| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #define TEST_ENABLE_TEMPORARY_TRACKING |
| |
| #include "main.h" |
| |
| using namespace std; |
| template<typename MatrixType> void permutationmatrices(const MatrixType& m) |
| { |
| typedef typename MatrixType::Scalar Scalar; |
| enum { Rows = MatrixType::RowsAtCompileTime, Cols = MatrixType::ColsAtCompileTime, |
| Options = MatrixType::Options }; |
| typedef PermutationMatrix<Rows> LeftPermutationType; |
| typedef Transpositions<Rows> LeftTranspositionsType; |
| typedef Matrix<int, Rows, 1> LeftPermutationVectorType; |
| typedef Map<LeftPermutationType> MapLeftPerm; |
| typedef PermutationMatrix<Cols> RightPermutationType; |
| typedef Transpositions<Cols> RightTranspositionsType; |
| typedef Matrix<int, Cols, 1> RightPermutationVectorType; |
| typedef Map<RightPermutationType> MapRightPerm; |
| |
| Index rows = m.rows(); |
| Index cols = m.cols(); |
| |
| MatrixType m_original = MatrixType::Random(rows,cols); |
| LeftPermutationVectorType lv; |
| randomPermutationVector(lv, rows); |
| LeftPermutationType lp(lv); |
| RightPermutationVectorType rv; |
| randomPermutationVector(rv, cols); |
| RightPermutationType rp(rv); |
| LeftTranspositionsType lt(lv); |
| RightTranspositionsType rt(rv); |
| MatrixType m_permuted = MatrixType::Random(rows,cols); |
| |
| VERIFY_EVALUATION_COUNT(m_permuted = lp * m_original * rp, 1); // 1 temp for sub expression "lp * m_original" |
| |
| for (int i=0; i<rows; i++) |
| for (int j=0; j<cols; j++) |
| VERIFY_IS_APPROX(m_permuted(lv(i),j), m_original(i,rv(j))); |
| |
| Matrix<Scalar,Rows,Rows> lm(lp); |
| Matrix<Scalar,Cols,Cols> rm(rp); |
| |
| VERIFY_IS_APPROX(m_permuted, lm*m_original*rm); |
| |
| m_permuted = m_original; |
| VERIFY_EVALUATION_COUNT(m_permuted = lp * m_permuted * rp, 1); |
| VERIFY_IS_APPROX(m_permuted, lm*m_original*rm); |
| |
| LeftPermutationType lpi; |
| lpi = lp.inverse(); |
| VERIFY_IS_APPROX(lpi*m_permuted,lp.inverse()*m_permuted); |
| |
| VERIFY_IS_APPROX(lp.inverse()*m_permuted*rp.inverse(), m_original); |
| VERIFY_IS_APPROX(lv.asPermutation().inverse()*m_permuted*rv.asPermutation().inverse(), m_original); |
| VERIFY_IS_APPROX(MapLeftPerm(lv.data(),lv.size()).inverse()*m_permuted*MapRightPerm(rv.data(),rv.size()).inverse(), m_original); |
| |
| VERIFY((lp*lp.inverse()).toDenseMatrix().isIdentity()); |
| VERIFY((lv.asPermutation()*lv.asPermutation().inverse()).toDenseMatrix().isIdentity()); |
| VERIFY((MapLeftPerm(lv.data(),lv.size())*MapLeftPerm(lv.data(),lv.size()).inverse()).toDenseMatrix().isIdentity()); |
| |
| LeftPermutationVectorType lv2; |
| randomPermutationVector(lv2, rows); |
| LeftPermutationType lp2(lv2); |
| Matrix<Scalar,Rows,Rows> lm2(lp2); |
| VERIFY_IS_APPROX((lp*lp2).toDenseMatrix().template cast<Scalar>(), lm*lm2); |
| VERIFY_IS_APPROX((lv.asPermutation()*lv2.asPermutation()).toDenseMatrix().template cast<Scalar>(), lm*lm2); |
| VERIFY_IS_APPROX((MapLeftPerm(lv.data(),lv.size())*MapLeftPerm(lv2.data(),lv2.size())).toDenseMatrix().template cast<Scalar>(), lm*lm2); |
| |
| LeftPermutationType identityp; |
| identityp.setIdentity(rows); |
| VERIFY_IS_APPROX(m_original, identityp*m_original); |
| |
| // check inplace permutations |
| m_permuted = m_original; |
| VERIFY_EVALUATION_COUNT(m_permuted.noalias()= lp.inverse() * m_permuted, 1); // 1 temp to allocate the mask |
| VERIFY_IS_APPROX(m_permuted, lp.inverse()*m_original); |
| |
| m_permuted = m_original; |
