| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2012 Desire Nuentsa <desire.nuentsa_wakam@inria.fr> |
| // Copyright (C) 2012 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| #include <iostream> |
| #include <fstream> |
| #include <iomanip> |
| |
| #include "main.h" |
| #include <Eigen/LevenbergMarquardt> |
| |
| using namespace std; |
| using namespace Eigen; |
| |
| template <typename Scalar> |
| struct sparseGaussianTest : SparseFunctor<Scalar, int> |
| { |
| typedef Matrix<Scalar,Dynamic,1> VectorType; |
| typedef SparseFunctor<Scalar,int> Base; |
| typedef typename Base::JacobianType JacobianType; |
| sparseGaussianTest(int inputs, int values) : SparseFunctor<Scalar,int>(inputs,values) |
| { } |
| |
| VectorType model(const VectorType& uv, VectorType& x) |
| { |
| VectorType y; //Change this to use expression template |
| int m = Base::values(); |
| int n = Base::inputs(); |
| eigen_assert(uv.size()%2 == 0); |
| eigen_assert(uv.size() == n); |
| eigen_assert(x.size() == m); |
| y.setZero(m); |
| int half = n/2; |
| VectorBlock<const VectorType> u(uv, 0, half); |
| VectorBlock<const VectorType> v(uv, half, half); |
| Scalar coeff; |
| for (int j = 0; j < m; j++) |
| { |
| for (int i = 0; i < half; i++) |
| { |
| coeff = (x(j)-i)/v(i); |
| coeff *= coeff; |
| if (coeff < 1. && coeff > 0.) |
| y(j) += u(i)*std::pow((1-coeff), 2); |
| } |
| } |
| return y; |
| } |
| void initPoints(VectorType& uv_ref, VectorType& x) |
| { |
| m_x = x; |
| m_y = this->model(uv_ref,x); |
| } |
| int operator()(const VectorType& uv, VectorType& fvec) |
| { |
| int m = Base::values(); |
| int n = Base::inputs(); |
| eigen_assert(uv.size()%2 == 0); |
| eigen_assert(uv.size() == n); |
| int half = n/2; |
| VectorBlock<const VectorType> u(uv, 0, half); |
| VectorBlock<const VectorType> v(uv, half, half); |
| fvec = m_y; |
| Scalar coeff; |
| for (int j = 0; j < m; j++) |
| { |
| for (int i = 0; i < half; i++) |
| { |
| coeff = (m_x(j)-i)/v(i); |
| coeff *= coeff; |
| if (coeff < 1. && coeff > 0.) |
| fvec(j) -= u(i)*std::pow((1-coeff), 2); |
| } |
| } |
| return 0; |
| } |
| |
| int df(const VectorType& uv, JacobianType& fjac) |
| { |
| int m = Base::values(); |
| int n = Base::inputs(); |
| eigen_assert(n == uv.size()); |
| eigen_assert(fjac.rows() == m); |
| eigen_assert(fjac.cols() == n); |
| int half = n/2; |
| VectorBlock<const VectorType> u(uv, 0, half); |
| VectorBlock<const VectorType> v(uv, half, half); |
| Scalar coeff; |
| |
| //Derivatives with respect to u |
| for (int col = 0; col < half; col++) |
| { |
| for (int row = 0; row < m; row++) |
| { |
| coeff = (m_x(row)-col)/v(col); |
| coeff = coeff*coeff; |
| if(coeff < 1. && coeff > 0.) |
| { |
| fjac.coeffRef(row,col) = -(1-coeff)*(1-coeff); |
| } |
| } |
| } |
| //Derivatives with respect to v |
| for (int col = 0; col < half; col++) |
| { |
| for (int row = 0; row < m; row++) |
| { |
| coeff = (m_x(row)-col)/v(col); |
| coeff = coeff*coeff; |
| if(coeff < 1. && coeff > 0.) |
| { |
| fjac.coeffRef(row,col+half) = -4 * (u(col)/v(col))*coeff*(1-coeff); |
| } |
| } |
| } |
| return 0; |
| } |
| |
| VectorType m_x, m_y; //Data points |
| }; |
| |
| |
| template<typename T> |
| void test_sparseLM_T() |
| { |
| typedef Matrix<T,Dynamic,1> VectorType; |
| |
| int inputs = 10; |
| int values = 2000; |
| sparseGaussianTest<T> sparse_gaussian(inputs, values); |
| VectorType uv(inputs),uv_ref(inputs); |
| VectorType x(values); |
| // Generate the reference solution |
| uv_ref << -2, 1, 4 ,8, 6, 1.8, 1.2, 1.1, 1.9 , 3; |
| //Generate the reference data points |
| x.setRandom(); |
| x = 10*x; |
| x.array() += 10; |
| sparse_gaussian.initPoints(uv_ref, x); |
| |
| |
| // Generate the initial parameters |
| VectorBlock<VectorType> u(uv, 0, inputs/2); |
| VectorBlock<VectorType> v(uv, inputs/2, inputs/2); |
| v.setOnes(); |
| //Generate u or Solve for u from v |
| u.setOnes(); |
| |
| // Solve the optimization problem |
| LevenbergMarquardt<sparseGaussianTest<T> > lm(sparse_gaussian); |
| int info; |
| // info = lm.minimize(uv); |
| |
| VERIFY_IS_EQUAL(info,1); |
| // Do a step by step solution and save the residual |
| int maxiter = 200; |
| int iter = 0; |
| MatrixXd Err(values, maxiter); |
| MatrixXd Mod(values, maxiter); |
| LevenbergMarquardtSpace::Status status; |
| status = lm.minimizeInit(uv); |
| if (status==LevenbergMarquardtSpace::ImproperInputParameters) |
| return ; |
| |
| } |
| EIGEN_DECLARE_TEST(sparseLM) |
| { |
| CALL_SUBTEST_1(test_sparseLM_T<double>()); |
| |
| // CALL_SUBTEST_2(test_sparseLM_T<std::complex<double>()); |
| } |