar& coeffRef(Index index) { return m_storage.data()[index]; } |
| |
| /** This is the const version of coeffRef(Index,Index) which is thus synonym of coeff(Index,Index). |
| * It is provided for convenience. */ |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr const Scalar& coeffRef(Index rowId, Index colId) const { |
| if (Flags & RowMajorBit) |
| return m_storage.data()[colId + rowId * m_storage.cols()]; |
| else // column-major |
| return m_storage.data()[rowId + colId * m_storage.rows()]; |
| } |
| |
| /** This is the const version of coeffRef(Index) which is thus synonym of coeff(Index). |
| * It is provided for convenience. */ |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr const Scalar& coeffRef(Index index) const { |
| return m_storage.data()[index]; |
| } |
| |
| /** \internal */ |
| template <int LoadMode> |
| EIGEN_STRONG_INLINE PacketScalar packet(Index rowId, Index colId) const { |
| return internal::ploadt<PacketScalar, LoadMode>( |
| m_storage.data() + (Flags & RowMajorBit ? colId + rowId * m_storage.cols() : rowId + colId * m_storage.rows())); |
| } |
| |
| /** \internal */ |
| template <int LoadMode> |
| EIGEN_STRONG_INLINE PacketScalar packet(Index index) const { |
| return internal::ploadt<PacketScalar, LoadMode>(m_storage.data() + index); |
| } |
| |
| /** \internal */ |
| template <int StoreMode> |
| EIGEN_STRONG_INLINE void writePacket(Index rowId, Index colId, const PacketScalar& val) { |
| internal::pstoret<Scalar, PacketScalar, StoreMode>( |
| m_storage.data() + (Flags & RowMajorBit ? colId + rowId * m_storage.cols() : rowId + colId * m_storage.rows()), |
| val); |
| } |
| |
| /** \internal */ |
| template <int StoreMode> |
| EIGEN_STRONG_INLINE void writePacket(Index index, const PacketScalar& val) { |
| internal::pstoret<Scalar, PacketScalar, StoreMode>(m_storage.data() + index, val); |
| } |
| |
| /** \returns a const pointer to the data array of this matrix */ |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar* data() const { return m_storage.data(); } |
| |
| /** \returns a pointer to the data array of this matrix */ |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar* data() { return m_storage.data(); } |
| |
| /** Resizes \c *this to a \a rows x \a cols matrix. |
| * |
| * This method is intended for dynamic-size matrices, although it is legal to call it on any |
| * matrix as long as fixed dimensions are left unchanged. If you only want to change the number |
| * of rows and/or of columns, you can use resize(NoChange_t, Index), resize(Index, NoChange_t). |
| * |
| * If the current number of coefficients of \c *this exactly matches the |
| * product \a rows * \a cols, then no memory allocation is performed and |
| * the current values are left unchanged. In all other cases, including |
| * shrinking, the data is reallocated and all previous values are lost. |
| * |
| * Example: \include Matrix_resize_int_int.cpp |
| * Output: \verbinclude Matrix_resize_int_int.out |
| * |
| * \sa resize(Index) for vectors, resize(NoChange_t, Index), resize(Index, NoChange_t) |
| */ |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr void resize(Index rows, Index cols) { |
| eigen_assert(internal::check_implication(RowsAtCompileTime != Dynamic, rows == RowsAtCompileTime) && |
| internal::check_implication(ColsAtCompileTime != Dynamic, cols == ColsAtCompileTime) && |
| internal::check_implication(RowsAtCompileTime == Dynamic && MaxRowsAtCompileTime != Dynamic, |
| rows <= MaxRowsAtCompileTime) && |
| internal::check_implication(ColsAtCompileTime == Dynamic && MaxColsAtCompileTime != Dynamic, |
| cols <= MaxColsAtCompileTime) && |
| rows >= 0 && cols >= 0 && "Invalid sizes when resizing a matrix or array."); |
| #ifndef EIGEN_NO_DEBUG |
| internal::check_rows_cols_for_overflow<MaxSizeAtCompileTime, MaxRowsAtCompileTime, MaxColsAtCompileTime>::run(rows, |
| cols); |
| #endif |
| #ifdef EIGEN_INITIALIZE_COEFFS |
| Index size = rows * cols; |
| bool size_changed = size != this->size(); |
| m_storage.resize(size, rows, cols); |
| if (size_changed) EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED |
| #else |
| m_storage.resize(rows * cols, rows, cols); |
| #endif |
| } |
| |
| /** Resizes \c *this to a vector of length \a size |
| * |
| * \only_for_vectors. This method does not work for |
| * partially dynamic matrices when the static dimension is anything other |
| * than 1. For example it will not work with Matrix<double, 2, Dynamic>. |
| * |
| * Example: \include Matrix_resize_int.cpp |
| * Output: \verbinclude Matrix_resize_int.out |
| * |
| * \sa resize(Index,Index), resize(NoChange_t, Index), resize(Index, NoChange_t) |
| */ |
| EIGEN_DEVICE_FUNC inline constexpr void resize(Index size) { |