| VERIFY_EVALUATION_COUNT(m_permuted.noalias() = m_permuted * rp.inverse(), 1); // 1 temp to allocate the mask |
| VERIFY_IS_APPROX(m_permuted, m_original*rp.inverse()); |
| |
| m_permuted = m_original; |
| VERIFY_EVALUATION_COUNT(m_permuted.noalias() = lp * m_permuted, 1); // 1 temp to allocate the mask |
| VERIFY_IS_APPROX(m_permuted, lp*m_original); |
| |
| m_permuted = m_original; |
| VERIFY_EVALUATION_COUNT(m_permuted.noalias() = m_permuted * rp, 1); // 1 temp to allocate the mask |
| VERIFY_IS_APPROX(m_permuted, m_original*rp); |
| |
| if(rows>1 && cols>1) |
| { |
| lp2 = lp; |
| Index i = internal::random<Index>(0, rows-1); |
| Index j; |
| do j = internal::random<Index>(0, rows-1); while(j==i); |
| lp2.applyTranspositionOnTheLeft(i, j); |
| lm = lp; |
| lm.row(i).swap(lm.row(j)); |
| VERIFY_IS_APPROX(lm, lp2.toDenseMatrix().template cast<Scalar>()); |
| |
| RightPermutationType rp2 = rp; |
| i = internal::random<Index>(0, cols-1); |
| do j = internal::random<Index>(0, cols-1); while(j==i); |
| rp2.applyTranspositionOnTheRight(i, j); |
| rm = rp; |
| rm.col(i).swap(rm.col(j)); |
| VERIFY_IS_APPROX(rm, rp2.toDenseMatrix().template cast<Scalar>()); |
| } |
| |
| { |
| // simple compilation check |
| Matrix<Scalar, Cols, Cols> A = rp; |
| Matrix<Scalar, Cols, Cols> B = rp.transpose(); |
| VERIFY_IS_APPROX(A, B.transpose()); |
| } |
| |
| m_permuted = m_original; |
| lp = lt; |
| rp = rt; |
| VERIFY_EVALUATION_COUNT(m_permuted = lt * m_permuted * rt, 1); |
| VERIFY_IS_APPROX(m_permuted, lp*m_original*rp.transpose()); |
| |
| VERIFY_IS_APPROX(lt.inverse()*m_permuted*rt.inverse(), m_original); |
| |
| // Check inplace transpositions |
| m_permuted = m_original; |
| VERIFY_IS_APPROX(m_permuted = lt * m_permuted, lp * m_original); |
| m_permuted = m_original; |
| VERIFY_IS_APPROX(m_permuted = lt.inverse() * m_permuted, lp.inverse() * m_original); |
| m_permuted = m_original; |
| VERIFY_IS_APPROX(m_permuted = m_permuted * rt, m_original * rt); |
| m_permuted = m_original; |
| VERIFY_IS_APPROX(m_permuted = m_permuted * rt.inverse(), m_original * rt.inverse()); |
| } |
| |
| template<typename T> |
| void bug890() |
| { |
| typedef Matrix<T, Dynamic, Dynamic> MatrixType; |
| typedef Matrix<T, Dynamic, 1> VectorType; |
| typedef Stride<Dynamic,Dynamic> S; |
| typedef Map<MatrixType, Aligned, S> MapType; |
| typedef PermutationMatrix<Dynamic> Perm; |
| |
| VectorType v1(2), v2(2), op(4), rhs(2); |
| v1 << 666,667; |
| op << 1,0,0,1; |
| rhs << 42,42; |
| |
| Perm P(2); |
| P.indices() << 1, 0; |
| |
| MapType(v1.data(),2,1,S(1,1)) = P * MapType(rhs.data(),2,1,S(1,1)); |
| VERIFY_IS_APPROX(v1, (P * rhs).eval()); |
| |
| MapType(v1.data(),2,1,S(1,1)) = P.inverse() * MapType(rhs.data(),2,1,S(1,1)); |
| VERIFY_IS_APPROX(v1, (P.inverse() * rhs).eval()); |
| } |
| |
| EIGEN_DECLARE_TEST(permutationmatrices) |
| { |
| for(int i = 0; i < g_repeat; i++) { |
| CALL_SUBTEST_1( permutationmatrices(Matrix<float, 1, 1>()) ); |
| CALL_SUBTEST_2( permutationmatrices(Matrix3f()) ); |
| CALL_SUBTEST_3( permutationmatrices(Matrix<double,3,3,RowMajor>()) ); |
| CALL_SUBTEST_4( permutationmatrices(Matrix4d()) ); |
| CALL_SUBTEST_5( permutationmatrices(Matrix<double,40,60>()) ); |
| CALL_SUBTEST_6( permutationmatrices(Matrix<double,Dynamic,Dynamic,RowMajor>(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); |
| CALL_SUBTEST_7( permutationmatrices(MatrixXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); |
| } |
| CALL_SUBTEST_5( bug890<double>() ); |
| } |