| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2015-2016 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| // workaround issue between gcc >= 4.7 and cuda 5.5 |
| #if (defined __GNUC__) && (__GNUC__>4 || __GNUC_MINOR__>=7) |
| #undef _GLIBCXX_ATOMIC_BUILTINS |
| #undef _GLIBCXX_USE_INT128 |
| #endif |
| |
| #define EIGEN_TEST_NO_LONGDOUBLE |
| #define EIGEN_DEFAULT_DENSE_INDEX_TYPE int |
| |
| #include "main.h" |
| #include "gpu_common.h" |
| |
| // Check that dense modules can be properly parsed by nvcc |
| #include <Eigen/Dense> |
| |
| // struct Foo{ |
| // EIGEN_DEVICE_FUNC |
| // void operator()(int i, const float* mats, float* vecs) const { |
| // using namespace Eigen; |
| // // Matrix3f M(data); |
| // // Vector3f x(data+9); |
| // // Map<Vector3f>(data+9) = M.inverse() * x; |
| // Matrix3f M(mats+i/16); |
| // Vector3f x(vecs+i*3); |
| // // using std::min; |
| // // using std::sqrt; |
| // Map<Vector3f>(vecs+i*3) << x.minCoeff(), 1, 2;// / x.dot(x);//(M.inverse() * x) / x.x(); |
| // //x = x*2 + x.y() * x + x * x.maxCoeff() - x / x.sum(); |
| // } |
| // }; |
| |
| template<typename T> |
| struct coeff_wise { |
| EIGEN_DEVICE_FUNC |
| void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const |
| { |
| using namespace Eigen; |
| T x1(in+i); |
| T x2(in+i+1); |
| T x3(in+i+2); |
| Map<T> res(out+i*T::MaxSizeAtCompileTime); |
| |
| res.array() += (in[0] * x1 + x2).array() * x3.array(); |
| } |
| }; |
| |
| template<typename T> |
| struct complex_sqrt { |
| EIGEN_DEVICE_FUNC |
| void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const |
| { |
| using namespace Eigen; |
| typedef typename T::Scalar ComplexType; |
| typedef typename T::Scalar::value_type ValueType; |
| const int num_special_inputs = 18; |
| |
| if (i == 0) { |
| const ValueType nan = std::numeric_limits<ValueType>::quiet_NaN(); |
| typedef Eigen::Vector<ComplexType, num_special_inputs> SpecialInputs; |
| SpecialInputs special_in; |
| special_in.setZero(); |
| int idx = 0; |
| special_in[idx++] = ComplexType(0, 0); |
| special_in[idx++] = ComplexType(-0, 0); |
| special_in[idx++] = ComplexType(0, -0); |
| special_in[idx++] = ComplexType(-0, -0); |
| // GCC's fallback sqrt implementation fails for inf inputs. |
| // It is called when _GLIBCXX_USE_C99_COMPLEX is false or if |
| // clang includes the GCC header (which temporarily disables |
| // _GLIBCXX_USE_C99_COMPLEX) |
| #if !defined(_GLIBCXX_COMPLEX) || \ |
| (_GLIBCXX_USE_C99_COMPLEX && !defined(__CLANG_CUDA_WRAPPERS_COMPLEX)) |
| const ValueType inf = std::numeric_limits<ValueType>::infinity(); |
| special_in[idx++] = ComplexType(1.0, inf); |
| special_in[idx++] = ComplexType(nan, inf); |
| special_in[idx++] = ComplexType(1.0, -inf); |
| special_in[idx++] = ComplexType(nan, -inf); |
| special_in[idx++] = ComplexType(-inf, 1.0); |
| special_in[idx++] = ComplexType(inf, 1.0); |
| special_in[idx++] = ComplexType(-inf, -1.0); |
| special_in[idx++] = ComplexType(inf, -1.0); |
| special_in[idx++] = ComplexType(-inf, nan); |
| special_in[idx++] = ComplexType(inf, nan); |
| #endif |
| special_in[idx++] = ComplexType(1.0, nan); |
| special_in[idx++] = ComplexType(nan, 1.0); |
| special_in[idx++] = ComplexType(nan, -1.0); |
