| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008-2016 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_UNARY_FUNCTORS_H |
| #define EIGEN_UNARY_FUNCTORS_H |
| |
| // IWYU pragma: private |
| #include "../InternalHeaderCheck.h" |
| |
| namespace Eigen { |
| |
| namespace internal { |
| |
| /** \internal |
| * \brief Template functor to compute the opposite of a scalar |
| * |
| * \sa class CwiseUnaryOp, MatrixBase::operator- |
| */ |
| template <typename Scalar> |
| struct scalar_opposite_op { |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator()(const Scalar& a) const { return numext::negate(a); } |
| template <typename Packet> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const { |
| return internal::pnegate(a); |
| } |
| }; |
| template <typename Scalar> |
| struct functor_traits<scalar_opposite_op<Scalar>> { |
| enum { Cost = NumTraits<Scalar>::AddCost, PacketAccess = packet_traits<Scalar>::HasNegate }; |
| }; |
| |
| /** \internal |
| * \brief Template functor to compute the absolute value of a scalar |
| * |
| * \sa class CwiseUnaryOp, Cwise::abs |
| */ |
| template <typename Scalar> |
| struct scalar_abs_op { |
| typedef typename NumTraits<Scalar>::Real result_type; |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const result_type operator()(const Scalar& a) const { return numext::abs(a); } |
| template <typename Packet> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const { |
| return internal::pabs(a); |
| } |
| }; |
| template <typename Scalar> |
| struct functor_traits<scalar_abs_op<Scalar>> { |
| enum { Cost = NumTraits<Scalar>::AddCost, PacketAccess = packet_traits<Scalar>::HasAbs }; |
| }; |
| |
| /** \internal |
| * \brief Template functor to compute the score of a scalar, to chose a pivot |
| * |
| * \sa class CwiseUnaryOp |
| */ |
| template <typename Scalar> |
| struct scalar_score_coeff_op : scalar_abs_op<Scalar> { |
| typedef void Score_is_abs; |
| }; |
| template <typename Scalar> |
| struct functor_traits<scalar_score_coeff_op<Scalar>> : functor_traits<scalar_abs_op<Scalar>> {}; |
| |
| /* Avoid recomputing abs when we know the score and they are the same. Not a true Eigen functor. */ |
| template <typename Scalar, typename = void> |
| struct abs_knowing_score { |
| typedef typename NumTraits<Scalar>::Real result_type; |
| template <typename Score> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const result_type operator()(const Scalar& a, const Score&) const { |
| return numext::abs(a); |
| } |
| }; |
| template <typename Scalar> |
| struct abs_knowing_score<Scalar, typename scalar_score_coeff_op<Scalar>::Score_is_abs> { |
| typedef typename NumTraits<Scalar>::Real result_type; |
| template <typename Scal> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const result_type operator()(const Scal&, const result_type& a) const { |
| return a; |
| } |
| }; |
| |
| /** \internal |
| * \brief Template functor to compute the squared absolute value of a scalar |
| * |
| * \sa class CwiseUnaryOp, Cwise::abs2 |
| */ |
| template <typename Scalar> |
| struct scalar_abs2_op { |
| typedef typename NumTraits<Scalar>::Real result_type; |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const result_type operator()(const Scalar& a) const { return numext::abs2(a); } |
| template <typename Packet> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const { |
| return internal::pmul(a, a); |
| } |
| }; |
| template <typename Scalar> |
| struct functor_traits<scalar_abs2_op<Scalar>> { |
| enum { Cost = NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasAbs2 }; |
| }; |
| |
| template <typename Scalar, bool IsComplex = NumTraits<Scalar>::IsComplex> |
| struct squared_norm_functor { |
| typedef Scalar result_type; |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator()(const Scalar& a) const { |
| return Scalar(numext::real(a) * numext::real(a), numext::imag(a) * numext::imag(a)); |
| } |
| template <typename Packet> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const { |
| return Packet(pmul(a.v, a.v)); |
| } |
| }; |
| template <typename Scalar> |
| struct squared_norm_functor<Scalar, false> : scalar_abs2_op<Scalar> {}; |
| |
| template <typename Scalar> |
| struct functor_traits<squared_norm_functor<Scalar>> { |
| using Real = typename NumTraits<Scalar>::Real; |
| enum { Cost = NumTraits<Real>::MulCost, PacketAccess = packet_traits<Real>::HasMul }; |
| }; |
| |
| /** \internal |
| * \brief Template functor to compute the conjugate of a complex value |
