| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008-2015 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #include "sparse.h" |
| #include "AnnoyingScalar.h" |
| |
| template<typename T> |
| typename Eigen::internal::enable_if<(T::Flags&RowMajorBit)==RowMajorBit, typename T::RowXpr>::type |
| innervec(T& A, Index i) |
| { |
| return A.row(i); |
| } |
| |
| template<typename T> |
| typename Eigen::internal::enable_if<(T::Flags&RowMajorBit)==0, typename T::ColXpr>::type |
| innervec(T& A, Index i) |
| { |
| return A.col(i); |
| } |
| |
| template<typename SparseMatrixType> void sparse_block(const SparseMatrixType& ref) |
| { |
| const Index rows = ref.rows(); |
| const Index cols = ref.cols(); |
| const Index inner = ref.innerSize(); |
| const Index outer = ref.outerSize(); |
| |
| typedef typename SparseMatrixType::Scalar Scalar; |
| typedef typename SparseMatrixType::RealScalar RealScalar; |
| typedef typename SparseMatrixType::StorageIndex StorageIndex; |
| |
| double density = (std::max)(8./(rows*cols), 0.01); |
| typedef Matrix<Scalar,Dynamic,Dynamic,SparseMatrixType::IsRowMajor?RowMajor:ColMajor> DenseMatrix; |
| typedef Matrix<Scalar,Dynamic,1> DenseVector; |
| typedef Matrix<Scalar,1,Dynamic> RowDenseVector; |
| typedef SparseVector<Scalar> SparseVectorType; |
| |
| Scalar s1 = internal::random<Scalar>(); |
| { |
| SparseMatrixType m(rows, cols); |
| DenseMatrix refMat = DenseMatrix::Zero(rows, cols); |
| initSparse<Scalar>(density, refMat, m); |
| |
| VERIFY_IS_APPROX(m, refMat); |
| |
| // test InnerIterators and Block expressions |
| for (int t=0; t<10; ++t) |
| { |
| Index j = internal::random<Index>(0,cols-2); |
| Index i = internal::random<Index>(0,rows-2); |
| Index w = internal::random<Index>(1,cols-j); |
| Index h = internal::random<Index>(1,rows-i); |
| |
| VERIFY_IS_APPROX(m.block(i,j,h,w), refMat.block(i,j,h,w)); |
| for(Index c=0; c<w; c++) |
| { |
| VERIFY_IS_APPROX(m.block(i,j,h,w).col(c), refMat.block(i,j,h,w).col(c)); |
| for(Index r=0; r<h; r++) |
| { |
| VERIFY_IS_APPROX(m.block(i,j,h,w).col(c).coeff(r), refMat.block(i,j,h,w).col(c).coeff(r)); |
| VERIFY_IS_APPROX(m.block(i,j,h,w).coeff(r,c), refMat.block(i,j,h,w).coeff(r,c)); |
| } |
| } |
| for(Index r=0; r<h; r++) |
| { |
| VERIFY_IS_APPROX(m.block(i,j,h,w).row(r), refMat.block(i,j,h,w).row(r)); |
| for(Index c=0; c<w; c++) |
| { |
| VERIFY_IS_APPROX(m.block(i,j,h,w).row(r).coeff(c), refMat.block(i,j,h,w).row(r).coeff(c)); |
| VERIFY_IS_APPROX(m.block(i,j,h,w).coeff(r,c), refMat.block(i,j,h,w).coeff(r,c)); |
| } |
| } |
| |
| VERIFY_IS_APPROX(m.middleCols(j,w), refMat.middleCols(j,w)); |
| VERIFY_IS_APPROX(m.middleRows(i,h), refMat.middleRows(i,h)); |
| for(Index r=0; r<h; r++) |
| { |
| VERIFY_IS_APPROX(m.middleCols(j,w).row(r), refMat.middleCols(j,w).row(r)); |
| VERIFY_IS_APPROX(m.middleRows(i,h).row(r), refMat.middleRows(i,h).row(r)); |
| for(Index c=0; c<w; c++) |