| EIGEN_STATIC_ASSERT_VECTOR_ONLY(PlainObjectBase) |
| eigen_assert(((SizeAtCompileTime == Dynamic && (MaxSizeAtCompileTime == Dynamic || size <= MaxSizeAtCompileTime)) || |
| SizeAtCompileTime == size) && |
| size >= 0); |
| #ifdef EIGEN_INITIALIZE_COEFFS |
| bool size_changed = size != this->size(); |
| #endif |
| if (RowsAtCompileTime == 1) |
| m_storage.resize(size, 1, size); |
| else |
| m_storage.resize(size, size, 1); |
| #ifdef EIGEN_INITIALIZE_COEFFS |
| if (size_changed) EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED |
| #endif |
| } |
| |
| /** Resizes the matrix, changing only the number of columns. For the parameter of type NoChange_t, just pass the |
| * special value \c NoChange as in the example below. |
| * |
| * Example: \include Matrix_resize_NoChange_int.cpp |
| * Output: \verbinclude Matrix_resize_NoChange_int.out |
| * |
| * \sa resize(Index,Index) |
| */ |
| EIGEN_DEVICE_FUNC inline constexpr void resize(NoChange_t, Index cols) { resize(rows(), cols); } |
| |
| /** Resizes the matrix, changing only the number of rows. For the parameter of type NoChange_t, just pass the special |
| * value \c NoChange as in the example below. |
| * |
| * Example: \include Matrix_resize_int_NoChange.cpp |
| * Output: \verbinclude Matrix_resize_int_NoChange.out |
| * |
| * \sa resize(Index,Index) |
| */ |
| EIGEN_DEVICE_FUNC inline constexpr void resize(Index rows, NoChange_t) { resize(rows, cols()); } |
| |
| /** Resizes \c *this to have the same dimensions as \a other. |
| * Takes care of doing all the checking that's needed. |
| * |
| * Note that copying a row-vector into a vector (and conversely) is allowed. |
| * The resizing, if any, is then done in the appropriate way so that row-vectors |
| * remain row-vectors and vectors remain vectors. |
| */ |
| template <typename OtherDerived> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void resizeLike(const EigenBase<OtherDerived>& _other) { |
| const OtherDerived& other = _other.derived(); |
| #ifndef EIGEN_NO_DEBUG |
| internal::check_rows_cols_for_overflow<MaxSizeAtCompileTime, MaxRowsAtCompileTime, MaxColsAtCompileTime>::run( |
| other.rows(), other.cols()); |
| #endif |
| const Index othersize = other.rows() * other.cols(); |
| if (RowsAtCompileTime == 1) { |
| eigen_assert(other.rows() == 1 || other.cols() == 1); |
| resize(1, othersize); |
| } else if (ColsAtCompileTime == 1) { |
| eigen_assert(other.rows() == 1 || other.cols() == 1); |
| resize(othersize, 1); |
| } else |
| resize(other.rows(), other.cols()); |
| } |
| |
| /** Resizes the matrix to \a rows x \a cols while leaving old values untouched. |
| * |
| * The method is intended for matrices of dynamic size. If you only want to change the number |
| * of rows and/or of columns, you can use conservativeResize(NoChange_t, Index) or |
| * conservativeResize(Index, NoChange_t). |
| * |
| * Matrices are resized relative to the top-left element. In case values need to be |
| * appended to the matrix they will be uninitialized. |
| */ |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void conservativeResize(Index rows, Index cols) { |
| internal::conservative_resize_like_impl<Derived>::run(*this, rows, cols); |
| } |
| |
| /** Resizes the matrix to \a rows x \a cols while leaving old values untouched. |
| * |
| * As opposed to conservativeResize(Index rows, Index cols), this version leaves |
| * the number of columns unchanged. |
| * |
| * In case the matrix is growing, new rows will be uninitialized. |
| */ |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void conservativeResize(Index rows, NoChange_t) { |
| // Note: see the comment in conservativeResize(Index,Index) |
| conservativeResize(rows, cols()); |
| } |
| |
| /** Resizes the matrix to \a rows x \a cols while leaving old values untouched. |
| * |
| * As opposed to conservativeResize(Index rows, Index cols), this version leaves |
| * the number of rows unchanged. |
| * |
| * In case the matrix is growing, new columns will be uninitialized. |
| */ |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void conservativeResize(NoChange_t, Index cols) { |
| // Note: see the comment in conservativeResize(Index,Index) |
| conservativeResize(rows(), cols); |
| } |
| |
| /** Resizes the vector to \a size while retaining old values. |
| * |
| * \only_for_vectors. This method does not work for |
| * partially dynamic matrices when the static dimension is anything other |
| * than 1. For example it will not work with Matrix<double, 2, Dynamic>. |
| * |
| * When values are appended, they will be uninitialized. |
| */ |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void conservativeResize(Index size) { |
| internal::conservative_resize_like_impl<Derived>::run(*this, size); |
| } |
| |
