| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #include "main.h" |
| #include <Eigen/QR> |
| #include "solverbase.h" |
| |
| template<typename MatrixType> void qr(const MatrixType& m) |
| { |
| Index rows = m.rows(); |
| Index cols = m.cols(); |
| |
| typedef typename MatrixType::Scalar Scalar; |
| typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> MatrixQType; |
| |
| MatrixType a = MatrixType::Random(rows,cols); |
| HouseholderQR<MatrixType> qrOfA(a); |
| |
| MatrixQType q = qrOfA.householderQ(); |
| VERIFY_IS_UNITARY(q); |
| |
| MatrixType r = qrOfA.matrixQR().template triangularView<Upper>(); |
| VERIFY_IS_APPROX(a, qrOfA.householderQ() * r); |
| } |
| |
| template<typename MatrixType, int Cols2> void qr_fixedsize() |
| { |
| enum { Rows = MatrixType::RowsAtCompileTime, Cols = MatrixType::ColsAtCompileTime }; |
| typedef typename MatrixType::Scalar Scalar; |
| Matrix<Scalar,Rows,Cols> m1 = Matrix<Scalar,Rows,Cols>::Random(); |
| HouseholderQR<Matrix<Scalar,Rows,Cols> > qr(m1); |
| |
| Matrix<Scalar,Rows,Cols> r = qr.matrixQR(); |
| // FIXME need better way to construct trapezoid |
| for(int i = 0; i < Rows; i++) for(int j = 0; j < Cols; j++) if(i>j) r(i,j) = Scalar(0); |
| |
| VERIFY_IS_APPROX(m1, qr.householderQ() * r); |
| |
| check_solverbase<Matrix<Scalar,Cols,Cols2>, Matrix<Scalar,Rows,Cols2> >(m1, qr, Rows, Cols, Cols2); |
| } |
| |
| template<typename MatrixType> void qr_invertible() |
| { |
| using std::log; |
| using std::abs; |
| using std::pow; |
| using std::max; |
| typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar; |
| typedef typename MatrixType::Scalar Scalar; |
| |
| STATIC_CHECK(( internal::is_same<typename HouseholderQR<MatrixType>::StorageIndex,int>::value )); |
| |
| int size = internal::random<int>(10,50); |
| |
| MatrixType m1(size, size), m2(size, size), m3(size, size); |
| m1 = MatrixType::Random(size,size); |
| |
| if (internal::is_same<RealScalar,float>::value) |
| { |
| // let's build a matrix more stable to inverse |
| MatrixType a = MatrixType::Random(size,size*4); |
| m1 += a * a.adjoint(); |
| } |
| |
| HouseholderQR<MatrixType> qr(m1); |
| |
| check_solverbase<MatrixType, MatrixType>(m1, qr, size, size, size); |
| |
| // now construct a matrix with prescribed determinant |
| m1.setZero(); |
| for(int i = 0; i < size; i++) m1(i,i) = internal::random<Scalar>(); |
| RealScalar absdet = abs(m1.diagonal().prod()); |
| m3 = qr.householderQ(); // get a unitary |
| m1 = m3 * m1 * m3; |
| qr.compute(m1); |
| VERIFY_IS_APPROX(log(absdet), qr.logAbsDeterminant()); |
| // This test is tricky if the determinant becomes too small. |
| // Since we generate random numbers with magnitude range [0,1], the average determinant is 0.5^size |
| VERIFY_IS_MUCH_SMALLER_THAN( abs(absdet-qr.absDeterminant()), numext::maxi(RealScalar(pow(0.5,size)),numext::maxi<RealScalar>(abs(absdet),abs(qr.absDeterminant()))) ); |
| |
| } |
| |
| template<typename MatrixType> void qr_verify_assert() |
| { |
| MatrixType tmp; |
| |
| HouseholderQR<MatrixType> qr; |
| VERIFY_RAISES_ASSERT(qr.matrixQR()) |
| VERIFY_RAISES_ASSERT(qr.solve(tmp)) |
| VERIFY_RAISES_ASSERT(qr.transpose().solve(tmp)) |
| VERIFY_RAISES_ASSERT(qr.adjoint().solve(tmp)) |
| VERIFY_RAISES_ASSERT(qr.householderQ()) |
| VERIFY_RAISES_ASSERT(qr.absDeterminant()) |
| VERIFY_RAISES_ASSERT(qr.logAbsDeterminant()) |
| } |
| |
| EIGEN_DECLARE_TEST(qr) |
| { |
| for(int i = 0; i < g_repeat; i++) { |
| CALL_SUBTEST_1( qr(MatrixXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE),internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); |
| CALL_SUBTEST_2( qr(MatrixXcd(internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2),internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2))) ); |
| CALL_SUBTEST_3(( qr_fixedsize<Matrix<float,3,4>, 2 >() )); |
| CALL_SUBTEST_4(( qr_fixedsize<Matrix<double,6,2>, 4 >() )); |
| CALL_SUBTEST_5(( qr_fixedsize<Matrix<double,2,5>, 7 >() )); |
| CALL_SUBTEST_11( qr(Matrix<float,1,1>()) ); |
| } |
| |
| for(int i = 0; i < g_repeat; i++) { |
| CALL_SUBTEST_1( qr_invertible<MatrixXf>() ); |
| CALL_SUBTEST_6( qr_invertible<MatrixXd>() ); |
| CALL_SUBTEST_7( qr_invertible<MatrixXcf>() ); |
| CALL_SUBTEST_8( qr_invertible<MatrixXcd>() ); |
| } |
| |
| CALL_SUBTEST_9(qr_verify_assert<Matrix3f>()); |
| CALL_SUBTEST_10(qr_verify_assert<Matrix3d>()); |
| CALL_SUBTEST_1(qr_verify_assert<MatrixXf>()); |
| CALL_SUBTEST_6(qr_verify_assert<MatrixXd>()); |
| CALL_SUBTEST_7(qr_verify_assert<MatrixXcf>()); |
| CALL_SUBTEST_8(qr_verify_assert<MatrixXcd>()); |
| |
| // Test problem size constructors |
| CALL_SUBTEST_12(HouseholderQR<MatrixXf>(10, 20)); |
| } |