| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #include "sparse.h" |
| |
| template<typename Scalar,typename StorageIndex> void sparse_vector(int rows, int cols) |
| { |
| double densityMat = (std::max)(8./(rows*cols), 0.01); |
| double densityVec = (std::max)(8./(rows), 0.1); |
| typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix; |
| typedef Matrix<Scalar,Dynamic,1> DenseVector; |
| typedef SparseVector<Scalar,0,StorageIndex> SparseVectorType; |
| typedef SparseMatrix<Scalar,0,StorageIndex> SparseMatrixType; |
| Scalar eps = 1e-6; |
| |
| SparseMatrixType m1(rows,rows); |
| SparseVectorType v1(rows), v2(rows), v3(rows); |
| DenseMatrix refM1 = DenseMatrix::Zero(rows, rows); |
| DenseVector refV1 = DenseVector::Random(rows), |
| refV2 = DenseVector::Random(rows), |
| refV3 = DenseVector::Random(rows); |
| |
| std::vector<int> zerocoords, nonzerocoords; |
| initSparse<Scalar>(densityVec, refV1, v1, &zerocoords, &nonzerocoords); |
| initSparse<Scalar>(densityMat, refM1, m1); |
| |
| initSparse<Scalar>(densityVec, refV2, v2); |
| initSparse<Scalar>(densityVec, refV3, v3); |
| |
| Scalar s1 = internal::random<Scalar>(); |
| |
| // test coeff and coeffRef |
| for (unsigned int i=0; i<zerocoords.size(); ++i) |
| { |
| VERIFY_IS_MUCH_SMALLER_THAN( v1.coeff(zerocoords[i]), eps ); |
| //VERIFY_RAISES_ASSERT( v1.coeffRef(zerocoords[i]) = 5 ); |
| } |
| { |
| VERIFY(int(nonzerocoords.size()) == v1.nonZeros()); |
| int j=0; |
| for (typename SparseVectorType::InnerIterator it(v1); it; ++it,++j) |
| { |
| VERIFY(nonzerocoords[j]==it.index()); |
| VERIFY(it.value()==v1.coeff(it.index())); |
| VERIFY(it.value()==refV1.coeff(it.index())); |
| } |
| } |
| VERIFY_IS_APPROX(v1, refV1); |
| |
| // test coeffRef with reallocation |
| { |
| SparseVectorType v4(rows); |
| DenseVector v5 = DenseVector::Zero(rows); |
| for(int k=0; k<rows; ++k) |
| { |
| int i = internal::random<int>(0,rows-1); |
| Scalar v = internal::random<Scalar>(); |
| v4.coeffRef(i) += v; |
| v5.coeffRef(i) += v; |
| } |
| VERIFY_IS_APPROX(v4,v5); |
| } |
| |
| v1.coeffRef(nonzerocoords[0]) = Scalar(5); |
| refV1.coeffRef(nonzerocoords[0]) = Scalar(5); |
| VERIFY_IS_APPROX(v1, refV1); |
| |
| VERIFY_IS_APPROX(v1+v2, refV1+refV2); |
| VERIFY_IS_APPROX(v1+v2+v3, refV1+refV2+refV3); |
| |
| VERIFY_IS_APPROX(v1*s1-v2, refV1*s1-refV2); |
| |
| VERIFY_IS_APPROX(v1*=s1, refV1*=s1); |
| VERIFY_IS_APPROX(v1/=s1, refV1/=s1); |
| |
| VERIFY_IS_APPROX(v1+=v2, refV1+=refV2); |
| VERIFY_IS_APPROX(v1-=v2, refV1-=refV2); |
| |
| VERIFY_IS_APPROX(v1.dot(v2), refV1.dot(refV2)); |
| VERIFY_IS_APPROX(v1.dot(refV2), refV1.dot(refV2)); |
| |
| VERIFY_IS_APPROX(m1*v2, refM1*refV2); |
| VERIFY_IS_APPROX(v1.dot(m1*v2), refV1.dot(refM1*refV2)); |
| { |
| int i = internal::random<int>(0,rows-1); |
| VERIFY_IS_APPROX(v1.dot(m1.col(i)), refV1.dot(refM1.col(i))); |
| } |
| |
| |
| VERIFY_IS_APPROX(v1.squaredNorm(), refV1.squaredNorm()); |
| |
| VERIFY_IS_APPROX(v1.blueNorm(), refV1.blueNorm()); |
| |
| // test aliasing |
| VERIFY_IS_APPROX((v1 = -v1), (refV1 = -refV1)); |
| VERIFY_IS_APPROX((v1 = v1.transpose()), (refV1 = refV1.transpose().eval())); |
| VERIFY_IS_APPROX((v1 += -v1), (refV1 += -refV1)); |
| |
| // sparse matrix to sparse vector |
| SparseMatrixType mv1; |
| VERIFY_IS_APPROX((mv1=v1),v1); |
| VERIFY_IS_APPROX(mv1,(v1=mv1)); |
| VERIFY_IS_APPROX(mv1,(v1=mv1.transpose())); |
| |
| // check copy to dense vector with transpose |
| refV3.resize(0); |
| VERIFY_IS_APPROX(refV3 = v1.transpose(),v1.toDense()); |
| VERIFY_IS_APPROX(DenseVector(v1),v1.toDense()); |
| |
| // test conservative resize |
| { |
| std::vector<StorageIndex> inc; |
| if(rows > 3) |
| inc.push_back(-3); |
| inc.push_back(0); |
| inc.push_back(3); |
| inc.push_back(1); |
| inc.push_back(10); |
| |
| for(std::size_t i = 0; i< inc.size(); i++) { |
| StorageIndex incRows = inc[i]; |
| SparseVectorType vec1(rows); |
| DenseVector refVec1 = DenseVector::Zero(rows); |
| initSparse<Scalar>(densityVec, refVec1, vec1); |
| |
| vec1.conservativeResize(rows+incRows); |
| refVec1.conservativeResize(rows+incRows); |
| if (incRows > 0) refVec1.tail(incRows).setZero(); |
| |
| VERIFY_IS_APPROX(vec1, refVec1); |
| |
| // Insert new values |
| if (incRows > 0) |
| vec1.insert(vec1.rows()-1) = refVec1(refVec1.rows()-1) = 1; |
| |
| VERIFY_IS_APPROX(vec1, refVec1); |
| } |
| } |
| |
| } |
| |
| EIGEN_DECLARE_TEST(sparse_vector) |
| { |
| for(int i = 0; i < g_repeat; i++) { |
| int r = Eigen::internal::random<int>(1,500), c = Eigen::internal::random<int>(1,500); |
| if(Eigen::internal::random<int>(0,4) == 0) { |
| r = c; // check square matrices in 25% of tries |
| } |
| EIGEN_UNUSED_VARIABLE(r+c); |
| |
| CALL_SUBTEST_1(( sparse_vector<double,int>(8, 8) )); |
| CALL_SUBTEST_2(( sparse_vector<std::complex<double>, int>(r, c) )); |
| CALL_SUBTEST_1(( sparse_vector<double,long int>(r, c) )); |
| CALL_SUBTEST_1(( sparse_vector<double,short>(r, c) )); |
| } |
| } |
| |