| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2010 Hauke Heibel <hauke.heibel@gmail.com> |
| // Copyright (C) 2015 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #define TEST_ENABLE_TEMPORARY_TRACKING |
| |
| #include "main.h" |
| |
| template <int N, typename XprType> |
| void use_n_times(const XprType &xpr) |
| { |
| typename internal::nested_eval<XprType,N>::type mat(xpr); |
| typename XprType::PlainObject res(mat.rows(), mat.cols()); |
| nb_temporaries--; // remove res |
| res.setZero(); |
| for(int i=0; i<N; ++i) |
| res += mat; |
| } |
| |
| template <int N, typename ReferenceType, typename XprType> |
| bool verify_eval_type(const XprType &, const ReferenceType&) |
| { |
| typedef typename internal::nested_eval<XprType,N>::type EvalType; |
| return internal::is_same<typename internal::remove_all<EvalType>::type, typename internal::remove_all<ReferenceType>::type>::value; |
| } |
| |
| template <typename MatrixType> void run_nesting_ops_1(const MatrixType& _m) |
| { |
| typename internal::nested_eval<MatrixType,2>::type m(_m); |
| |
| // Make really sure that we are in debug mode! |
| VERIFY_RAISES_ASSERT(eigen_assert(false)); |
| |
| // The only intention of these tests is to ensure that this code does |
| // not trigger any asserts or segmentation faults... more to come. |
| VERIFY_IS_APPROX( (m.transpose() * m).diagonal().sum(), (m.transpose() * m).diagonal().sum() ); |
| VERIFY_IS_APPROX( (m.transpose() * m).diagonal().array().abs().sum(), (m.transpose() * m).diagonal().array().abs().sum() ); |
| |
| VERIFY_IS_APPROX( (m.transpose() * m).array().abs().sum(), (m.transpose() * m).array().abs().sum() ); |
| } |
| |
| template <typename MatrixType> void run_nesting_ops_2(const MatrixType& _m) |
| { |
| typedef typename MatrixType::Scalar Scalar; |
| Index rows = _m.rows(); |
| Index cols = _m.cols(); |
| MatrixType m1 = MatrixType::Random(rows,cols); |
| Matrix<Scalar,MatrixType::RowsAtCompileTime,MatrixType::ColsAtCompileTime,ColMajor> m2; |
| |
| if((MatrixType::SizeAtCompileTime==Dynamic)) |
| { |
| VERIFY_EVALUATION_COUNT( use_n_times<1>(m1 + m1*m1), 1 ); |
| VERIFY_EVALUATION_COUNT( use_n_times<10>(m1 + m1*m1), 1 ); |
| |
| VERIFY_EVALUATION_COUNT( use_n_times<1>(m1.template triangularView<Lower>().solve(m1.col(0))), 1 ); |
| VERIFY_EVALUATION_COUNT( use_n_times<10>(m1.template triangularView<Lower>().solve(m1.col(0))), 1 ); |
| |
| VERIFY_EVALUATION_COUNT( use_n_times<1>(Scalar(2)*m1.template triangularView<Lower>().solve(m1.col(0))), 2 ); // FIXME could be one by applying the scaling in-place on the solve result |
| VERIFY_EVALUATION_COUNT( use_n_times<1>(m1.col(0)+m1.template triangularView<Lower>().solve(m1.col(0))), 2 ); // FIXME could be one by adding m1.col() inplace |
| VERIFY_EVALUATION_COUNT( use_n_times<10>(m1.col(0)+m1.template triangularView<Lower>().solve(m1.col(0))), 2 ); |
| } |
| |
| { |
| VERIFY( verify_eval_type<10>(m1, m1) ); |
| if(!NumTraits<Scalar>::IsComplex) |
| { |
| VERIFY( verify_eval_type<3>(2*m1, 2*m1) ); |
| VERIFY( verify_eval_type<4>(2*m1, m1) ); |
| } |
| else |
| { |
| VERIFY( verify_eval_type<2>(2*m1, 2*m1) ); |
| VERIFY( verify_eval_type<3>(2*m1, m1) ); |
| } |
| VERIFY( verify_eval_type<2>(m1+m1, m1+m1) ); |
| VERIFY( verify_eval_type<3>(m1+m1, m1) ); |
| VERIFY( verify_eval_type<1>(m1*m1.transpose(), m2) ); |
| VERIFY( verify_eval_type<1>(m1*(m1+m1).transpose(), m2) ); |
| VERIFY( verify_eval_type<2>(m1*m1.transpose(), m2) ); |
| VERIFY( verify_eval_type<1>(m1+m1*m1, m1) ); |
| |
| VERIFY( verify_eval_type<1>(m1.template triangularView<Lower>().solve(m1), m1) ); |
| VERIFY( verify_eval_type<1>(m1+m1.template triangularView<Lower>().solve(m1), m1) ); |
| } |
| } |
| |
| |
| EIGEN_DECLARE_TEST(nesting_ops) |
| { |
| CALL_SUBTEST_1(run_nesting_ops_1(MatrixXf::Random(25,25))); |
| CALL_SUBTEST_2(run_nesting_ops_1(MatrixXcd::Random(25,25))); |
| CALL_SUBTEST_3(run_nesting_ops_1(Matrix4f::Random())); |
| CALL_SUBTEST_4(run_nesting_ops_1(Matrix2d::Random())); |
| |
| Index s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE); |
| CALL_SUBTEST_1( run_nesting_ops_2(MatrixXf(s,s)) ); |
| CALL_SUBTEST_2( run_nesting_ops_2(MatrixXcd(s,s)) ); |
| CALL_SUBTEST_3( run_nesting_ops_2(Matrix4f()) ); |
| CALL_SUBTEST_4( run_nesting_ops_2(Matrix2d()) ); |
| TEST_SET_BUT_UNUSED_VARIABLE(s) |
| } |