| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #include "mandelbrot.h" |
| #include <iostream> |
| #include<QtGui/QPainter> |
| #include<QtGui/QImage> |
| #include<QtGui/QMouseEvent> |
| #include<QtCore/QTime> |
| |
| void MandelbrotWidget::resizeEvent(QResizeEvent *) |
| { |
| if(size < width() * height()) |
| { |
| std::cout << "reallocate buffer" << std::endl; |
| size = width() * height(); |
| if(buffer) delete[]buffer; |
| buffer = new unsigned char[4*size]; |
| } |
| } |
| |
| template<typename T> struct iters_before_test { enum { ret = 8 }; }; |
| template<> struct iters_before_test<double> { enum { ret = 16 }; }; |
| |
| template<typename Real> void MandelbrotThread::render(int img_width, int img_height) |
| { |
| enum { packetSize = Eigen::internal::packet_traits<Real>::size }; // number of reals in a Packet |
| typedef Eigen::Array<Real, packetSize, 1> Packet; // wrap a Packet as a vector |
| |
| enum { iters_before_test = iters_before_test<Real>::ret }; |
| max_iter = (max_iter / iters_before_test) * iters_before_test; |
| const int alignedWidth = (img_width/packetSize)*packetSize; |
| unsigned char *const buffer = widget->buffer; |
| const double xradius = widget->xradius; |
| const double yradius = xradius * img_height / img_width; |
| const int threadcount = widget->threadcount; |
| typedef Eigen::Array<Real, 2, 1> Vector2; |
| Vector2 start(widget->center.x() - widget->xradius, widget->center.y() - yradius); |
| Vector2 step(2*widget->xradius/img_width, 2*yradius/img_height); |
| total_iter = 0; |
| |
| for(int y = id; y < img_height; y += threadcount) |
| { |
| int pix = y * img_width; |
| |
| // for each pixel, we're going to do the iteration z := z^2 + c where z and c are complex numbers, |
| // starting with z = c = complex coord of the pixel. pzi and pzr denote the real and imaginary parts of z. |
| // pci and pcr denote the real and imaginary parts of c. |
| |
| Packet pzi_start, pci_start; |
| for(int i = 0; i < packetSize; i++) pzi_start[i] = pci_start[i] = start.y() + y * step.y(); |
| |
| for(int x = 0; x < alignedWidth; x += packetSize, pix += packetSize) |
| { |
| Packet pcr, pci = pci_start, pzr, pzi = pzi_start, pzr_buf; |
| for(int i = 0; i < packetSize; i++) pzr[i] = pcr[i] = start.x() + (x+i) * step.x(); |
| |
| // do the iterations. Every iters_before_test iterations we check for divergence, |
| // in which case we can stop iterating. |
| int j = 0; |
| typedef Eigen::Matrix<int, packetSize, 1> Packeti; |
| Packeti pix_iter = Packeti::Zero(), // number of iteration per pixel in the packet |
| pix_dont_diverge; // whether or not each pixel has already diverged |
| do |
| { |
| for(int i = 0; i < iters_before_test/4; i++) // peel the inner loop by 4 |
| { |
| # define ITERATE \ |
| pzr_buf = pzr; \ |
| pzr = pzr.square(); \ |
| pzr -= pzi.square(); \ |
| pzr += pcr; \ |
| pzi = (2*pzr_buf)*pzi; \ |
| pzi += pci; |
| ITERATE ITERATE ITERATE ITERATE |
| } |
| pix_dont_diverge = ((pzr.square() + pzi.square()) |
| .eval() // temporary fix as what follows is not yet vectorized by Eigen |
| <= Packet::Constant(4)) |
| // the 4 here is not a magic value, it's a math fact that if |
| // the square modulus is >4 then divergence is inevitable. |
| .template cast<int>(); |
| pix_iter += iters_before_test * pix_dont_diverge; |
| j++; |
| total_iter += iters_before_test * packetSize; |
| } |
| while(j < max_iter/iters_before_test && pix_dont_diverge.any()); // any() is not yet vectorized by Eigen |
| |
| // compute pixel colors |