| /** Resizes the matrix to \a rows x \a cols of \c other, while leaving old values untouched. |
| * |
| * The method is intended for matrices of dynamic size. If you only want to change the number |
| * of rows and/or of columns, you can use conservativeResize(NoChange_t, Index) or |
| * conservativeResize(Index, NoChange_t). |
| * |
| * Matrices are resized relative to the top-left element. In case values need to be |
| * appended to the matrix they will copied from \c other. |
| */ |
| template <typename OtherDerived> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void conservativeResizeLike(const DenseBase<OtherDerived>& other) { |
| internal::conservative_resize_like_impl<Derived, OtherDerived>::run(*this, other); |
| } |
| |
| /** This is a special case of the templated operator=. Its purpose is to |
| * prevent a default operator= from hiding the templated operator=. |
| */ |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr Derived& operator=(const PlainObjectBase& other) { |
| return _set(other); |
| } |
| |
| /** \sa MatrixBase::lazyAssign() */ |
| template <typename OtherDerived> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& lazyAssign(const DenseBase<OtherDerived>& other) { |
| _resize_to_match(other); |
| return Base::lazyAssign(other.derived()); |
| } |
| |
| template <typename OtherDerived> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& operator=(const ReturnByValue<OtherDerived>& func) { |
| resize(func.rows(), func.cols()); |
| return Base::operator=(func); |
| } |
| |
| // Prevent user from trying to instantiate PlainObjectBase objects |
| // by making all its constructor protected. See bug 1074. |
| protected: |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr PlainObjectBase() : m_storage() { |
| // EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED |
| } |
| |
| #ifndef EIGEN_PARSED_BY_DOXYGEN |
| // FIXME is it still needed ? |
| /** \internal */ |
| EIGEN_DEVICE_FUNC constexpr explicit PlainObjectBase(internal::constructor_without_unaligned_array_assert) |
| : m_storage(internal::constructor_without_unaligned_array_assert()) { |
| // EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED |
| } |
| #endif |
| |
| EIGEN_DEVICE_FUNC constexpr PlainObjectBase(PlainObjectBase&& other) EIGEN_NOEXCEPT |
| : m_storage(std::move(other.m_storage)) {} |
| |
| EIGEN_DEVICE_FUNC constexpr PlainObjectBase& operator=(PlainObjectBase&& other) EIGEN_NOEXCEPT { |
| m_storage = std::move(other.m_storage); |
| return *this; |
| } |
| |
| /** Copy constructor */ |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr PlainObjectBase(const PlainObjectBase& other) |
| : Base(), m_storage(other.m_storage) {} |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PlainObjectBase(Index size, Index rows, Index cols) |
| : m_storage(size, rows, cols) { |
| // EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED |
| } |
| |
| /** \brief Construct a row of column vector with fixed size from an arbitrary number of coefficients. |
| * |
| * \only_for_vectors |
| * |
| * This constructor is for 1D array or vectors with more than 4 coefficients. |
| * |
| * \warning To construct a column (resp. row) vector of fixed length, the number of values passed to this |
| * constructor must match the the fixed number of rows (resp. columns) of \c *this. |
| */ |
| template <typename... ArgTypes> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PlainObjectBase(const Scalar& a0, const Scalar& a1, const Scalar& a2, |
| const Scalar& a3, const ArgTypes&... args) |
| : m_storage() { |
| EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(PlainObjectBase, sizeof...(args) + 4); |
| m_storage.data()[0] = a0; |
| m_storage.data()[1] = a1; |
| m_storage.data()[2] = a2; |
| m_storage.data()[3] = a3; |
| Index i = 4; |
| auto x = {(m_storage.data()[i++] = args, 0)...}; |
| static_cast<void>(x); |
| } |
| |
| /** \brief Constructs a Matrix or Array and initializes it by elements given by an initializer list of initializer |
| * lists |
| */ |
| EIGEN_DEVICE_FUNC explicit constexpr EIGEN_STRONG_INLINE PlainObjectBase( |
| const std::initializer_list<std::initializer_list<Scalar>>& list) |
| : m_storage() { |
| size_t list_size = 0; |
| if (list.begin() != list.end()) { |
| list_size = list.begin()->size(); |
| } |
| |
| // This is to allow syntax like VectorXi {{1, 2, 3, 4}} |
| if (ColsAtCompileTime == 1 && list.size() == 1) { |
| eigen_assert(list_size == static_cast<size_t>(RowsAtCompileTime) || RowsAtCompileTime == Dynamic); |
| resize(list_size, ColsAtCompileTime); |
| if (list.begin()->begin() != nullptr) { |
| std::copy(list.begin()->begin(), list.begin()->end(), m_storage.data()); |
| } |
| } else { |
| eigen_assert(list.size() == static_cast<size_t>(RowsAtCompileTime) || RowsAtCompileTime == Dynamic); |