| { |
| VERIFY_IS_APPROX(m.col(c).coeff(r), refMat.col(c).coeff(r)); |
| VERIFY_IS_APPROX(m.row(r).coeff(c), refMat.row(r).coeff(c)); |
| |
| VERIFY_IS_APPROX(m.middleCols(j,w).coeff(r,c), refMat.middleCols(j,w).coeff(r,c)); |
| VERIFY_IS_APPROX(m.middleRows(i,h).coeff(r,c), refMat.middleRows(i,h).coeff(r,c)); |
| if(m.middleCols(j,w).coeff(r,c) != Scalar(0)) |
| { |
| VERIFY_IS_APPROX(m.middleCols(j,w).coeffRef(r,c), refMat.middleCols(j,w).coeff(r,c)); |
| } |
| if(m.middleRows(i,h).coeff(r,c) != Scalar(0)) |
| { |
| VERIFY_IS_APPROX(m.middleRows(i,h).coeff(r,c), refMat.middleRows(i,h).coeff(r,c)); |
| } |
| } |
| } |
| for(Index c=0; c<w; c++) |
| { |
| VERIFY_IS_APPROX(m.middleCols(j,w).col(c), refMat.middleCols(j,w).col(c)); |
| VERIFY_IS_APPROX(m.middleRows(i,h).col(c), refMat.middleRows(i,h).col(c)); |
| } |
| } |
| |
| for(Index c=0; c<cols; c++) |
| { |
| VERIFY_IS_APPROX(m.col(c) + m.col(c), (m + m).col(c)); |
| VERIFY_IS_APPROX(m.col(c) + m.col(c), refMat.col(c) + refMat.col(c)); |
| } |
| |
| for(Index r=0; r<rows; r++) |
| { |
| VERIFY_IS_APPROX(m.row(r) + m.row(r), (m + m).row(r)); |
| VERIFY_IS_APPROX(m.row(r) + m.row(r), refMat.row(r) + refMat.row(r)); |
| } |
| } |
| |
| // test innerVector() |
| { |
| DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols); |
| SparseMatrixType m2(rows, cols); |
| initSparse<Scalar>(density, refMat2, m2); |
| Index j0 = internal::random<Index>(0,outer-1); |
| Index j1 = internal::random<Index>(0,outer-1); |
| Index r0 = internal::random<Index>(0,rows-1); |
| Index c0 = internal::random<Index>(0,cols-1); |
| |
| VERIFY_IS_APPROX(m2.innerVector(j0), innervec(refMat2,j0)); |
| VERIFY_IS_APPROX(m2.innerVector(j0)+m2.innerVector(j1), innervec(refMat2,j0)+innervec(refMat2,j1)); |
| |
| m2.innerVector(j0) *= Scalar(2); |
| innervec(refMat2,j0) *= Scalar(2); |
| VERIFY_IS_APPROX(m2, refMat2); |
| |
| m2.row(r0) *= Scalar(3); |
| refMat2.row(r0) *= Scalar(3); |
| VERIFY_IS_APPROX(m2, refMat2); |
| |
| m2.col(c0) *= Scalar(4); |
| refMat2.col(c0) *= Scalar(4); |
| VERIFY_IS_APPROX(m2, refMat2); |
| |
| m2.row(r0) /= Scalar(3); |
| refMat2.row(r0) /= Scalar(3); |
| VERIFY_IS_APPROX(m2, refMat2); |
| |
| m2.col(c0) /= Scalar(4); |
| refMat2.col(c0) /= Scalar(4); |
| VERIFY_IS_APPROX(m2, refMat2); |
| |
| SparseVectorType v1; |
| VERIFY_IS_APPROX(v1 = m2.col(c0) * 4, refMat2.col(c0)*4); |
| VERIFY_IS_APPROX(v1 = m2.row(r0) * 4, refMat2.row(r0).transpose()*4); |
| |
| SparseMatrixType m3(rows,cols); |
| m3.reserve(VectorXi::Constant(outer,int(inner/2))); |
| for(Index j=0; j<outer; ++j) |
| for(Index k=0; k<(std::min)(j,inner); ++k) |
| m3.insertByOuterInner(j,k) = internal::convert_index<StorageIndex>(k+1); |
| for(Index j=0; j<(std::min)(outer, inner); ++j) |
| { |
| VERIFY(j==numext::real(m3.innerVector(j).nonZeros())); |
| if(j>0) |
| VERIFY(RealScalar(j)==numext::real(m3.innerVector(j).lastCoeff())); |
| } |