| * |
| * \sa class CwiseUnaryOp, MatrixBase::conjugate() |
| */ |
| template <typename Scalar> |
| struct scalar_conjugate_op { |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator()(const Scalar& a) const { return numext::conj(a); } |
| template <typename Packet> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const { |
| return internal::pconj(a); |
| } |
| }; |
| template <typename Scalar> |
| struct functor_traits<scalar_conjugate_op<Scalar>> { |
| enum { |
| Cost = 0, |
| // Yes the cost is zero even for complexes because in most cases for which |
| // the cost is used, conjugation turns to be a no-op. Some examples: |
| // cost(a*conj(b)) == cost(a*b) |
| // cost(a+conj(b)) == cost(a+b) |
| // <etc. |
| // If we don't set it to zero, then: |
| // A.conjugate().lazyProduct(B.conjugate()) |
| // will bake its operands. We definitely don't want that! |
| PacketAccess = packet_traits<Scalar>::HasConj |
| }; |
| }; |
| |
| /** \internal |
| * \brief Template functor to compute the phase angle of a complex |
| * |
| * \sa class CwiseUnaryOp, Cwise::arg |
| */ |
| template <typename Scalar> |
| struct scalar_arg_op { |
| typedef typename NumTraits<Scalar>::Real result_type; |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const result_type operator()(const Scalar& a) const { return numext::arg(a); } |
| template <typename Packet> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const { |
| return internal::parg(a); |
| } |
| }; |
| template <typename Scalar> |
| struct functor_traits<scalar_arg_op<Scalar>> { |
| enum { |
| Cost = NumTraits<Scalar>::IsComplex ? 5 * NumTraits<Scalar>::MulCost : NumTraits<Scalar>::AddCost, |
| PacketAccess = packet_traits<Scalar>::HasArg |
| }; |
| }; |
| |
| /** \internal |
| * \brief Template functor to compute the complex argument, returned as a complex type |
| * |
| * \sa class CwiseUnaryOp, Cwise::carg |
| */ |
| template <typename Scalar> |
| struct scalar_carg_op { |
| using result_type = Scalar; |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator()(const Scalar& a) const { |
| return Scalar(numext::arg(a)); |
| } |
| template <typename Packet> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const { |
| return pcarg(a); |
| } |
| }; |
| template <typename Scalar> |
| struct functor_traits<scalar_carg_op<Scalar>> { |
| using RealScalar = typename NumTraits<Scalar>::Real; |
| enum { Cost = functor_traits<scalar_atan2_op<RealScalar>>::Cost, PacketAccess = packet_traits<RealScalar>::HasATan }; |
| }; |
| |
| /** \internal |
| * \brief Template functor to cast a scalar to another type |
| * |
| * \sa class CwiseUnaryOp, MatrixBase::cast() |
| */ |
| template <typename Scalar, typename NewType> |
| struct scalar_cast_op { |
| typedef NewType result_type; |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const NewType operator()(const Scalar& a) const { |
| return cast<Scalar, NewType>(a); |
| } |
| }; |
| |
| template <typename Scalar, typename NewType> |
| struct functor_traits<scalar_cast_op<Scalar, NewType>> { |
| enum { Cost = is_same<Scalar, NewType>::value ? 0 : NumTraits<NewType>::AddCost, PacketAccess = false }; |
| }; |
| |
| /** \internal |
| * `core_cast_op` serves to distinguish the vectorized implementation from that of the legacy `scalar_cast_op` for |
| * backwards compatibility. The manner in which packet ops are handled is defined by the specialized unary_evaluator: |
| * `unary_evaluator<CwiseUnaryOp<core_cast_op<SrcType, DstType>, ArgType>, IndexBased>` in CoreEvaluators.h |
| * Otherwise, the non-vectorized behavior is identical to that of `scalar_cast_op` |
| */ |
| template <typename SrcType, typename DstType> |
| struct core_cast_op : scalar_cast_op<SrcType, DstType> {}; |
| |
| template <typename SrcType, typename DstType> |
| struct functor_traits<core_cast_op<SrcType, DstType>> { |
| using CastingTraits = type_casting_traits<SrcType, DstType>; |
| enum { |
| Cost = is_same<SrcType, DstType>::value ? 0 : NumTraits<DstType>::AddCost, |
| PacketAccess = CastingTraits::VectorizedCast && (CastingTraits::SrcCoeffRatio <= 8) |
| }; |
| }; |
| |
| /** \internal |
| * \brief Template functor to arithmetically shift a scalar right by a number of bits |
| * |
| * \sa class CwiseUnaryOp, MatrixBase::shift_right() |
| */ |
| template <typename Scalar, int N> |
| struct scalar_shift_right_op { |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator()(const Scalar& a) const { |