| eigen_assert(list_size == static_cast<size_t>(ColsAtCompileTime) || ColsAtCompileTime == Dynamic); |
| resize(list.size(), list_size); |
| |
| Index row_index = 0; |
| for (const std::initializer_list<Scalar>& row : list) { |
| eigen_assert(list_size == row.size()); |
| Index col_index = 0; |
| for (const Scalar& e : row) { |
| coeffRef(row_index, col_index) = e; |
| ++col_index; |
| } |
| ++row_index; |
| } |
| } |
| } |
| |
| /** \sa PlainObjectBase::operator=(const EigenBase<OtherDerived>&) */ |
| template <typename OtherDerived> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PlainObjectBase(const DenseBase<OtherDerived>& other) : m_storage() { |
| resizeLike(other); |
| _set_noalias(other); |
| } |
| |
| /** \sa PlainObjectBase::operator=(const EigenBase<OtherDerived>&) */ |
| template <typename OtherDerived> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PlainObjectBase(const EigenBase<OtherDerived>& other) : m_storage() { |
| resizeLike(other); |
| *this = other.derived(); |
| } |
| /** \brief Copy constructor with in-place evaluation */ |
| template <typename OtherDerived> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PlainObjectBase(const ReturnByValue<OtherDerived>& other) { |
| // FIXME this does not automatically transpose vectors if necessary |
| resize(other.rows(), other.cols()); |
| other.evalTo(this->derived()); |
| } |
| |
| public: |
| /** \brief Copies the generic expression \a other into *this. |
| * \copydetails DenseBase::operator=(const EigenBase<OtherDerived> &other) |
| */ |
| template <typename OtherDerived> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& operator=(const EigenBase<OtherDerived>& other) { |
| _resize_to_match(other); |
| Base::operator=(other.derived()); |
| return this->derived(); |
| } |
| |
| /** \name Map |
| * These are convenience functions returning Map objects. The Map() static functions return unaligned Map objects, |
| * while the AlignedMap() functions return aligned Map objects and thus should be called only with 16-byte-aligned |
| * \a data pointers. |
| * |
| * Here is an example using strides: |
| * \include Matrix_Map_stride.cpp |
| * Output: \verbinclude Matrix_Map_stride.out |
| * |
| * \see class Map |
| */ |
| ///@{ |
| static inline ConstMapType Map(const Scalar* data) { return ConstMapType(data); } |
| static inline MapType Map(Scalar* data) { return MapType(data); } |
| static inline ConstMapType Map(const Scalar* data, Index size) { return ConstMapType(data, size); } |
| static inline MapType Map(Scalar* data, Index size) { return MapType(data, size); } |
| static inline ConstMapType Map(const Scalar* data, Index rows, Index cols) { return ConstMapType(data, rows, cols); } |
| static inline MapType Map(Scalar* data, Index rows, Index cols) { return MapType(data, rows, cols); } |
| |
| static inline ConstAlignedMapType MapAligned(const Scalar* data) { return ConstAlignedMapType(data); } |
| static inline AlignedMapType MapAligned(Scalar* data) { return AlignedMapType(data); } |
| static inline ConstAlignedMapType MapAligned(const Scalar* data, Index size) { |
| return ConstAlignedMapType(data, size); |
| } |
| static inline AlignedMapType MapAligned(Scalar* data, Index size) { return AlignedMapType(data, size); } |
| static inline ConstAlignedMapType MapAligned(const Scalar* data, Index rows, Index cols) { |
| return ConstAlignedMapType(data, rows, cols); |
| } |
| static inline AlignedMapType MapAligned(Scalar* data, Index rows, Index cols) { |
| return AlignedMapType(data, rows, cols); |
| } |
| |
| template <int Outer, int Inner> |
| static inline typename StridedConstMapType<Stride<Outer, Inner>>::type Map(const Scalar* data, |
| const Stride<Outer, Inner>& stride) { |
| return typename StridedConstMapType<Stride<Outer, Inner>>::type(data, stride); |
| } |
| template <int Outer, int Inner> |
| static inline typename StridedMapType<Stride<Outer, Inner>>::type Map(Scalar* data, |
| const Stride<Outer, Inner>& stride) { |
| return typename StridedMapType<Stride<Outer, Inner>>::type(data, stride); |
| } |
| template <int Outer, int Inner> |
| static inline typename StridedConstMapType<Stride<Outer, Inner>>::type Map(const Scalar* data, Index size, |
| const Stride<Outer, Inner>& stride) { |
| return typename StridedConstMapType<Stride<Outer, Inner>>::type(data, size, stride); |
| } |
| template <int Outer, int Inner> |
| static inline typename StridedMapType<Stride<Outer, Inner>>::type Map(Scalar* data, Index size, |
| const Stride<Outer, Inner>& stride) { |
| return typename StridedMapType<Stride<Outer, Inner>>::type(data, size, stride); |
| } |
| template <int Outer, int Inner> |