| for(int i = 0; i < packetSize; i++) |
| { |
| buffer[4*(pix+i)] = 255*pix_iter[i]/max_iter; |
| buffer[4*(pix+i)+1] = 0; |
| buffer[4*(pix+i)+2] = 0; |
| } |
| } |
| |
| // if the width is not a multiple of packetSize, fill the remainder in black |
| for(int x = alignedWidth; x < img_width; x++, pix++) |
| buffer[4*pix] = buffer[4*pix+1] = buffer[4*pix+2] = 0; |
| } |
| return; |
| } |
| |
| void MandelbrotThread::run() |
| { |
| setTerminationEnabled(true); |
| double resolution = widget->xradius*2/widget->width(); |
| max_iter = 128; |
| if(resolution < 1e-4f) max_iter += 128 * ( - 4 - std::log10(resolution)); |
| int img_width = widget->width()/widget->draft; |
| int img_height = widget->height()/widget->draft; |
| single_precision = resolution > 1e-7f; |
| |
| if(single_precision) |
| render<float>(img_width, img_height); |
| else |
| render<double>(img_width, img_height); |
| } |
| |
| void MandelbrotWidget::paintEvent(QPaintEvent *) |
| { |
| static float max_speed = 0; |
| long long total_iter = 0; |
| |
| QTime time; |
| time.start(); |
| for(int th = 0; th < threadcount; th++) |
| threads[th]->start(QThread::LowPriority); |
| for(int th = 0; th < threadcount; th++) |
| { |
| threads[th]->wait(); |
| total_iter += threads[th]->total_iter; |
| } |
| int elapsed = time.elapsed(); |
| |
| if(draft == 1) |
| { |
| float speed = elapsed ? float(total_iter)*1000/elapsed : 0; |
| max_speed = std::max(max_speed, speed); |
| std::cout << threadcount << " threads, " |
| << elapsed << " ms, " |
| << speed << " iters/s (max " << max_speed << ")" << std::endl; |
| int packetSize = threads[0]->single_precision |
| ? int(Eigen::internal::packet_traits<float>::size) |
| : int(Eigen::internal::packet_traits<double>::size); |
| setWindowTitle(QString("resolution ")+QString::number(xradius*2/width(), 'e', 2) |
| +QString(", %1 iterations per pixel, ").arg(threads[0]->max_iter) |
| +(threads[0]->single_precision ? QString("single ") : QString("double ")) |
| +QString("precision, ") |
| +(packetSize==1 ? QString("no vectorization") |
| : QString("vectorized (%1 per packet)").arg(packetSize))); |
| } |
| |
| QImage image(buffer, width()/draft, height()/draft, QImage::Format_RGB32); |
| QPainter painter(this); |
| painter.drawImage(QPoint(0, 0), image.scaled(width(), height())); |
| |
| if(draft>1) |
| { |
| draft /= 2; |
| setWindowTitle(QString("recomputing at 1/%1 resolution...").arg(draft)); |
| update(); |
| } |
| } |
| |
| void MandelbrotWidget::mousePressEvent(QMouseEvent *event) |
| { |
| if( event->buttons() & Qt::LeftButton ) |
| { |
| lastpos = event->pos(); |
| double yradius = xradius * height() / width(); |
| center = Eigen::Vector2d(center.x() + (event->pos().x() - width()/2) * xradius * 2 / width(), |
| center.y() + (event->pos().y() - height()/2) * yradius * 2 / height()); |
| draft = 16; |
| for(int th = 0; th < threadcount; th++) |
| threads[th]->terminate(); |
| update(); |
| } |
| } |
| |
| void MandelbrotWidget::mouseMoveEvent(QMouseEvent *event) |
| { |
| QPoint delta = event->pos() - lastpos; |
| lastpos = event->pos(); |
| if( event->buttons() & Qt::LeftButton ) |
| { |
| double t = 1 + 5 * double(delta.y()) / height(); |
| if(t < 0.5) t = 0.5; |
| if(t > 2) t = 2; |
| xradius *= t; |
| draft = 16; |
| for(int th = 0; th < threadcount; th++) |
| threads[th]->terminate(); |
| update(); |
| } |
| } |
| |
| int main(int argc, char *argv[]) |
| { |
| QApplication app(argc, argv); |
| MandelbrotWidget w; |
| w.show(); |
| return app.exec(); |
| } |
| |
| #include "mandelbrot.moc" |