| return numext::arithmetic_shift_right(a); |
| } |
| template <typename Packet> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const { |
| return internal::parithmetic_shift_right<N>(a); |
| } |
| }; |
| template <typename Scalar, int N> |
| struct functor_traits<scalar_shift_right_op<Scalar, N>> { |
| enum { Cost = NumTraits<Scalar>::AddCost, PacketAccess = packet_traits<Scalar>::HasShift }; |
| }; |
| |
| /** \internal |
| * \brief Template functor to logically shift a scalar left by a number of bits |
| * |
| * \sa class CwiseUnaryOp, MatrixBase::shift_left() |
| */ |
| template <typename Scalar, int N> |
| struct scalar_shift_left_op { |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator()(const Scalar& a) const { |
| return numext::logical_shift_left(a); |
| } |
| template <typename Packet> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const { |
| return internal::plogical_shift_left<N>(a); |
| } |
| }; |
| template <typename Scalar, int N> |
| struct functor_traits<scalar_shift_left_op<Scalar, N>> { |
| enum { Cost = NumTraits<Scalar>::AddCost, PacketAccess = packet_traits<Scalar>::HasShift }; |
| }; |
| |
| /** \internal |
| * \brief Template functor to extract the real part of a complex |
| * |
| * \sa class CwiseUnaryOp, MatrixBase::real() |
| */ |
| template <typename Scalar> |
| struct scalar_real_op { |
| typedef typename NumTraits<Scalar>::Real result_type; |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE result_type operator()(const Scalar& a) const { return numext::real(a); } |
| }; |
| template <typename Scalar> |
| struct functor_traits<scalar_real_op<Scalar>> { |
| enum { Cost = 0, PacketAccess = false }; |
| }; |
| |
| /** \internal |
| * \brief Template functor to extract the imaginary part of a complex |
| * |
| * \sa class CwiseUnaryOp, MatrixBase::imag() |
| */ |
| template <typename Scalar> |
| struct scalar_imag_op { |
| typedef typename NumTraits<Scalar>::Real result_type; |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE result_type operator()(const Scalar& a) const { return numext::imag(a); } |
| }; |
| template <typename Scalar> |
| struct functor_traits<scalar_imag_op<Scalar>> { |
| enum { Cost = 0, PacketAccess = false }; |
| }; |
| |
| /** \internal |
| * \brief Template functor to extract the real part of a complex as a reference |
| * |
| * \sa class CwiseUnaryOp, MatrixBase::real() |
| */ |
| template <typename Scalar> |
| struct scalar_real_ref_op { |
| typedef typename NumTraits<Scalar>::Real result_type; |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const result_type& operator()(const Scalar& a) const { |
| return numext::real_ref(a); |
| } |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE result_type& operator()(Scalar& a) const { return numext::real_ref(a); } |
| }; |
| template <typename Scalar> |
| struct functor_traits<scalar_real_ref_op<Scalar>> { |
| enum { Cost = 0, PacketAccess = false }; |
| }; |
| |
| /** \internal |
| * \brief Template functor to extract the imaginary part of a complex as a reference |
| * |
| * \sa class CwiseUnaryOp, MatrixBase::imag() |
| */ |
| template <typename Scalar> |
| struct scalar_imag_ref_op { |
| typedef typename NumTraits<Scalar>::Real result_type; |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE result_type& operator()(Scalar& a) const { return numext::imag_ref(a); } |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const result_type& operator()(const Scalar& a) const { |
| return numext::imag_ref(a); |
| } |
| }; |
| template <typename Scalar> |
| struct functor_traits<scalar_imag_ref_op<Scalar>> { |
| enum { Cost = 0, PacketAccess = false }; |
| }; |
| |
| /** \internal |
| * |
| * \brief Template functor to compute the exponential of a scalar |
| * |
| * \sa class CwiseUnaryOp, Cwise::exp() |
| */ |
| template <typename Scalar> |
| struct scalar_exp_op { |
| EIGEN_DEVICE_FUNC inline const Scalar operator()(const Scalar& a) const { return internal::pexp(a); } |
| template <typename Packet> |
| EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { |
| return internal::pexp(a); |
| } |
| }; |
| template <typename Scalar> |
| struct functor_traits<scalar_exp_op<Scalar>> { |
| enum { |
| PacketAccess = packet_traits<Scalar>::HasExp, |
| // The following numbers are based on the AVX implementation. |
| #ifdef EIGEN_VECTORIZE_FMA |
| // Haswell can issue 2 add/mul/madd per cycle. |
| Cost = (sizeof(Scalar) == 4 |
| // float: 8 pmadd, 4 pmul, 2 padd/psub, 6 other |