| m3.makeCompressed(); |
| for(Index j=0; j<(std::min)(outer, inner); ++j) |
| { |
| VERIFY(j==numext::real(m3.innerVector(j).nonZeros())); |
| if(j>0) |
| VERIFY(RealScalar(j)==numext::real(m3.innerVector(j).lastCoeff())); |
| } |
| |
| VERIFY(m3.innerVector(j0).nonZeros() == m3.transpose().innerVector(j0).nonZeros()); |
| |
| // m2.innerVector(j0) = 2*m2.innerVector(j1); |
| // refMat2.col(j0) = 2*refMat2.col(j1); |
| // VERIFY_IS_APPROX(m2, refMat2); |
| } |
| |
| // test innerVectors() |
| { |
| DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols); |
| SparseMatrixType m2(rows, cols); |
| initSparse<Scalar>(density, refMat2, m2); |
| if(internal::random<float>(0,1)>0.5f) m2.makeCompressed(); |
| Index j0 = internal::random<Index>(0,outer-2); |
| Index j1 = internal::random<Index>(0,outer-2); |
| Index n0 = internal::random<Index>(1,outer-(std::max)(j0,j1)); |
| if(SparseMatrixType::IsRowMajor) |
| VERIFY_IS_APPROX(m2.innerVectors(j0,n0), refMat2.block(j0,0,n0,cols)); |
| else |
| VERIFY_IS_APPROX(m2.innerVectors(j0,n0), refMat2.block(0,j0,rows,n0)); |
| if(SparseMatrixType::IsRowMajor) |
| VERIFY_IS_APPROX(m2.innerVectors(j0,n0)+m2.innerVectors(j1,n0), |
| refMat2.middleRows(j0,n0)+refMat2.middleRows(j1,n0)); |
| else |
| VERIFY_IS_APPROX(m2.innerVectors(j0,n0)+m2.innerVectors(j1,n0), |
| refMat2.block(0,j0,rows,n0)+refMat2.block(0,j1,rows,n0)); |
| |
| VERIFY_IS_APPROX(m2, refMat2); |
| |
| VERIFY(m2.innerVectors(j0,n0).nonZeros() == m2.transpose().innerVectors(j0,n0).nonZeros()); |
| |
| m2.innerVectors(j0,n0) = m2.innerVectors(j0,n0) + m2.innerVectors(j1,n0); |
| if(SparseMatrixType::IsRowMajor) |
| refMat2.middleRows(j0,n0) = (refMat2.middleRows(j0,n0) + refMat2.middleRows(j1,n0)).eval(); |
| else |
| refMat2.middleCols(j0,n0) = (refMat2.middleCols(j0,n0) + refMat2.middleCols(j1,n0)).eval(); |
| |
| VERIFY_IS_APPROX(m2, refMat2); |
| } |
| |
| // test generic blocks |
| { |
| DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols); |
| SparseMatrixType m2(rows, cols); |
| initSparse<Scalar>(density, refMat2, m2); |
| Index j0 = internal::random<Index>(0,outer-2); |
| Index j1 = internal::random<Index>(0,outer-2); |
| Index n0 = internal::random<Index>(1,outer-(std::max)(j0,j1)); |
| if(SparseMatrixType::IsRowMajor) |
| VERIFY_IS_APPROX(m2.block(j0,0,n0,cols), refMat2.block(j0,0,n0,cols)); |
| else |
| VERIFY_IS_APPROX(m2.block(0,j0,rows,n0), refMat2.block(0,j0,rows,n0)); |
| |
| if(SparseMatrixType::IsRowMajor) |
| VERIFY_IS_APPROX(m2.block(j0,0,n0,cols)+m2.block(j1,0,n0,cols), |
| refMat2.block(j0,0,n0,cols)+refMat2.block(j1,0,n0,cols)); |
| else |
| VERIFY_IS_APPROX(m2.block(0,j0,rows,n0)+m2.block(0,j1,rows,n0), |
| refMat2.block(0,j0,rows,n0)+refMat2.block(0,j1,rows,n0)); |
| |
| Index i = internal::random<Index>(0,m2.outerSize()-1); |
| if(SparseMatrixType::IsRowMajor) { |
| m2.innerVector(i) = m2.innerVector(i) * s1; |