| special_in[idx++] = ComplexType(nan, nan); |
| |
| Map<SpecialInputs> special_out(out); |
| special_out = special_in.cwiseSqrt(); |
| } |
| |
| T x1(in + i); |
| Map<T> res(out + num_special_inputs + i*T::MaxSizeAtCompileTime); |
| res = x1.cwiseSqrt(); |
| } |
| }; |
| |
| template<typename T> |
| struct complex_operators { |
| EIGEN_DEVICE_FUNC |
| void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const |
| { |
| using namespace Eigen; |
| typedef typename T::Scalar ComplexType; |
| typedef typename T::Scalar::value_type ValueType; |
| const int num_scalar_operators = 24; |
| const int num_vector_operators = 23; // no unary + operator. |
| int out_idx = i * (num_scalar_operators + num_vector_operators * T::MaxSizeAtCompileTime); |
| |
| // Scalar operators. |
| const ComplexType a = in[i]; |
| const ComplexType b = in[i + 1]; |
| |
| out[out_idx++] = +a; |
| out[out_idx++] = -a; |
| |
| out[out_idx++] = a + b; |
| out[out_idx++] = a + numext::real(b); |
| out[out_idx++] = numext::real(a) + b; |
| out[out_idx++] = a - b; |
| out[out_idx++] = a - numext::real(b); |
| out[out_idx++] = numext::real(a) - b; |
| out[out_idx++] = a * b; |
| out[out_idx++] = a * numext::real(b); |
| out[out_idx++] = numext::real(a) * b; |
| out[out_idx++] = a / b; |
| out[out_idx++] = a / numext::real(b); |
| out[out_idx++] = numext::real(a) / b; |
| |
| out[out_idx] = a; out[out_idx++] += b; |
| out[out_idx] = a; out[out_idx++] -= b; |
| out[out_idx] = a; out[out_idx++] *= b; |
| out[out_idx] = a; out[out_idx++] /= b; |
| |
| const ComplexType true_value = ComplexType(ValueType(1), ValueType(0)); |
| const ComplexType false_value = ComplexType(ValueType(0), ValueType(0)); |
| out[out_idx++] = (a == b ? true_value : false_value); |
| out[out_idx++] = (a == numext::real(b) ? true_value : false_value); |
| out[out_idx++] = (numext::real(a) == b ? true_value : false_value); |
| out[out_idx++] = (a != b ? true_value : false_value); |
| out[out_idx++] = (a != numext::real(b) ? true_value : false_value); |
| out[out_idx++] = (numext::real(a) != b ? true_value : false_value); |
| |
| // Vector versions. |
| T x1(in + i); |
| T x2(in + i + 1); |
| const int res_size = T::MaxSizeAtCompileTime * num_scalar_operators; |
| const int size = T::MaxSizeAtCompileTime; |
| int block_idx = 0; |
| |
| Map<VectorX<ComplexType>> res(out + out_idx, res_size); |
| res.segment(block_idx, size) = -x1; |
| block_idx += size; |
| |
| res.segment(block_idx, size) = x1 + x2; |
| block_idx += size; |
| res.segment(block_idx, size) = x1 + x2.real(); |
| block_idx += size; |
| res.segment(block_idx, size) = x1.real() + x2; |
| block_idx += size; |
| res.segment(block_idx, size) = x1 - x2; |
| block_idx += size; |
| res.segment(block_idx, size) = x1 - x2.real(); |
| block_idx += size; |
| res.segment(block_idx, size) = x1.real() - x2; |
| block_idx += size; |
| res.segment(block_idx, size) = x1.array() * x2.array(); |
| block_idx += size; |
| res.segment(block_idx, size) = x1.array() * x2.real().array(); |
| block_idx += size; |
| res.segment(block_idx, size) = x1.real().array() * x2.array(); |
| block_idx += size; |
| res.segment(block_idx, size) = x1.array() / x2.array(); |
| block_idx += size; |