| ? (8 * NumTraits<Scalar>::AddCost + 6 * NumTraits<Scalar>::MulCost) |
| // double: 7 pmadd, 5 pmul, 3 padd/psub, 1 div, 13 other |
| : (14 * NumTraits<Scalar>::AddCost + 6 * NumTraits<Scalar>::MulCost + |
| scalar_div_cost<Scalar, packet_traits<Scalar>::HasDiv>::value)) |
| #else |
| Cost = (sizeof(Scalar) == 4 |
| // float: 7 pmadd, 6 pmul, 4 padd/psub, 10 other |
| ? (21 * NumTraits<Scalar>::AddCost + 13 * NumTraits<Scalar>::MulCost) |
| // double: 7 pmadd, 5 pmul, 3 padd/psub, 1 div, 13 other |
| : (23 * NumTraits<Scalar>::AddCost + 12 * NumTraits<Scalar>::MulCost + |
| scalar_div_cost<Scalar, packet_traits<Scalar>::HasDiv>::value)) |
| #endif |
| }; |
| }; |
| |
| template <typename Scalar> |
| struct scalar_exp2_op { |
| EIGEN_DEVICE_FUNC inline const Scalar operator()(const Scalar& a) const { return internal::pexp2(a); } |
| template <typename Packet> |
| EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { |
| return internal::pexp2(a); |
| } |
| }; |
| template <typename Scalar> |
| struct functor_traits<scalar_exp2_op<Scalar>> { |
| enum { |
| PacketAccess = packet_traits<Scalar>::HasExp, |
| Cost = functor_traits<scalar_exp_op<Scalar>>::Cost // TODO measure cost of exp2 |
| }; |
| }; |
| |
| /** \internal |
| * |
| * \brief Template functor to compute the exponential of a scalar - 1. |
| * |
| * \sa class CwiseUnaryOp, ArrayBase::expm1() |
| */ |
| template <typename Scalar> |
| struct scalar_expm1_op { |
| EIGEN_DEVICE_FUNC inline const Scalar operator()(const Scalar& a) const { return numext::expm1(a); } |
| template <typename Packet> |
| EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { |
| return internal::pexpm1(a); |
| } |
| }; |
| template <typename Scalar> |
| struct functor_traits<scalar_expm1_op<Scalar>> { |
| enum { |
| PacketAccess = packet_traits<Scalar>::HasExpm1, |
| Cost = functor_traits<scalar_exp_op<Scalar>>::Cost // TODO measure cost of expm1 |
| }; |
| }; |
| |
| /** \internal |
| * |
| * \brief Template functor to compute the logarithm of a scalar |
| * |
| * \sa class CwiseUnaryOp, ArrayBase::log() |
| */ |
| template <typename Scalar> |
| struct scalar_log_op { |
| EIGEN_DEVICE_FUNC inline const Scalar operator()(const Scalar& a) const { return numext::log(a); } |
| template <typename Packet> |
| EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { |
| return internal::plog(a); |
| } |
| }; |
| template <typename Scalar> |
| struct functor_traits<scalar_log_op<Scalar>> { |
| enum { |
| PacketAccess = packet_traits<Scalar>::HasLog, |
| Cost = (PacketAccess |
| // The following numbers are based on the AVX implementation. |
| #ifdef EIGEN_VECTORIZE_FMA |
| // 8 pmadd, 6 pmul, 8 padd/psub, 16 other, can issue 2 add/mul/madd per cycle. |
| ? (20 * NumTraits<Scalar>::AddCost + 7 * NumTraits<Scalar>::MulCost) |
| #else |
| // 8 pmadd, 6 pmul, 8 padd/psub, 20 other |
| ? (36 * NumTraits<Scalar>::AddCost + 14 * NumTraits<Scalar>::MulCost) |
| #endif |
| // Measured cost of std::log. |
| : sizeof(Scalar) == 4 ? 40 : 85) |
| }; |
| }; |
| |
| /** \internal |
| * |
| * \brief Template functor to compute the logarithm of 1 plus a scalar value |
| * |
| * \sa class CwiseUnaryOp, ArrayBase::log1p() |
| */ |
| template <typename Scalar> |
| struct scalar_log1p_op { |
| EIGEN_DEVICE_FUNC inline const Scalar operator()(const Scalar& a) const { return numext::log1p(a); } |
| template <typename Packet> |
| EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { |
| return internal::plog1p(a); |
| } |
| }; |
| template <typename Scalar> |
| struct functor_traits<scalar_log1p_op<Scalar>> { |
| enum { |
| PacketAccess = packet_traits<Scalar>::HasLog1p, |
| Cost = functor_traits<scalar_log_op<Scalar>>::Cost // TODO measure cost of log1p |
| }; |
| }; |
| |
| /** \internal |
| * |
| * \brief Template functor to compute the base-10 logarithm of a scalar |
| * |
| * \sa class CwiseUnaryOp, Cwise::log10() |
| */ |
| template <typename Scalar> |
| struct scalar_log10_op { |
| EIGEN_DEVICE_FUNC inline const Scalar operator()(const Scalar& a) const { EIGEN_USING_STD(log10) return log10(a); } |
| template <typename Packet> |
| EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { |
| return internal::plog10(a); |
| } |
| }; |
| template <typename Scalar> |
| struct functor_traits<scalar_log10_op<Scalar>> { |
| enum { Cost = 5 * NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasLog10 }; |
| }; |
| |
| /** \internal |
| * |