| refMat2.row(i) = refMat2.row(i) * s1; |
| VERIFY_IS_APPROX(m2,refMat2); |
| } else { |
| m2.innerVector(i) = m2.innerVector(i) * s1; |
| refMat2.col(i) = refMat2.col(i) * s1; |
| VERIFY_IS_APPROX(m2,refMat2); |
| } |
| |
| Index r0 = internal::random<Index>(0,rows-2); |
| Index c0 = internal::random<Index>(0,cols-2); |
| Index r1 = internal::random<Index>(1,rows-r0); |
| Index c1 = internal::random<Index>(1,cols-c0); |
| |
| VERIFY_IS_APPROX(DenseVector(m2.col(c0)), refMat2.col(c0)); |
| VERIFY_IS_APPROX(m2.col(c0), refMat2.col(c0)); |
| |
| VERIFY_IS_APPROX(RowDenseVector(m2.row(r0)), refMat2.row(r0)); |
| VERIFY_IS_APPROX(m2.row(r0), refMat2.row(r0)); |
| |
| VERIFY_IS_APPROX(m2.block(r0,c0,r1,c1), refMat2.block(r0,c0,r1,c1)); |
| VERIFY_IS_APPROX((2*m2).block(r0,c0,r1,c1), (2*refMat2).block(r0,c0,r1,c1)); |
| |
| if(m2.nonZeros()>0) |
| { |
| VERIFY_IS_APPROX(m2, refMat2); |
| SparseMatrixType m3(rows, cols); |
| DenseMatrix refMat3(rows, cols); refMat3.setZero(); |
| Index n = internal::random<Index>(1,10); |
| for(Index k=0; k<n; ++k) |
| { |
| Index o1 = internal::random<Index>(0,outer-1); |
| Index o2 = internal::random<Index>(0,outer-1); |
| if(SparseMatrixType::IsRowMajor) |
| { |
| m3.innerVector(o1) = m2.row(o2); |
| refMat3.row(o1) = refMat2.row(o2); |
| } |
| else |
| { |
| m3.innerVector(o1) = m2.col(o2); |
| refMat3.col(o1) = refMat2.col(o2); |
| } |
| if(internal::random<bool>()) |
| m3.makeCompressed(); |
| } |
| if(m3.nonZeros()>0) |
| VERIFY_IS_APPROX(m3, refMat3); |
| } |
| } |
| } |
| |
| EIGEN_DECLARE_TEST(sparse_block) |
| { |
| for(int i = 0; i < g_repeat; i++) { |
| int r = Eigen::internal::random<int>(1,200), c = Eigen::internal::random<int>(1,200); |
| if(Eigen::internal::random<int>(0,4) == 0) { |
| r = c; // check square matrices in 25% of tries |
| } |
| EIGEN_UNUSED_VARIABLE(r+c); |
| CALL_SUBTEST_1(( sparse_block(SparseMatrix<double>(1, 1)) )); |
| CALL_SUBTEST_1(( sparse_block(SparseMatrix<double>(8, 8)) )); |
| CALL_SUBTEST_1(( sparse_block(SparseMatrix<double>(r, c)) )); |
| CALL_SUBTEST_2(( sparse_block(SparseMatrix<std::complex<double>, ColMajor>(r, c)) )); |
| CALL_SUBTEST_2(( sparse_block(SparseMatrix<std::complex<double>, RowMajor>(r, c)) )); |
| |
| CALL_SUBTEST_3(( sparse_block(SparseMatrix<double,ColMajor,long int>(r, c)) )); |
| CALL_SUBTEST_3(( sparse_block(SparseMatrix<double,RowMajor,long int>(r, c)) )); |
| |
| r = Eigen::internal::random<int>(1,100); |
| c = Eigen::internal::random<int>(1,100); |
| if(Eigen::internal::random<int>(0,4) == 0) { |
| r = c; // check square matrices in 25% of tries |
| } |
| |
| CALL_SUBTEST_4(( sparse_block(SparseMatrix<double,ColMajor,short int>(short(r), short(c))) )); |
| CALL_SUBTEST_4(( sparse_block(SparseMatrix<double,RowMajor,short int>(short(r), short(c))) )); |
| |
| AnnoyingScalar::dont_throw = true; |
| CALL_SUBTEST_5(( sparse_block(SparseMatrix<AnnoyingScalar>(r,c)) )); |
| } |
| } |