| namespace Eigen { |
| |
| namespace internal { |
| |
| template <typename Scalar> |
| void dogleg( |
| const Matrix< Scalar, Dynamic, Dynamic > &qrfac, |
| const Matrix< Scalar, Dynamic, 1 > &diag, |
| const Matrix< Scalar, Dynamic, 1 > &qtb, |
| Scalar delta, |
| Matrix< Scalar, Dynamic, 1 > &x) |
| { |
| using std::abs; |
| using std::sqrt; |
| |
| typedef DenseIndex Index; |
| |
| /* Local variables */ |
| Index i, j; |
| Scalar sum, temp, alpha, bnorm; |
| Scalar gnorm, qnorm; |
| Scalar sgnorm; |
| |
| /* Function Body */ |
| const Scalar epsmch = NumTraits<Scalar>::epsilon(); |
| const Index n = qrfac.cols(); |
| eigen_assert(n==qtb.size()); |
| eigen_assert(n==x.size()); |
| eigen_assert(n==diag.size()); |
| Matrix< Scalar, Dynamic, 1 > wa1(n), wa2(n); |
| |
| /* first, calculate the gauss-newton direction. */ |
| for (j = n-1; j >=0; --j) { |
| temp = qrfac(j,j); |
| if (temp == 0.) { |
| temp = epsmch * qrfac.col(j).head(j+1).maxCoeff(); |
| if (temp == 0.) |
| temp = epsmch; |
| } |
| if (j==n-1) |
| x[j] = qtb[j] / temp; |
| else |
| x[j] = (qtb[j] - qrfac.row(j).tail(n-j-1).dot(x.tail(n-j-1))) / temp; |
| } |
| |
| /* test whether the gauss-newton direction is acceptable. */ |
| qnorm = diag.cwiseProduct(x).stableNorm(); |
| if (qnorm <= delta) |
| return; |
| |
| // TODO : this path is not tested by Eigen unit tests |
| |
| /* the gauss-newton direction is not acceptable. */ |
| /* next, calculate the scaled gradient direction. */ |
| |
| wa1.fill(0.); |
| for (j = 0; j < n; ++j) { |
| wa1.tail(n-j) += qrfac.row(j).tail(n-j) * qtb[j]; |
| wa1[j] /= diag[j]; |
| } |
| |
| /* calculate the norm of the scaled gradient and test for */ |
| /* the special case in which the scaled gradient is zero. */ |
| gnorm = wa1.stableNorm(); |
| sgnorm = 0.; |
| alpha = delta / qnorm; |
| if (gnorm == 0.) |
| goto algo_end; |
| |
| /* calculate the point along the scaled gradient */ |
| /* at which the quadratic is minimized. */ |
| wa1.array() /= (diag*gnorm).array(); |
| // TODO : once unit tests cover this part,: |
| // wa2 = qrfac.template triangularView<Upper>() * wa1; |
| for (j = 0; j < n; ++j) { |
| sum = 0.; |
| for (i = j; i < n; ++i) { |
| sum += qrfac(j,i) * wa1[i]; |
| } |
| wa2[j] = sum; |
| } |
| temp = wa2.stableNorm(); |
| sgnorm = gnorm / temp / temp; |
| |
| /* test whether the scaled gradient direction is acceptable. */ |
| alpha = 0.; |
| if (sgnorm >= delta) |
| goto algo_end; |
| |
| /* the scaled gradient direction is not acceptable. */ |
| /* finally, calculate the point along the dogleg */ |
| /* at which the quadratic is minimized. */ |
| bnorm = qtb.stableNorm(); |
| temp = bnorm / gnorm * (bnorm / qnorm) * (sgnorm / delta); |
| temp = temp - delta / qnorm * numext::abs2(sgnorm / delta) + sqrt(numext::abs2(temp - delta / qnorm) + (1.-numext::abs2(delta / qnorm)) * (1.-numext::abs2(sgnorm / delta))); |
| alpha = delta / qnorm * (1. - numext::abs2(sgnorm / delta)) / temp; |
| algo_end: |
| |
| /* form appropriate convex combination of the gauss-newton */ |
| /* direction and the scaled gradient direction. */ |
| temp = (1.-alpha) * (std::min)(sgnorm,delta); |
| x = temp * wa1 + alpha * x; |
| } |
| |
| } // end namespace internal |
| |
| } // end namespace Eigen |