| * \brief Template functor to compute the base-2 logarithm of a scalar |
| * |
| * \sa class CwiseUnaryOp, Cwise::log2() |
| */ |
| template <typename Scalar> |
| struct scalar_log2_op { |
| using RealScalar = typename NumTraits<Scalar>::Real; |
| EIGEN_DEVICE_FUNC inline const Scalar operator()(const Scalar& a) const { |
| return Scalar(RealScalar(EIGEN_LOG2E)) * numext::log(a); |
| } |
| template <typename Packet> |
| EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { |
| return internal::plog2(a); |
| } |
| }; |
| template <typename Scalar> |
| struct functor_traits<scalar_log2_op<Scalar>> { |
| enum { Cost = 5 * NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasLog }; |
| }; |
| |
| /** \internal |
| * \brief Template functor to compute the square root of a scalar |
| * \sa class CwiseUnaryOp, Cwise::sqrt() |
| */ |
| template <typename Scalar> |
| struct scalar_sqrt_op { |
| EIGEN_DEVICE_FUNC inline const Scalar operator()(const Scalar& a) const { return numext::sqrt(a); } |
| template <typename Packet> |
| EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { |
| return internal::psqrt(a); |
| } |
| }; |
| template <typename Scalar> |
| struct functor_traits<scalar_sqrt_op<Scalar>> { |
| enum { |
| #if EIGEN_FAST_MATH |
| // The following numbers are based on the AVX implementation. |
| Cost = (sizeof(Scalar) == 8 ? 28 |
| // 4 pmul, 1 pmadd, 3 other |
| : (3 * NumTraits<Scalar>::AddCost + 5 * NumTraits<Scalar>::MulCost)), |
| #else |
| // The following numbers are based on min VSQRT throughput on Haswell. |
| Cost = (sizeof(Scalar) == 8 ? 28 : 14), |
| #endif |
| PacketAccess = packet_traits<Scalar>::HasSqrt |
| }; |
| }; |
| |
| // Boolean specialization to eliminate -Wimplicit-conversion-floating-point-to-bool warnings. |
| template <> |
| struct scalar_sqrt_op<bool> { |
| EIGEN_DEPRECATED EIGEN_DEVICE_FUNC inline bool operator()(const bool& a) const { return a; } |
| template <typename Packet> |
| EIGEN_DEPRECATED EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { |
| return a; |
| } |
| }; |
| template <> |
| struct functor_traits<scalar_sqrt_op<bool>> { |
| enum { Cost = 1, PacketAccess = packet_traits<bool>::Vectorizable }; |
| }; |
| |
| /** \internal |
| * \brief Template functor to compute the cube root of a scalar |
| * \sa class CwiseUnaryOp, Cwise::sqrt() |
| */ |
| template <typename Scalar> |
| struct scalar_cbrt_op { |
| EIGEN_DEVICE_FUNC inline const Scalar operator()(const Scalar& a) const { return numext::cbrt(a); } |
| }; |
| |
| template <typename Scalar> |
| struct functor_traits<scalar_cbrt_op<Scalar>> { |
| enum { Cost = 5 * NumTraits<Scalar>::MulCost, PacketAccess = false }; |
| }; |
| |
| /** \internal |
| * \brief Template functor to compute the reciprocal square root of a scalar |
| * \sa class CwiseUnaryOp, Cwise::rsqrt() |
| */ |
| template <typename Scalar> |
| struct scalar_rsqrt_op { |
| EIGEN_DEVICE_FUNC inline const Scalar operator()(const Scalar& a) const { return numext::rsqrt(a); } |
| template <typename Packet> |
| EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { |
| return internal::prsqrt(a); |
| } |
| }; |
| |
| template <typename Scalar> |
| struct functor_traits<scalar_rsqrt_op<Scalar>> { |
| enum { Cost = 5 * NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasRsqrt }; |
| }; |
| |
| /** \internal |
| * \brief Template functor to compute the cosine of a scalar |
| * \sa class CwiseUnaryOp, ArrayBase::cos() |
| */ |
| template <typename Scalar> |
| struct scalar_cos_op { |
| EIGEN_DEVICE_FUNC inline Scalar operator()(const Scalar& a) const { return numext::cos(a); } |
| template <typename Packet> |
| EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { |
| return internal::pcos(a); |
| } |
| }; |
| template <typename Scalar> |
| struct functor_traits<scalar_cos_op<Scalar>> { |
| enum { Cost = 5 * NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasCos }; |
| }; |
| |
| /** \internal |
| * \brief Template functor to compute the sine of a scalar |
| * \sa class CwiseUnaryOp, ArrayBase::sin() |
| */ |
| template <typename Scalar> |
| struct scalar_sin_op { |
| EIGEN_DEVICE_FUNC inline const Scalar operator()(const Scalar& a) const { return numext::sin(a); } |
| template <typename Packet> |
| EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { |
| return internal::psin(a); |
| } |
| }; |
| template <typename Scalar> |
| struct functor_traits<scalar_sin_op<Scalar>> { |
| enum { Cost = 5 * NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasSin }; |