| res.segment(block_idx, size) = x1.array() / x2.real().array(); |
| block_idx += size; |
| res.segment(block_idx, size) = x1.real().array() / x2.array(); |
| block_idx += size; |
| |
| res.segment(block_idx, size) = x1; res.segment(block_idx, size) += x2; |
| block_idx += size; |
| res.segment(block_idx, size) = x1; res.segment(block_idx, size) -= x2; |
| block_idx += size; |
| res.segment(block_idx, size) = x1; res.segment(block_idx, size).array() *= x2.array(); |
| block_idx += size; |
| res.segment(block_idx, size) = x1; res.segment(block_idx, size).array() /= x2.array(); |
| block_idx += size; |
| |
| // Equality comparisons currently not functional on device |
| // (std::equal_to<T> is host-only). |
| // const T true_vector = T::Constant(true_value); |
| // const T false_vector = T::Constant(false_value); |
| // res.segment(block_idx, size) = (x1 == x2 ? true_vector : false_vector); |
| // block_idx += size; |
| // res.segment(block_idx, size) = (x1 == x2.real() ? true_vector : false_vector); |
| // block_idx += size; |
| // res.segment(block_idx, size) = (x1.real() == x2 ? true_vector : false_vector); |
| // block_idx += size; |
| // res.segment(block_idx, size) = (x1 != x2 ? true_vector : false_vector); |
| // block_idx += size; |
| // res.segment(block_idx, size) = (x1 != x2.real() ? true_vector : false_vector); |
| // block_idx += size; |
| // res.segment(block_idx, size) = (x1.real() != x2 ? true_vector : false_vector); |
| // block_idx += size; |
| } |
| }; |
| |
| template<typename T> |
| struct replicate { |
| EIGEN_DEVICE_FUNC |
| void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const |
| { |
| using namespace Eigen; |
| T x1(in+i); |
| int step = x1.size() * 4; |
| int stride = 3 * step; |
| |
| typedef Map<Array<typename T::Scalar,Dynamic,Dynamic> > MapType; |
| MapType(out+i*stride+0*step, x1.rows()*2, x1.cols()*2) = x1.replicate(2,2); |
| MapType(out+i*stride+1*step, x1.rows()*3, x1.cols()) = in[i] * x1.colwise().replicate(3); |
| MapType(out+i*stride+2*step, x1.rows(), x1.cols()*3) = in[i] * x1.rowwise().replicate(3); |
| } |
| }; |
| |
| template<typename T> |
| struct alloc_new_delete { |
| EIGEN_DEVICE_FUNC |
| void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const |
| { |
| int offset = 2*i*T::MaxSizeAtCompileTime; |
| T* x = new T(in + offset); |
| Eigen::Map<T> u(out + offset); |
| u = *x; |
| delete x; |
| |
| offset += T::MaxSizeAtCompileTime; |
| T* y = new T[1]; |
| y[0] = T(in + offset); |
| Eigen::Map<T> v(out + offset); |
| v = y[0]; |
| delete[] y; |
| } |
| }; |
| |
| template<typename T> |
| struct redux { |
| EIGEN_DEVICE_FUNC |
| void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const |
| { |
| using namespace Eigen; |
| int N = 10; |
| T x1(in+i); |
| out[i*N+0] = x1.minCoeff(); |
| out[i*N+1] = x1.maxCoeff(); |
| out[i*N+2] = x1.sum(); |
| out[i*N+3] = x1.prod(); |
| out[i*N+4] = x1.matrix().squaredNorm(); |
| out[i*N+5] = x1.matrix().norm(); |
| out[i*N+6] = x1.colwise().sum().maxCoeff(); |
| out[i*N+7] = x1.rowwise().maxCoeff().sum(); |
| out[i*N+8] = x1.matrix().colwise().squaredNorm().sum(); |
| } |
| }; |
| |
| template<typename T1, typename T2> |
| struct prod_test { |
| EIGEN_DEVICE_FUNC |
