| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #define EIGEN_NO_STATIC_ASSERT |
| |
| #include "main.h" |
| #include "random_without_cast_overflow.h" |
| |
| template<typename MatrixType> void basicStuff(const MatrixType& m) |
| { |
| typedef typename MatrixType::Scalar Scalar; |
| typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType; |
| typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> SquareMatrixType; |
| |
| Index rows = m.rows(); |
| Index cols = m.cols(); |
| |
| // this test relies a lot on Random.h, and there's not much more that we can do |
| // to test it, hence I consider that we will have tested Random.h |
| MatrixType m1 = MatrixType::Random(rows, cols), |
| m2 = MatrixType::Random(rows, cols), |
| m3(rows, cols), |
| mzero = MatrixType::Zero(rows, cols), |
| square = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime>::Random(rows, rows); |
| VectorType v1 = VectorType::Random(rows), |
| vzero = VectorType::Zero(rows); |
| SquareMatrixType sm1 = SquareMatrixType::Random(rows,rows), sm2(rows,rows); |
| |
| Scalar x = 0; |
| while(x == Scalar(0)) x = internal::random<Scalar>(); |
| |
| Index r = internal::random<Index>(0, rows-1), |
| c = internal::random<Index>(0, cols-1); |
| |
| m1.coeffRef(r,c) = x; |
| VERIFY_IS_APPROX(x, m1.coeff(r,c)); |
| m1(r,c) = x; |
| VERIFY_IS_APPROX(x, m1(r,c)); |
| v1.coeffRef(r) = x; |
| VERIFY_IS_APPROX(x, v1.coeff(r)); |
| v1(r) = x; |
| VERIFY_IS_APPROX(x, v1(r)); |
| v1[r] = x; |
| VERIFY_IS_APPROX(x, v1[r]); |
| |
| // test fetching with various index types. |
| Index r1 = internal::random<Index>(0, numext::mini(Index(127),rows-1)); |
| x = v1(static_cast<char>(r1)); |
| x = v1(static_cast<signed char>(r1)); |
| x = v1(static_cast<unsigned char>(r1)); |
| x = v1(static_cast<signed short>(r1)); |
| x = v1(static_cast<unsigned short>(r1)); |
| x = v1(static_cast<signed int>(r1)); |
| x = v1(static_cast<unsigned int>(r1)); |
| x = v1(static_cast<signed long>(r1)); |
| x = v1(static_cast<unsigned long>(r1)); |
| #if EIGEN_HAS_CXX11 |
| x = v1(static_cast<long long int>(r1)); |
| x = v1(static_cast<unsigned long long int>(r1)); |
| #endif |
| |
| VERIFY_IS_APPROX( v1, v1); |
| VERIFY_IS_NOT_APPROX( v1, 2*v1); |
| VERIFY_IS_MUCH_SMALLER_THAN( vzero, v1); |
| VERIFY_IS_MUCH_SMALLER_THAN( vzero, v1.squaredNorm()); |
| VERIFY_IS_NOT_MUCH_SMALLER_THAN(v1, v1); |
| VERIFY_IS_APPROX( vzero, v1-v1); |
| VERIFY_IS_APPROX( m1, m1); |
| VERIFY_IS_NOT_APPROX( m1, 2*m1); |
| VERIFY_IS_MUCH_SMALLER_THAN( mzero, m1); |
| VERIFY_IS_NOT_MUCH_SMALLER_THAN(m1, m1); |
| VERIFY_IS_APPROX( mzero, m1-m1); |
| |
| // always test operator() on each read-only expression class, |
| // in order to check const-qualifiers. |
| // indeed, if an expression class (here Zero) is meant to be read-only, |
| // hence has no _write() method, the corresponding MatrixBase method (here zero()) |
| // should return a const-qualified object so that it is the const-qualified |
| // operator() that gets called, which in turn calls _read(). |
| VERIFY_IS_MUCH_SMALLER_THAN(MatrixType::Zero(rows,cols)(r,c), static_cast<Scalar>(1)); |
| |
| // now test copying a row-vector into a (column-)vector and conversely. |
| square.col(r) = square.row(r).eval(); |
| Matrix<Scalar, 1, MatrixType::RowsAtCompileTime> rv(rows); |
| Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> cv(rows); |
| rv = square.row(r); |
| cv = square.col(r); |
| |
| VERIFY_IS_APPROX(rv, cv.transpose()); |
| |
| if(cols!=1 && rows!=1 && MatrixType::SizeAtCompileTime!=Dynamic) |
| { |
| VERIFY_RAISES_ASSERT(m1 = (m2.block(0,0, rows-1, cols-1))); |
| } |
| |
| if(cols!=1 && rows!=1) |
| { |
| VERIFY_RAISES_ASSERT(m1[0]); |
| VERIFY_RAISES_ASSERT((m1+m1)[0]); |
| } |
| |
| VERIFY_IS_APPROX(m3 = m1,m1); |
| MatrixType m4; |
| VERIFY_IS_APPROX(m4 = m1,m1); |
| |
| m3.real() = m1.real(); |
| VERIFY_IS_APPROX(static_cast<const MatrixType&>(m3).real(), static_cast<const MatrixType&>(m1).real()); |
| VERIFY_IS_APPROX(static_cast<const MatrixType&>(m3).real(), m1.real()); |
| |
| // check == / != operators |
| VERIFY(m1==m1); |
| VERIFY(m1!=m2); |
| VERIFY(!(m1==m2)); |
| VERIFY(!(m1!=m1)); |
| m1 = m2; |
| VERIFY(m1==m2); |
| VERIFY(!(m1!=m2)); |
| |
| // check automatic transposition |
| sm2.setZero(); |
| for(Index i=0;i<rows;++i) |
| sm2.col(i) = sm1.row(i); |
| VERIFY_IS_APPROX(sm2,sm1.transpose()); |
| |
| sm2.setZero(); |
| for(Index i=0;i<rows;++i) |
| sm2.col(i).noalias() = sm1.row(i); |
| VERIFY_IS_APPROX(sm2,sm1.transpose()); |
| |
| sm2.setZero(); |
| for(Index i=0;i<rows;++i) |
| sm2.col(i).noalias() += sm1.row(i); |
| VERIFY_IS_APPROX(sm2,sm1.transpose()); |
| |
| sm2.setZero(); |
| for(Index i=0;i<rows;++i) |
| sm2.col(i).noalias() -= sm1.row(i); |
| VERIFY_IS_APPROX(sm2,-sm1.transpose()); |
| |
| // check ternary usage |
| { |
| bool b = internal::random<int>(0,10)>5; |
| m3 = b ? m1 : m2; |
| if(b) VERIFY_IS_APPROX(m3,m1); |
| else VERIFY_IS_APPROX(m3,m2); |
| m3 = b ? -m1 : m2; |
| if(b) VERIFY_IS_APPROX(m3,-m1); |
| else VERIFY_IS_APPROX(m3,m2); |
| m3 = b ? m1 : -m2; |
| if(b) VERIFY_IS_APPROX(m3,m1); |
| else VERIFY_IS_APPROX(m3,-m2); |
| } |
| } |
| |
| template<typename MatrixType> void basicStuffComplex(const MatrixType& m) |
| { |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename NumTraits<Scalar>::Real RealScalar; |
| typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime> RealMatrixType; |
| |
| Index rows = m.rows(); |
| Index cols = m.cols(); |
| |
| Scalar s1 = internal::random<Scalar>(), |
| s2 = internal::random<Scalar>(); |
| |
| VERIFY(numext::real(s1)==numext::real_ref(s1)); |
| VERIFY(numext::imag(s1)==numext::imag_ref(s1)); |
| numext::real_ref(s1) = numext::real(s2); |
| numext::imag_ref(s1) = numext::imag(s2); |
| VERIFY(internal::isApprox(s1, s2, NumTraits<RealScalar>::epsilon())); |
| // extended precision in Intel FPUs means that s1 == s2 in the line above is not guaranteed. |
| |
| RealMatrixType rm1 = RealMatrixType::Random(rows,cols), |
| rm2 = RealMatrixType::Random(rows,cols); |
| MatrixType cm(rows,cols); |
| cm.real() = rm1; |
| cm.imag() = rm2; |
| VERIFY_IS_APPROX(static_cast<const MatrixType&>(cm).real(), rm1); |
| VERIFY_IS_APPROX(static_cast<const MatrixType&>(cm).imag(), rm2); |
| rm1.setZero(); |
| rm2.setZero(); |
| rm1 = cm.real(); |
| rm2 = cm.imag(); |
| VERIFY_IS_APPROX(static_cast<const MatrixType&>(cm).real(), rm1); |
| VERIFY_IS_APPROX(static_cast<const MatrixType&>(cm).imag(), rm2); |
| cm.real().setZero(); |
| VERIFY(static_cast<const MatrixType&>(cm).real().isZero()); |