| static inline typename StridedConstMapType<Stride<Outer, Inner>>::type Map(const Scalar* data, Index rows, Index cols, |
| const Stride<Outer, Inner>& stride) { |
| return typename StridedConstMapType<Stride<Outer, Inner>>::type(data, rows, cols, stride); |
| } |
| template <int Outer, int Inner> |
| static inline typename StridedMapType<Stride<Outer, Inner>>::type Map(Scalar* data, Index rows, Index cols, |
| const Stride<Outer, Inner>& stride) { |
| return typename StridedMapType<Stride<Outer, Inner>>::type(data, rows, cols, stride); |
| } |
| |
| template <int Outer, int Inner> |
| static inline typename StridedConstAlignedMapType<Stride<Outer, Inner>>::type MapAligned( |
| const Scalar* data, const Stride<Outer, Inner>& stride) { |
| return typename StridedConstAlignedMapType<Stride<Outer, Inner>>::type(data, stride); |
| } |
| template <int Outer, int Inner> |
| static inline typename StridedAlignedMapType<Stride<Outer, Inner>>::type MapAligned( |
| Scalar* data, const Stride<Outer, Inner>& stride) { |
| return typename StridedAlignedMapType<Stride<Outer, Inner>>::type(data, stride); |
| } |
| template <int Outer, int Inner> |
| static inline typename StridedConstAlignedMapType<Stride<Outer, Inner>>::type MapAligned( |
| const Scalar* data, Index size, const Stride<Outer, Inner>& stride) { |
| return typename StridedConstAlignedMapType<Stride<Outer, Inner>>::type(data, size, stride); |
| } |
| template <int Outer, int Inner> |
| static inline typename StridedAlignedMapType<Stride<Outer, Inner>>::type MapAligned( |
| Scalar* data, Index size, const Stride<Outer, Inner>& stride) { |
| return typename StridedAlignedMapType<Stride<Outer, Inner>>::type(data, size, stride); |
| } |
| template <int Outer, int Inner> |
| static inline typename StridedConstAlignedMapType<Stride<Outer, Inner>>::type MapAligned( |
| const Scalar* data, Index rows, Index cols, const Stride<Outer, Inner>& stride) { |
| return typename StridedConstAlignedMapType<Stride<Outer, Inner>>::type(data, rows, cols, stride); |
| } |
| template <int Outer, int Inner> |
| static inline typename StridedAlignedMapType<Stride<Outer, Inner>>::type MapAligned( |
| Scalar* data, Index rows, Index cols, const Stride<Outer, Inner>& stride) { |
| return typename StridedAlignedMapType<Stride<Outer, Inner>>::type(data, rows, cols, stride); |
| } |
| ///@} |
| |
| using Base::setConstant; |
| EIGEN_DEVICE_FUNC Derived& setConstant(Index size, const Scalar& val); |
| EIGEN_DEVICE_FUNC Derived& setConstant(Index rows, Index cols, const Scalar& val); |
| EIGEN_DEVICE_FUNC Derived& setConstant(NoChange_t, Index cols, const Scalar& val); |
| EIGEN_DEVICE_FUNC Derived& setConstant(Index rows, NoChange_t, const Scalar& val); |
| |
| using Base::setZero; |
| EIGEN_DEVICE_FUNC Derived& setZero(Index size); |
| EIGEN_DEVICE_FUNC Derived& setZero(Index rows, Index cols); |
| EIGEN_DEVICE_FUNC Derived& setZero(NoChange_t, Index cols); |
| EIGEN_DEVICE_FUNC Derived& setZero(Index rows, NoChange_t); |
| |
| using Base::setOnes; |
| EIGEN_DEVICE_FUNC Derived& setOnes(Index size); |
| EIGEN_DEVICE_FUNC Derived& setOnes(Index rows, Index cols); |
| EIGEN_DEVICE_FUNC Derived& setOnes(NoChange_t, Index cols); |
| EIGEN_DEVICE_FUNC Derived& setOnes(Index rows, NoChange_t); |
| |
| using Base::setRandom; |
| Derived& setRandom(Index size); |
| Derived& setRandom(Index rows, Index cols); |
| Derived& setRandom(NoChange_t, Index cols); |
| Derived& setRandom(Index rows, NoChange_t); |
| |
| #ifdef EIGEN_PLAINOBJECTBASE_PLUGIN |
| #include EIGEN_PLAINOBJECTBASE_PLUGIN |
| #endif |
| |
| protected: |
| /** \internal Resizes *this in preparation for assigning \a other to it. |
| * Takes care of doing all the checking that's needed. |
| * |
| * Note that copying a row-vector into a vector (and conversely) is allowed. |
| * The resizing, if any, is then done in the appropriate way so that row-vectors |
| * remain row-vectors and vectors remain vectors. |
| */ |
| template <typename OtherDerived> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void _resize_to_match(const EigenBase<OtherDerived>& other) { |
| #ifdef EIGEN_NO_AUTOMATIC_RESIZING |
| eigen_assert((this->size() == 0 || (IsVectorAtCompileTime ? (this->size() == other.size()) |
| : (rows() == other.rows() && cols() == other.cols()))) && |
| "Size mismatch. Automatic resizing is disabled because EIGEN_NO_AUTOMATIC_RESIZING is defined"); |
| EIGEN_ONLY_USED_FOR_DEBUG(other); |
| #else |
| resizeLike(other); |
| #endif |
| } |
| |
| /** |
| * \brief Copies the value of the expression \a other into \c *this with automatic resizing. |
| * |
| * *this might be resized to match the dimensions of \a other. If *this was a null matrix (not already initialized), |
| * it will be initialized. |
| * |