| }; |
| |
| /** \internal |
| * \brief Template functor to compute the tan of a scalar |
| * \sa class CwiseUnaryOp, ArrayBase::tan() |
| */ |
| template <typename Scalar> |
| struct scalar_tan_op { |
| EIGEN_DEVICE_FUNC inline const Scalar operator()(const Scalar& a) const { return numext::tan(a); } |
| template <typename Packet> |
| EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { |
| return internal::ptan(a); |
| } |
| }; |
| template <typename Scalar> |
| struct functor_traits<scalar_tan_op<Scalar>> { |
| enum { Cost = 5 * NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasTan }; |
| }; |
| |
| /** \internal |
| * \brief Template functor to compute the arc cosine of a scalar |
| * \sa class CwiseUnaryOp, ArrayBase::acos() |
| */ |
| template <typename Scalar> |
| struct scalar_acos_op { |
| EIGEN_DEVICE_FUNC inline const Scalar operator()(const Scalar& a) const { return numext::acos(a); } |
| template <typename Packet> |
| EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { |
| return internal::pacos(a); |
| } |
| }; |
| template <typename Scalar> |
| struct functor_traits<scalar_acos_op<Scalar>> { |
| enum { Cost = 5 * NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasACos }; |
| }; |
| |
| /** \internal |
| * \brief Template functor to compute the arc sine of a scalar |
| * \sa class CwiseUnaryOp, ArrayBase::asin() |
| */ |
| template <typename Scalar> |
| struct scalar_asin_op { |
| EIGEN_DEVICE_FUNC inline const Scalar operator()(const Scalar& a) const { return numext::asin(a); } |
| template <typename Packet> |
| EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { |
| return internal::pasin(a); |
| } |
| }; |
| template <typename Scalar> |
| struct functor_traits<scalar_asin_op<Scalar>> { |
| enum { Cost = 5 * NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasASin }; |
| }; |
| |
| /** \internal |
| * \brief Template functor to compute the atan of a scalar |
| * \sa class CwiseUnaryOp, ArrayBase::atan() |
| */ |
| template <typename Scalar> |
| struct scalar_atan_op { |
| EIGEN_DEVICE_FUNC inline const Scalar operator()(const Scalar& a) const { return numext::atan(a); } |
| template <typename Packet> |
| EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { |
| return internal::patan(a); |
| } |
| }; |
| template <typename Scalar> |
| struct functor_traits<scalar_atan_op<Scalar>> { |
| enum { Cost = 5 * NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasATan }; |
| }; |
| |
| /** \internal |
| * \brief Template functor to compute the tanh of a scalar |
| * \sa class CwiseUnaryOp, ArrayBase::tanh() |
| */ |
| template <typename Scalar> |
| struct scalar_tanh_op { |
| EIGEN_DEVICE_FUNC inline const Scalar operator()(const Scalar& a) const { return numext::tanh(a); } |
| template <typename Packet> |
| EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& x) const { |
| return ptanh(x); |
| } |
| }; |
| |
| template <typename Scalar> |
| struct functor_traits<scalar_tanh_op<Scalar>> { |
| enum { |
| PacketAccess = packet_traits<Scalar>::HasTanh, |
| Cost = ((EIGEN_FAST_MATH && is_same<Scalar, float>::value) |
| // The following numbers are based on the AVX implementation, |
| #ifdef EIGEN_VECTORIZE_FMA |
| // Haswell can issue 2 add/mul/madd per cycle. |
| // 9 pmadd, 2 pmul, 1 div, 2 other |
| ? (2 * NumTraits<Scalar>::AddCost + 6 * NumTraits<Scalar>::MulCost + |
| scalar_div_cost<Scalar, packet_traits<Scalar>::HasDiv>::value) |
| #else |
| ? (11 * NumTraits<Scalar>::AddCost + 11 * NumTraits<Scalar>::MulCost + |
| scalar_div_cost<Scalar, packet_traits<Scalar>::HasDiv>::value) |
| #endif |
| // This number assumes a naive implementation of tanh |
| : (6 * NumTraits<Scalar>::AddCost + 3 * NumTraits<Scalar>::MulCost + |
| 2 * scalar_div_cost<Scalar, packet_traits<Scalar>::HasDiv>::value + |
| functor_traits<scalar_exp_op<Scalar>>::Cost)) |
| }; |
| }; |
| |
| /** \internal |
| * \brief Template functor to compute the atanh of a scalar |
| * \sa class CwiseUnaryOp, ArrayBase::atanh() |
| */ |
| template <typename Scalar> |
| struct scalar_atanh_op { |
| EIGEN_DEVICE_FUNC inline const Scalar operator()(const Scalar& a) const { return numext::atanh(a); } |
| template <typename Packet> |
| EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& x) const { |
| return patanh(x); |
| } |
| }; |
| |
| template <typename Scalar> |
| struct functor_traits<scalar_atanh_op<Scalar>> { |
| enum { Cost = 5 * NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasATanh }; |