| VERIFY(!static_cast<const MatrixType&>(cm).imag().isZero()); |
| } |
| |
| template<typename SrcScalar, typename TgtScalar> |
| struct casting_test { |
| static void run() { |
| Matrix<SrcScalar,4,4> m; |
| for (int i=0; i<m.rows(); ++i) { |
| for (int j=0; j<m.cols(); ++j) { |
| m(i, j) = internal::random_without_cast_overflow<SrcScalar,TgtScalar>::value(); |
| } |
| } |
| Matrix<TgtScalar,4,4> n = m.template cast<TgtScalar>(); |
| for (int i=0; i<m.rows(); ++i) { |
| for (int j=0; j<m.cols(); ++j) { |
| VERIFY_IS_APPROX(n(i, j), (internal::cast<SrcScalar,TgtScalar>(m(i, j)))); |
| } |
| } |
| } |
| }; |
| |
| template<typename SrcScalar, typename EnableIf = void> |
| struct casting_test_runner { |
| static void run() { |
| casting_test<SrcScalar, bool>::run(); |
| casting_test<SrcScalar, int8_t>::run(); |
| casting_test<SrcScalar, uint8_t>::run(); |
| casting_test<SrcScalar, int16_t>::run(); |
| casting_test<SrcScalar, uint16_t>::run(); |
| casting_test<SrcScalar, int32_t>::run(); |
| casting_test<SrcScalar, uint32_t>::run(); |
| #if EIGEN_HAS_CXX11 |
| casting_test<SrcScalar, int64_t>::run(); |
| casting_test<SrcScalar, uint64_t>::run(); |
| #endif |
| casting_test<SrcScalar, half>::run(); |
| casting_test<SrcScalar, bfloat16>::run(); |
| casting_test<SrcScalar, float>::run(); |
| casting_test<SrcScalar, double>::run(); |
| casting_test<SrcScalar, std::complex<float> >::run(); |
| casting_test<SrcScalar, std::complex<double> >::run(); |
| } |
| }; |
| |
| template<typename SrcScalar> |
| struct casting_test_runner<SrcScalar, typename internal::enable_if<(NumTraits<SrcScalar>::IsComplex)>::type> |
| { |
| static void run() { |
| // Only a few casts from std::complex<T> are defined. |
| casting_test<SrcScalar, half>::run(); |
| casting_test<SrcScalar, bfloat16>::run(); |
| casting_test<SrcScalar, std::complex<float> >::run(); |
| casting_test<SrcScalar, std::complex<double> >::run(); |
| } |
| }; |
| |
| void casting_all() { |
| casting_test_runner<bool>::run(); |
| casting_test_runner<int8_t>::run(); |
| casting_test_runner<uint8_t>::run(); |
| casting_test_runner<int16_t>::run(); |
| casting_test_runner<uint16_t>::run(); |
| casting_test_runner<int32_t>::run(); |
| casting_test_runner<uint32_t>::run(); |
| #if EIGEN_HAS_CXX11 |
| casting_test_runner<int64_t>::run(); |
| casting_test_runner<uint64_t>::run(); |
| #endif |
| casting_test_runner<half>::run(); |
| casting_test_runner<bfloat16>::run(); |
| casting_test_runner<float>::run(); |
| casting_test_runner<double>::run(); |
| casting_test_runner<std::complex<float> >::run(); |
| casting_test_runner<std::complex<double> >::run(); |
| } |
| |
| template <typename Scalar> |
| void fixedSizeMatrixConstruction() |
| { |
| Scalar raw[4]; |
| for(int k=0; k<4; ++k) |
| raw[k] = internal::random<Scalar>(); |
| |
| { |
| Matrix<Scalar,4,1> m(raw); |
| Array<Scalar,4,1> a(raw); |
| for(int k=0; k<4; ++k) VERIFY(m(k) == raw[k]); |
| for(int k=0; k<4; ++k) VERIFY(a(k) == raw[k]); |
| VERIFY_IS_EQUAL(m,(Matrix<Scalar,4,1>(raw[0],raw[1],raw[2],raw[3]))); |
| VERIFY((a==(Array<Scalar,4,1>(raw[0],raw[1],raw[2],raw[3]))).all()); |
| } |
| { |
| Matrix<Scalar,3,1> m(raw); |
| Array<Scalar,3,1> a(raw); |
| for(int k=0; k<3; ++k) VERIFY(m(k) == raw[k]); |