| * Note that copying a row-vector into a vector (and conversely) is allowed. |
| * The resizing, if any, is then done in the appropriate way so that row-vectors |
| * remain row-vectors and vectors remain vectors. |
| * |
| * \sa operator=(const MatrixBase<OtherDerived>&), _set_noalias() |
| * |
| * \internal |
| */ |
| // aliasing is dealt once in internal::call_assignment |
| // so at this stage we have to assume aliasing... and resising has to be done later. |
| template <typename OtherDerived> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr Derived& _set(const DenseBase<OtherDerived>& other) { |
| internal::call_assignment(this->derived(), other.derived()); |
| return this->derived(); |
| } |
| |
| /** \internal Like _set() but additionally makes the assumption that no aliasing effect can happen (which |
| * is the case when creating a new matrix) so one can enforce lazy evaluation. |
| * |
| * \sa operator=(const MatrixBase<OtherDerived>&), _set() |
| */ |
| template <typename OtherDerived> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr Derived& _set_noalias(const DenseBase<OtherDerived>& other) { |
| // I don't think we need this resize call since the lazyAssign will anyways resize |
| // and lazyAssign will be called by the assign selector. |
| //_resize_to_match(other); |
| // the 'false' below means to enforce lazy evaluation. We don't use lazyAssign() because |
| // it wouldn't allow to copy a row-vector into a column-vector. |
| internal::call_assignment_no_alias(this->derived(), other.derived(), |
| internal::assign_op<Scalar, typename OtherDerived::Scalar>()); |
| return this->derived(); |
| } |
| |
| template <typename T0, typename T1> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void _init2(Index rows, Index cols, |
| std::enable_if_t<Base::SizeAtCompileTime != 2, T0>* = 0) { |
| EIGEN_STATIC_ASSERT(internal::is_valid_index_type<T0>::value && internal::is_valid_index_type<T1>::value, |
| T0 AND T1 MUST BE INTEGER TYPES) |
| resize(rows, cols); |
| } |
| |
| template <typename T0, typename T1> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void _init2(const T0& val0, const T1& val1, |
| std::enable_if_t<Base::SizeAtCompileTime == 2, T0>* = 0) { |
| EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(PlainObjectBase, 2) |
| m_storage.data()[0] = Scalar(val0); |
| m_storage.data()[1] = Scalar(val1); |
| } |
| |
| template <typename T0, typename T1> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void _init2( |
| const Index& val0, const Index& val1, |
| std::enable_if_t<(!internal::is_same<Index, Scalar>::value) && (internal::is_same<T0, Index>::value) && |
| (internal::is_same<T1, Index>::value) && Base::SizeAtCompileTime == 2, |
| T1>* = 0) { |
| EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(PlainObjectBase, 2) |
| m_storage.data()[0] = Scalar(val0); |
| m_storage.data()[1] = Scalar(val1); |
| } |
| |
| // The argument is convertible to the Index type and we either have a non 1x1 Matrix, or a dynamic-sized Array, |
| // then the argument is meant to be the size of the object. |
| template <typename T> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void _init1( |
| Index size, |
| std::enable_if_t<(Base::SizeAtCompileTime != 1 || !internal::is_convertible<T, Scalar>::value) && |
| ((!internal::is_same<typename internal::traits<Derived>::XprKind, ArrayXpr>::value || |
| Base::SizeAtCompileTime == Dynamic)), |
| T>* = 0) { |
| // NOTE MSVC 2008 complains if we directly put bool(NumTraits<T>::IsInteger) as the EIGEN_STATIC_ASSERT argument. |
| const bool is_integer_alike = internal::is_valid_index_type<T>::value; |
| EIGEN_UNUSED_VARIABLE(is_integer_alike); |
| EIGEN_STATIC_ASSERT(is_integer_alike, FLOATING_POINT_ARGUMENT_PASSED__INTEGER_WAS_EXPECTED) |
| resize(size); |
| } |
| |
| // We have a 1x1 matrix/array => the argument is interpreted as the value of the unique coefficient (case where scalar |
| // type can be implicitly converted) |
| template <typename T> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void _init1( |
| const Scalar& val0, |
| std::enable_if_t<Base::SizeAtCompileTime == 1 && internal::is_convertible<T, Scalar>::value, T>* = 0) { |
| EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(PlainObjectBase, 1) |
| m_storage.data()[0] = val0; |
| } |
| |
| // We have a 1x1 matrix/array => the argument is interpreted as the value of the unique coefficient (case where scalar |
| // type match the index type) |
| template <typename T> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void _init1( |
| const Index& val0, |
| std::enable_if_t<(!internal::is_same<Index, Scalar>::value) && (internal::is_same<Index, T>::value) && |
| Base::SizeAtCompileTime == 1 && internal::is_convertible<T, Scalar>::value, |
| T*>* = 0) { |
| EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(PlainObjectBase, 1) |
| m_storage.data()[0] = Scalar(val0); |
| } |
| |
| // Initialize a fixed size matrix from a pointer to raw data |
| template <typename T> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void _init1(const Scalar* data) { |
| this->_set_noalias(ConstMapType(data)); |
| } |
| |
| // Initialize an arbitrary matrix from a dense expression |
| template <typename T, typename OtherDerived> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void _init1(const DenseBase<OtherDerived>& other) { |
| this->_set_noalias(other); |
| } |
| |
| // Initialize an arbitrary matrix from an object convertible to the Derived type. |
| template <typename T> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void _init1(const Derived& other) { |
| this->_set_noalias(other); |
| } |
| |
| // Initialize an arbitrary matrix from a generic Eigen expression |
| template <typename T, typename OtherDerived> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void _init1(const EigenBase<OtherDerived>& other) { |
| this->derived() = other; |
| } |
| |
| template <typename T, typename OtherDerived> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void _init1(const ReturnByValue<OtherDerived>& other) { |
| resize(other.rows(), other.cols()); |
| other.evalTo(this->derived()); |
| } |
| |
| template <typename T, typename OtherDerived, int ColsAtCompileTime> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void _init1(const RotationBase<OtherDerived, ColsAtCompileTime>& r) { |
| this->derived() = r; |
| } |
| |
| // For fixed-size Array<Scalar,...> |
| template <typename T> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void _init1( |
| const Scalar& val0, |
| std::enable_if_t<Base::SizeAtCompileTime != Dynamic && Base::SizeAtCompileTime != 1 && |
| internal::is_convertible<T, Scalar>::value && |
| internal::is_same<typename internal::traits<Derived>::XprKind, ArrayXpr>::value, |
| T>* = 0) { |
| Base::setConstant(val0); |
| } |
| |
| // For fixed-size Array<Index,...> |
| template <typename T> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void _init1( |
| const Index& val0, |
| std::enable_if_t<(!internal::is_same<Index, Scalar>::value) && (internal::is_same<Index, T>::value) && |
| Base::SizeAtCompileTime != Dynamic && Base::SizeAtCompileTime != 1 && |
| internal::is_convertible<T, Scalar>::value && |
| internal::is_same<typename internal::traits<Derived>::XprKind, ArrayXpr>::value, |
| T*>* = 0) { |
| Base::setConstant(val0); |
| } |
| |
| template <typename MatrixTypeA, typename MatrixTypeB, bool SwapPointers> |
| friend struct internal::matrix_swap_impl; |
| |
| public: |
| #ifndef EIGEN_PARSED_BY_DOXYGEN |
| /** \internal |
| * \brief Override DenseBase::swap() since for dynamic-sized matrices |
| * of same type it is enough to swap the data pointers. |
| */ |
| template <typename OtherDerived> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void swap(DenseBase<OtherDerived>& other) { |
| enum {SwapPointers = internal::is_same<Derived, OtherDerived>::value && Base::SizeAtCompileTime == Dynamic}; |
| internal::matrix_swap_impl<Derived, OtherDerived, bool(SwapPointers)>::run(this->derived(), other.derived()); |
| } |
| |
| /** \internal |
| * \brief const version forwarded to DenseBase::swap |
| */ |
| template <typename OtherDerived> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void swap(DenseBase<OtherDerived> const& other) { |
| Base::swap(other.derived()); |
| } |
| |
| enum {IsPlainObjectBase = 1}; |
| #endif |
| public: |
| // These apparently need to be down here for nvcc+icc to prevent duplicate |
| // Map symbol. |
| template <typename PlainObjectType, int MapOptions, typename StrideType> |
| friend class Eigen::Map; |
| friend class Eigen::Map<Derived, Unaligned>; |
| friend class Eigen::Map<const Derived, Unaligned>; |
| #if EIGEN_MAX_ALIGN_BYTES > 0 |
| // for EIGEN_MAX_ALIGN_BYTES==0, AlignedMax==Unaligned, and many compilers generate warnings for friend-ing a class |
| // twice. |
| friend class Eigen::Map<Derived, AlignedMax>; |
| friend class Eigen::Map<const Derived, AlignedMax>; |
| #endif |
| }; |
| |
| namespace internal { |
| |
| template <typename Derived, typename OtherDerived, bool IsVector> |
| struct conservative_resize_like_impl { |
| static constexpr bool IsRelocatable = std::is_trivially_copyable<typename Derived::Scalar>::value; |
| static void run(DenseBase<Derived>& _this, Index rows, Index cols) { |
| if (_this.rows() == rows && _this.cols() == cols) return; |
| EIGEN_STATIC_ASSERT_DYNAMIC_SIZE(Derived) |
| |
| if (IsRelocatable && |
| ((Derived::IsRowMajor && _this.cols() == cols) || // row-major and we change only the number of rows |