| }; |
| |
| /** \internal |
| * \brief Template functor to compute the sinh of a scalar |
| * \sa class CwiseUnaryOp, ArrayBase::sinh() |
| */ |
| template <typename Scalar> |
| struct scalar_sinh_op { |
| EIGEN_DEVICE_FUNC inline const Scalar operator()(const Scalar& a) const { return numext::sinh(a); } |
| template <typename Packet> |
| EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { |
| return internal::psinh(a); |
| } |
| }; |
| template <typename Scalar> |
| struct functor_traits<scalar_sinh_op<Scalar>> { |
| enum { Cost = 5 * NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasSinh }; |
| }; |
| |
| /** \internal |
| * \brief Template functor to compute the asinh of a scalar |
| * \sa class CwiseUnaryOp, ArrayBase::asinh() |
| */ |
| template <typename Scalar> |
| struct scalar_asinh_op { |
| EIGEN_DEVICE_FUNC inline const Scalar operator()(const Scalar& a) const { return numext::asinh(a); } |
| }; |
| |
| template <typename Scalar> |
| struct functor_traits<scalar_asinh_op<Scalar>> { |
| enum { Cost = 5 * NumTraits<Scalar>::MulCost, PacketAccess = false }; |
| }; |
| |
| /** \internal |
| * \brief Template functor to compute the cosh of a scalar |
| * \sa class CwiseUnaryOp, ArrayBase::cosh() |
| */ |
| template <typename Scalar> |
| struct scalar_cosh_op { |
| EIGEN_DEVICE_FUNC inline const Scalar operator()(const Scalar& a) const { return numext::cosh(a); } |
| template <typename Packet> |
| EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { |
| return internal::pcosh(a); |
| } |
| }; |
| template <typename Scalar> |
| struct functor_traits<scalar_cosh_op<Scalar>> { |
| enum { Cost = 5 * NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasCosh }; |
| }; |
| |
| /** \internal |
| * \brief Template functor to compute the acosh of a scalar |
| * \sa class CwiseUnaryOp, ArrayBase::acosh() |
| */ |
| template <typename Scalar> |
| struct scalar_acosh_op { |
| EIGEN_DEVICE_FUNC inline const Scalar operator()(const Scalar& a) const { return numext::acosh(a); } |
| }; |
| |
| template <typename Scalar> |
| struct functor_traits<scalar_acosh_op<Scalar>> { |
| enum { Cost = 5 * NumTraits<Scalar>::MulCost, PacketAccess = false }; |
| }; |
| |
| /** \internal |
| * \brief Template functor to compute the inverse of a scalar |
| * \sa class CwiseUnaryOp, Cwise::inverse() |
| */ |
| template <typename Scalar> |
| struct scalar_inverse_op { |
| EIGEN_DEVICE_FUNC inline Scalar operator()(const Scalar& a) const { return Scalar(1) / a; } |
| template <typename Packet> |
| EIGEN_DEVICE_FUNC inline const Packet packetOp(const Packet& a) const { |
| return internal::preciprocal(a); |
| } |
| }; |
| template <typename Scalar> |
| struct functor_traits<scalar_inverse_op<Scalar>> { |
| enum { |
| PacketAccess = packet_traits<Scalar>::HasDiv, |
| // If packet_traits<Scalar>::HasReciprocal then the Estimated cost is that |
| // of computing an approximation plus a single Newton-Raphson step, which |
| // consists of 1 pmul + 1 pmadd. |
| Cost = (packet_traits<Scalar>::HasReciprocal ? 4 * NumTraits<Scalar>::MulCost |
| : scalar_div_cost<Scalar, PacketAccess>::value) |
| }; |
| }; |
| |
| /** \internal |
| * \brief Template functor to compute the square of a scalar |
| * \sa class CwiseUnaryOp, Cwise::square() |
| */ |
| template <typename Scalar> |
| struct scalar_square_op { |
| EIGEN_DEVICE_FUNC inline Scalar operator()(const Scalar& a) const { return a * a; } |
| template <typename Packet> |
| EIGEN_DEVICE_FUNC inline const Packet packetOp(const Packet& a) const { |
| return internal::pmul(a, a); |
| } |
| }; |
| template <typename Scalar> |
| struct functor_traits<scalar_square_op<Scalar>> { |
| enum { Cost = NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasMul }; |
| }; |
| |
| // Boolean specialization to avoid -Wint-in-bool-context warnings on GCC. |
| template <> |
| struct scalar_square_op<bool> { |
| EIGEN_DEPRECATED EIGEN_DEVICE_FUNC inline bool operator()(const bool& a) const { return a; } |
| template <typename Packet> |
| EIGEN_DEPRECATED EIGEN_DEVICE_FUNC inline const Packet packetOp(const Packet& a) const { |
| return a; |
| } |
| }; |
| template <> |
| struct functor_traits<scalar_square_op<bool>> { |
| enum { Cost = 0, PacketAccess = packet_traits<bool>::Vectorizable }; |
| }; |
| |
| /** \internal |
| * \brief Template functor to compute the cube of a scalar |
| * \sa class CwiseUnaryOp, Cwise::cube() |
| */ |