| for(int k=0; k<3; ++k) VERIFY(a(k) == raw[k]); |
| VERIFY_IS_EQUAL(m,(Matrix<Scalar,3,1>(raw[0],raw[1],raw[2]))); |
| VERIFY((a==Array<Scalar,3,1>(raw[0],raw[1],raw[2])).all()); |
| } |
| { |
| Matrix<Scalar,2,1> m(raw), m2( (DenseIndex(raw[0])), (DenseIndex(raw[1])) ); |
| Array<Scalar,2,1> a(raw), a2( (DenseIndex(raw[0])), (DenseIndex(raw[1])) ); |
| for(int k=0; k<2; ++k) VERIFY(m(k) == raw[k]); |
| for(int k=0; k<2; ++k) VERIFY(a(k) == raw[k]); |
| VERIFY_IS_EQUAL(m,(Matrix<Scalar,2,1>(raw[0],raw[1]))); |
| VERIFY((a==Array<Scalar,2,1>(raw[0],raw[1])).all()); |
| for(int k=0; k<2; ++k) VERIFY(m2(k) == DenseIndex(raw[k])); |
| for(int k=0; k<2; ++k) VERIFY(a2(k) == DenseIndex(raw[k])); |
| } |
| { |
| Matrix<Scalar,1,2> m(raw), |
| m2( (DenseIndex(raw[0])), (DenseIndex(raw[1])) ), |
| m3( (int(raw[0])), (int(raw[1])) ), |
| m4( (float(raw[0])), (float(raw[1])) ); |
| Array<Scalar,1,2> a(raw), a2( (DenseIndex(raw[0])), (DenseIndex(raw[1])) ); |
| for(int k=0; k<2; ++k) VERIFY(m(k) == raw[k]); |
| for(int k=0; k<2; ++k) VERIFY(a(k) == raw[k]); |
| VERIFY_IS_EQUAL(m,(Matrix<Scalar,1,2>(raw[0],raw[1]))); |
| VERIFY((a==Array<Scalar,1,2>(raw[0],raw[1])).all()); |
| for(int k=0; k<2; ++k) VERIFY(m2(k) == DenseIndex(raw[k])); |
| for(int k=0; k<2; ++k) VERIFY(a2(k) == DenseIndex(raw[k])); |
| for(int k=0; k<2; ++k) VERIFY(m3(k) == int(raw[k])); |
| for(int k=0; k<2; ++k) VERIFY((m4(k)) == Scalar(float(raw[k]))); |
| } |
| { |
| Matrix<Scalar,1,1> m(raw), m1(raw[0]), m2( (DenseIndex(raw[0])) ), m3( (int(raw[0])) ); |
| Array<Scalar,1,1> a(raw), a1(raw[0]), a2( (DenseIndex(raw[0])) ); |
| VERIFY(m(0) == raw[0]); |
| VERIFY(a(0) == raw[0]); |
| VERIFY(m1(0) == raw[0]); |
| VERIFY(a1(0) == raw[0]); |
| VERIFY(m2(0) == DenseIndex(raw[0])); |
| VERIFY(a2(0) == DenseIndex(raw[0])); |
| VERIFY(m3(0) == int(raw[0])); |
| VERIFY_IS_EQUAL(m,(Matrix<Scalar,1,1>(raw[0]))); |
| VERIFY((a==Array<Scalar,1,1>(raw[0])).all()); |
| } |
| } |
| |
| EIGEN_DECLARE_TEST(basicstuff) |
| { |
| for(int i = 0; i < g_repeat; i++) { |
| CALL_SUBTEST_1( basicStuff(Matrix<float, 1, 1>()) ); |
| CALL_SUBTEST_2( basicStuff(Matrix4d()) ); |
| CALL_SUBTEST_3( basicStuff(MatrixXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); |
| CALL_SUBTEST_4( basicStuff(MatrixXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); |
| CALL_SUBTEST_5( basicStuff(MatrixXcd(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); |
| CALL_SUBTEST_6( basicStuff(Matrix<float, 100, 100>()) ); |
| CALL_SUBTEST_7( basicStuff(Matrix<long double,Dynamic,Dynamic>(internal::random<int>(1,EIGEN_TEST_MAX_SIZE),internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); |
| CALL_SUBTEST_8( casting_all() ); |
| |
| CALL_SUBTEST_3( basicStuffComplex(MatrixXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); |
| CALL_SUBTEST_5( basicStuffComplex(MatrixXcd(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); |
| } |
| |
| CALL_SUBTEST_1(fixedSizeMatrixConstruction<unsigned char>()); |
| CALL_SUBTEST_1(fixedSizeMatrixConstruction<float>()); |
| CALL_SUBTEST_1(fixedSizeMatrixConstruction<double>()); |
| CALL_SUBTEST_1(fixedSizeMatrixConstruction<int>()); |
| CALL_SUBTEST_1(fixedSizeMatrixConstruction<long int>()); |
| CALL_SUBTEST_1(fixedSizeMatrixConstruction<std::ptrdiff_t>()); |
| } |