| (!Derived::IsRowMajor && _this.rows() == rows))) // column-major and we change only the number of columns |
| { |
| #ifndef EIGEN_NO_DEBUG |
| internal::check_rows_cols_for_overflow<Derived::MaxSizeAtCompileTime, Derived::MaxRowsAtCompileTime, |
| Derived::MaxColsAtCompileTime>::run(rows, cols); |
| #endif |
| _this.derived().m_storage.conservativeResize(rows * cols, rows, cols); |
| } else { |
| // The storage order does not allow us to use reallocation. |
| Derived tmp(rows, cols); |
| const Index common_rows = numext::mini(rows, _this.rows()); |
| const Index common_cols = numext::mini(cols, _this.cols()); |
| tmp.block(0, 0, common_rows, common_cols) = _this.block(0, 0, common_rows, common_cols); |
| _this.derived().swap(tmp); |
| } |
| } |
| |
| static void run(DenseBase<Derived>& _this, const DenseBase<OtherDerived>& other) { |
| if (_this.rows() == other.rows() && _this.cols() == other.cols()) return; |
| |
| // Note: Here is space for improvement. Basically, for conservativeResize(Index,Index), |
| // neither RowsAtCompileTime or ColsAtCompileTime must be Dynamic. If only one of the |
| // dimensions is dynamic, one could use either conservativeResize(Index rows, NoChange_t) or |
| // conservativeResize(NoChange_t, Index cols). For these methods new static asserts like |
| // EIGEN_STATIC_ASSERT_DYNAMIC_ROWS and EIGEN_STATIC_ASSERT_DYNAMIC_COLS would be good. |
| EIGEN_STATIC_ASSERT_DYNAMIC_SIZE(Derived) |
| EIGEN_STATIC_ASSERT_DYNAMIC_SIZE(OtherDerived) |
| |
| if (IsRelocatable && |
| ((Derived::IsRowMajor && _this.cols() == other.cols()) || // row-major and we change only the number of rows |
| (!Derived::IsRowMajor && |
| _this.rows() == other.rows()))) // column-major and we change only the number of columns |
| { |
| const Index new_rows = other.rows() - _this.rows(); |
| const Index new_cols = other.cols() - _this.cols(); |
| _this.derived().m_storage.conservativeResize(other.size(), other.rows(), other.cols()); |
| if (new_rows > 0) |
| _this.bottomRightCorner(new_rows, other.cols()) = other.bottomRows(new_rows); |
| else if (new_cols > 0) |
| _this.bottomRightCorner(other.rows(), new_cols) = other.rightCols(new_cols); |
| } else { |
| // The storage order does not allow us to use reallocation. |
| Derived tmp(other); |
| const Index common_rows = numext::mini(tmp.rows(), _this.rows()); |
| const Index common_cols = numext::mini(tmp.cols(), _this.cols()); |
| tmp.block(0, 0, common_rows, common_cols) = _this.block(0, 0, common_rows, common_cols); |
| _this.derived().swap(tmp); |
| } |
| } |
| }; |
| |
| // Here, the specialization for vectors inherits from the general matrix case |
| // to allow calling .conservativeResize(rows,cols) on vectors. |
| template <typename Derived, typename OtherDerived> |
| struct conservative_resize_like_impl<Derived, OtherDerived, true> |
| : conservative_resize_like_impl<Derived, OtherDerived, false> { |
| typedef conservative_resize_like_impl<Derived, OtherDerived, false> Base; |
| using Base::IsRelocatable; |
| using Base::run; |
| |
| static void run(DenseBase<Derived>& _this, Index size) { |
| const Index new_rows = Derived::RowsAtCompileTime == 1 ? 1 : size; |
| const Index new_cols = Derived::RowsAtCompileTime == 1 ? size : 1; |
| if (IsRelocatable) |
| _this.derived().m_storage.conservativeResize(size, new_rows, new_cols); |
| else |
| Base::run(_this.derived(), new_rows, new_cols); |
| } |
| |
| static void run(DenseBase<Derived>& _this, const DenseBase<OtherDerived>& other) { |
| if (_this.rows() == other.rows() && _this.cols() == other.cols()) return; |
| |
| const Index num_new_elements = other.size() - _this.size(); |
| |
| const Index new_rows = Derived::RowsAtCompileTime == 1 ? 1 : other.rows(); |
| const Index new_cols = Derived::RowsAtCompileTime == 1 ? other.cols() : 1; |
| if (IsRelocatable) |
| _this.derived().m_storage.conservativeResize(other.size(), new_rows, new_cols); |
| else |
| Base::run(_this.derived(), new_rows, new_cols); |
| |
| if (num_new_elements > 0) _this.tail(num_new_elements) = other.tail(num_new_elements); |
| } |
| }; |
| |
| template <typename MatrixTypeA, typename MatrixTypeB, bool SwapPointers> |
| struct matrix_swap_impl { |
| EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(MatrixTypeA& a, MatrixTypeB& b) { a.base().swap(b); } |
| }; |
| |
| template <typename MatrixTypeA, typename MatrixTypeB> |
| struct matrix_swap_impl<MatrixTypeA, MatrixTypeB, true> { |
| EIGEN_DEVICE_FUNC static inline void run(MatrixTypeA& a, MatrixTypeB& b) { |
| static_cast<typename MatrixTypeA::Base&>(a).m_storage.swap(static_cast<typename MatrixTypeB::Base&>(b).m_storage); |
| } |
| }; |
| |
| } // end namespace internal |
| |
| } // end namespace Eigen |
| |
| #endif // EIGEN_DENSESTORAGEBASE_H |