| void operator()(int i, const typename T1::Scalar* in, typename T1::Scalar* out) const |
| { |
| using namespace Eigen; |
| typedef Matrix<typename T1::Scalar, T1::RowsAtCompileTime, T2::ColsAtCompileTime> T3; |
| T1 x1(in+i); |
| T2 x2(in+i+1); |
| Map<T3> res(out+i*T3::MaxSizeAtCompileTime); |
| res += in[i] * x1 * x2; |
| } |
| }; |
| |
| template<typename T1, typename T2> |
| struct diagonal { |
| EIGEN_DEVICE_FUNC |
| void operator()(int i, const typename T1::Scalar* in, typename T1::Scalar* out) const |
| { |
| using namespace Eigen; |
| T1 x1(in+i); |
| Map<T2> res(out+i*T2::MaxSizeAtCompileTime); |
| res += x1.diagonal(); |
| } |
| }; |
| |
| template<typename T> |
| struct eigenvalues_direct { |
| EIGEN_DEVICE_FUNC |
| void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const |
| { |
| using namespace Eigen; |
| typedef Matrix<typename T::Scalar, T::RowsAtCompileTime, 1> Vec; |
| T M(in+i); |
| Map<Vec> res(out+i*Vec::MaxSizeAtCompileTime); |
| T A = M*M.adjoint(); |
| SelfAdjointEigenSolver<T> eig; |
| eig.computeDirect(A); |
| res = eig.eigenvalues(); |
| } |
| }; |
| |
| template<typename T> |
| struct eigenvalues { |
| EIGEN_DEVICE_FUNC |
| void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const |
| { |
| using namespace Eigen; |
| typedef Matrix<typename T::Scalar, T::RowsAtCompileTime, 1> Vec; |
| T M(in+i); |
| Map<Vec> res(out+i*Vec::MaxSizeAtCompileTime); |
| T A = M*M.adjoint(); |
| SelfAdjointEigenSolver<T> eig; |
| eig.compute(A); |
| res = eig.eigenvalues(); |
| } |
| }; |
| |
| template<typename T> |
| struct matrix_inverse { |
| EIGEN_DEVICE_FUNC |
| void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const |
| { |
| using namespace Eigen; |
| T M(in+i); |
| Map<T> res(out+i*T::MaxSizeAtCompileTime); |
| res = M.inverse(); |
| } |
| }; |
| |
| template<typename T> |
| struct numeric_limits_test { |
| EIGEN_DEVICE_FUNC |
| void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const |
| { |
| EIGEN_UNUSED_VARIABLE(in) |
| int out_idx = i * 5; |
| out[out_idx++] = numext::numeric_limits<float>::epsilon(); |
| out[out_idx++] = (numext::numeric_limits<float>::max)(); |
| out[out_idx++] = (numext::numeric_limits<float>::min)(); |
| out[out_idx++] = numext::numeric_limits<float>::infinity(); |
| out[out_idx++] = numext::numeric_limits<float>::quiet_NaN(); |
| } |
| }; |
| |
| template<typename Type1, typename Type2> |
| bool verifyIsApproxWithInfsNans(const Type1& a, const Type2& b, typename Type1::Scalar* = 0) // Enabled for Eigen's type only |
| { |
| if (a.rows() != b.rows()) { |
| return false; |
| } |
| if (a.cols() != b.cols()) { |
| return false; |
| } |
| for (Index r = 0; r < a.rows(); ++r) { |
| for (Index c = 0; c < a.cols(); ++c) { |
| if (a(r, c) != b(r, c) |
| && !((numext::isnan)(a(r, c)) && (numext::isnan)(b(r, c))) |
| && !test_isApprox(a(r, c), b(r, c))) { |
| return false; |
| } |
| } |
| } |
| return true; |
| } |
| |
| template<typename Kernel, typename Input, typename Output> |
| void test_with_infs_nans(const Kernel& ker, int n, const Input& in, Output& out) |
| { |
| Output out_ref, out_gpu; |
| #if !defined(EIGEN_GPU_COMPILE_PHASE) |
| out_ref = out_gpu = out; |
| #else |
| EIGEN_UNUSED_VARIABLE(in); |
| EIGEN_UNUSED_VARIABLE(out); |
