| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #include "main.h" |
| |
| #if EIGEN_MAX_ALIGN_BYTES>0 |
| #define ALIGNMENT EIGEN_MAX_ALIGN_BYTES |
| #else |
| #define ALIGNMENT 1 |
| #endif |
| |
| typedef Matrix<float,16,1> Vector16f; |
| typedef Matrix<float,8,1> Vector8f; |
| |
| void check_handmade_aligned_malloc() |
| { |
| for(int i = 1; i < 1000; i++) |
| { |
| char *p = (char*)internal::handmade_aligned_malloc(i); |
| VERIFY(internal::UIntPtr(p)%ALIGNMENT==0); |
| // if the buffer is wrongly allocated this will give a bad write --> check with valgrind |
| for(int j = 0; j < i; j++) p[j]=0; |
| internal::handmade_aligned_free(p); |
| } |
| } |
| |
| void check_aligned_malloc() |
| { |
| for(int i = ALIGNMENT; i < 1000; i++) |
| { |
| char *p = (char*)internal::aligned_malloc(i); |
| VERIFY(internal::UIntPtr(p)%ALIGNMENT==0); |
| // if the buffer is wrongly allocated this will give a bad write --> check with valgrind |
| for(int j = 0; j < i; j++) p[j]=0; |
| internal::aligned_free(p); |
| } |
| } |
| |
| void check_aligned_new() |
| { |
| for(int i = ALIGNMENT; i < 1000; i++) |
| { |
| float *p = internal::aligned_new<float>(i); |
| VERIFY(internal::UIntPtr(p)%ALIGNMENT==0); |
| // if the buffer is wrongly allocated this will give a bad write --> check with valgrind |
| for(int j = 0; j < i; j++) p[j]=0; |
| internal::aligned_delete(p,i); |
| } |
| } |
| |
| void check_aligned_stack_alloc() |
| { |
| for(int i = ALIGNMENT; i < 400; i++) |
| { |
| ei_declare_aligned_stack_constructed_variable(float,p,i,0); |
| VERIFY(internal::UIntPtr(p)%ALIGNMENT==0); |
| // if the buffer is wrongly allocated this will give a bad write --> check with valgrind |
| for(int j = 0; j < i; j++) p[j]=0; |
| } |
| } |
| |
| |
| // test compilation with both a struct and a class... |
| struct MyStruct |
| { |
| EIGEN_MAKE_ALIGNED_OPERATOR_NEW |
| char dummychar; |
| Vector16f avec; |
| }; |
| |
| class MyClassA |
| { |
| public: |
| EIGEN_MAKE_ALIGNED_OPERATOR_NEW |
| char dummychar; |
| Vector16f avec; |
| }; |
| |
| template<typename T> void check_dynaligned() |
| { |
| // TODO have to be updated once we support multiple alignment values |
| if(T::SizeAtCompileTime % ALIGNMENT == 0) |
| { |
| T* obj = new T; |
| VERIFY(T::NeedsToAlign==1); |
| VERIFY(internal::UIntPtr(obj)%ALIGNMENT==0); |
| delete obj; |
| } |
| } |
| |
| template<typename T> void check_custom_new_delete() |
| { |
| { |
| T* t = new T; |
| delete t; |
| } |
| |
| { |
| std::size_t N = internal::random<std::size_t>(1,10); |
| T* t = new T[N]; |
| delete[] t; |
| } |
| |
| #if EIGEN_MAX_ALIGN_BYTES>0 && (!EIGEN_HAS_CXX17_OVERALIGN) |
| { |
| T* t = static_cast<T *>((T::operator new)(sizeof(T))); |
| (T::operator delete)(t, sizeof(T)); |
| } |
| |
| { |
| T* t = static_cast<T *>((T::operator new)(sizeof(T))); |
| (T::operator delete)(t); |
| } |
| #endif |
| } |
| |
| EIGEN_DECLARE_TEST(dynalloc) |
| { |
| // low level dynamic memory allocation |
| CALL_SUBTEST(check_handmade_aligned_malloc()); |
| CALL_SUBTEST(check_aligned_malloc()); |
| CALL_SUBTEST(check_aligned_new()); |
| CALL_SUBTEST(check_aligned_stack_alloc()); |
| |
| for (int i=0; i<g_repeat*100; ++i) |
| { |
| CALL_SUBTEST( check_custom_new_delete<Vector4f>() ); |
| CALL_SUBTEST( check_custom_new_delete<Vector2f>() ); |
| CALL_SUBTEST( check_custom_new_delete<Matrix4f>() ); |
| CALL_SUBTEST( check_custom_new_delete<MatrixXi>() ); |
| } |
| |
| // check static allocation, who knows ? |
| #if EIGEN_MAX_STATIC_ALIGN_BYTES |
| for (int i=0; i<g_repeat*100; ++i) |
| { |
| CALL_SUBTEST(check_dynaligned<Vector4f>() ); |
| CALL_SUBTEST(check_dynaligned<Vector2d>() ); |
| CALL_SUBTEST(check_dynaligned<Matrix4f>() ); |
| CALL_SUBTEST(check_dynaligned<Vector4d>() ); |
| CALL_SUBTEST(check_dynaligned<Vector4i>() ); |
| CALL_SUBTEST(check_dynaligned<Vector8f>() ); |
| CALL_SUBTEST(check_dynaligned<Vector16f>() ); |
| } |
| |
| { |
| MyStruct foo0; VERIFY(internal::UIntPtr(foo0.avec.data())%ALIGNMENT==0); |
| MyClassA fooA; VERIFY(internal::UIntPtr(fooA.avec.data())%ALIGNMENT==0); |
| } |
| |
| // dynamic allocation, single object |
| for (int i=0; i<g_repeat*100; ++i) |
| { |
| MyStruct *foo0 = new MyStruct(); VERIFY(internal::UIntPtr(foo0->avec.data())%ALIGNMENT==0); |
| MyClassA *fooA = new MyClassA(); VERIFY(internal::UIntPtr(fooA->avec.data())%ALIGNMENT==0); |
| delete foo0; |
| delete fooA; |
| } |
| |
| // dynamic allocation, array |
| const int N = 10; |
| for (int i=0; i<g_repeat*100; ++i) |
| { |
| MyStruct *foo0 = new MyStruct[N]; VERIFY(internal::UIntPtr(foo0->avec.data())%ALIGNMENT==0); |
| MyClassA *fooA = new MyClassA[N]; VERIFY(internal::UIntPtr(fooA->avec.data())%ALIGNMENT==0); |
| delete[] foo0; |
| delete[] fooA; |
| } |
| #endif |
| |
| } |