| #endif |
| run_on_cpu (ker, n, in, out_ref); |
| run_on_gpu(ker, n, in, out_gpu); |
| #if !defined(EIGEN_GPU_COMPILE_PHASE) |
| verifyIsApproxWithInfsNans(out_ref, out_gpu); |
| #endif |
| } |
| |
| EIGEN_DECLARE_TEST(gpu_basic) |
| { |
| ei_test_init_gpu(); |
| |
| int nthreads = 100; |
| Eigen::VectorXf in, out; |
| Eigen::VectorXcf cfin, cfout; |
| |
| #if !defined(EIGEN_GPU_COMPILE_PHASE) |
| int data_size = nthreads * 512; |
| in.setRandom(data_size); |
| out.setConstant(data_size, -1); |
| cfin.setRandom(data_size); |
| cfout.setConstant(data_size, -1); |
| #endif |
| |
| CALL_SUBTEST( run_and_compare_to_gpu(coeff_wise<Vector3f>(), nthreads, in, out) ); |
| CALL_SUBTEST( run_and_compare_to_gpu(coeff_wise<Array44f>(), nthreads, in, out) ); |
| |
| #if !defined(EIGEN_USE_HIP) |
| // FIXME |
| // These subtests result in a compile failure on the HIP platform |
| // |
| // eigen-upstream/Eigen/src/Core/Replicate.h:61:65: error: |
| // base class 'internal::dense_xpr_base<Replicate<Array<float, 4, 1, 0, 4, 1>, -1, -1> >::type' |
| // (aka 'ArrayBase<Eigen::Replicate<Eigen::Array<float, 4, 1, 0, 4, 1>, -1, -1> >') has protected default constructor |
| CALL_SUBTEST( run_and_compare_to_gpu(replicate<Array4f>(), nthreads, in, out) ); |
| CALL_SUBTEST( run_and_compare_to_gpu(replicate<Array33f>(), nthreads, in, out) ); |
| |
| // HIP does not support new/delete on device. |
| CALL_SUBTEST( run_and_compare_to_gpu(alloc_new_delete<Vector3f>(), nthreads, in, out) ); |
| #endif |
| |
| CALL_SUBTEST( run_and_compare_to_gpu(redux<Array4f>(), nthreads, in, out) ); |
| CALL_SUBTEST( run_and_compare_to_gpu(redux<Matrix3f>(), nthreads, in, out) ); |
| |
| CALL_SUBTEST( run_and_compare_to_gpu(prod_test<Matrix3f,Matrix3f>(), nthreads, in, out) ); |
| CALL_SUBTEST( run_and_compare_to_gpu(prod_test<Matrix4f,Vector4f>(), nthreads, in, out) ); |
| |
| CALL_SUBTEST( run_and_compare_to_gpu(diagonal<Matrix3f,Vector3f>(), nthreads, in, out) ); |
| CALL_SUBTEST( run_and_compare_to_gpu(diagonal<Matrix4f,Vector4f>(), nthreads, in, out) ); |
| |
| CALL_SUBTEST( run_and_compare_to_gpu(matrix_inverse<Matrix2f>(), nthreads, in, out) ); |
| CALL_SUBTEST( run_and_compare_to_gpu(matrix_inverse<Matrix3f>(), nthreads, in, out) ); |
| CALL_SUBTEST( run_and_compare_to_gpu(matrix_inverse<Matrix4f>(), nthreads, in, out) ); |
| |
| CALL_SUBTEST( run_and_compare_to_gpu(eigenvalues_direct<Matrix3f>(), nthreads, in, out) ); |
| CALL_SUBTEST( run_and_compare_to_gpu(eigenvalues_direct<Matrix2f>(), nthreads, in, out) ); |
| |
| // Test std::complex. |
| CALL_SUBTEST( run_and_compare_to_gpu(complex_operators<Vector3cf>(), nthreads, cfin, cfout) ); |
| CALL_SUBTEST( test_with_infs_nans(complex_sqrt<Vector3cf>(), nthreads, cfin, cfout) ); |
| |
| // numeric_limits |
| CALL_SUBTEST( test_with_infs_nans(numeric_limits_test<Vector3f>(), 1, in, out) ); |
| |
| #if defined(__NVCC__) |
| // FIXME |
| // These subtests compiles only with nvcc and fail with HIPCC and clang-cuda |
| CALL_SUBTEST( run_and_compare_to_gpu(eigenvalues<Matrix4f>(), nthreads, in, out) ); |
| typedef Matrix<float,6,6> Matrix6f; |
| CALL_SUBTEST( run_and_compare_to_gpu(eigenvalues<Matrix6f>(), nthreads, in, out) ); |
| #endif |
| } |