| template <typename Scalar> |
| struct scalar_cube_op { |
| EIGEN_DEVICE_FUNC inline Scalar operator()(const Scalar& a) const { return a * a * a; } |
| template <typename Packet> |
| EIGEN_DEVICE_FUNC inline const Packet packetOp(const Packet& a) const { |
| return internal::pmul(a, pmul(a, a)); |
| } |
| }; |
| template <typename Scalar> |
| struct functor_traits<scalar_cube_op<Scalar>> { |
| enum { Cost = 2 * NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasMul }; |
| }; |
| |
| // Boolean specialization to avoid -Wint-in-bool-context warnings on GCC. |
| template <> |
| struct scalar_cube_op<bool> { |
| EIGEN_DEPRECATED EIGEN_DEVICE_FUNC inline bool operator()(const bool& a) const { return a; } |
| template <typename Packet> |
| EIGEN_DEPRECATED EIGEN_DEVICE_FUNC inline const Packet packetOp(const Packet& a) const { |
| return a; |
| } |
| }; |
| template <> |
| struct functor_traits<scalar_cube_op<bool>> { |
| enum { Cost = 0, PacketAccess = packet_traits<bool>::Vectorizable }; |
| }; |
| |
| /** \internal |
| * \brief Template functor to compute the rounded value of a scalar |
| * \sa class CwiseUnaryOp, ArrayBase::round() |
| */ |
| template <typename Scalar> |
| struct scalar_round_op { |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator()(const Scalar& a) const { return numext::round(a); } |
| template <typename Packet> |
| EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { |
| return internal::pround(a); |
| } |
| }; |
| template <typename Scalar> |
| struct functor_traits<scalar_round_op<Scalar>> { |
| enum { |
| Cost = NumTraits<Scalar>::MulCost, |
| PacketAccess = packet_traits<Scalar>::HasRound || NumTraits<Scalar>::IsInteger |
| }; |
| }; |
| |
| /** \internal |
| * \brief Template functor to compute the floor of a scalar |
| * \sa class CwiseUnaryOp, ArrayBase::floor() |
| */ |
| template <typename Scalar> |
| struct scalar_floor_op { |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator()(const Scalar& a) const { return numext::floor(a); } |
| template <typename Packet> |
| EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { |
| return internal::pfloor(a); |
| } |
| }; |
| template <typename Scalar> |
| struct functor_traits<scalar_floor_op<Scalar>> { |
| enum { |
| Cost = NumTraits<Scalar>::MulCost, |
| PacketAccess = packet_traits<Scalar>::HasRound || NumTraits<Scalar>::IsInteger |
| }; |
| }; |
| |
| /** \internal |
| * \brief Template functor to compute the rounded (with current rounding mode) value of a scalar |
| * \sa class CwiseUnaryOp, ArrayBase::rint() |
| */ |
| template <typename Scalar> |
| struct scalar_rint_op { |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator()(const Scalar& a) const { return numext::rint(a); } |
| template <typename Packet> |
| EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { |
| return internal::print(a); |
| } |
| }; |
| template <typename Scalar> |
| struct functor_traits<scalar_rint_op<Scalar>> { |
| enum { |
| Cost = NumTraits<Scalar>::MulCost, |
| PacketAccess = packet_traits<Scalar>::HasRound || NumTraits<Scalar>::IsInteger |
| }; |
| }; |
| |
| /** \internal |
| * \brief Template functor to compute the ceil of a scalar |
| * \sa class CwiseUnaryOp, ArrayBase::ceil() |
| */ |
| template <typename Scalar> |
| struct scalar_ceil_op { |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator()(const Scalar& a) const { return numext::ceil(a); } |
| template <typename Packet> |
| EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { |
| return internal::pceil(a); |
| } |
| }; |
| template <typename Scalar> |
| struct functor_traits<scalar_ceil_op<Scalar>> { |
| enum { |
| Cost = NumTraits<Scalar>::MulCost, |
| PacketAccess = packet_traits<Scalar>::HasRound || NumTraits<Scalar>::IsInteger |
| }; |
| }; |
| |
| /** \internal |
| * \brief Template functor to compute the truncation of a scalar |
| * \sa class CwiseUnaryOp, ArrayBase::floor() |
| */ |
| template <typename Scalar> |
| struct scalar_trunc_op { |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator()(const Scalar& a) const { return numext::trunc(a); } |
| template <typename Packet> |
| EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { |
| return internal::ptrunc(a); |
| } |
| }; |
| template <typename Scalar> |
| struct functor_traits<scalar_trunc_op<Scalar>> { |
| enum { |
| Cost = NumTraits<Scalar>::MulCost, |
| PacketAccess = packet_traits<Scalar>::HasRound || NumTraits<Scalar>::IsInteger |
| }; |
| }; |
| |
| /** \internal |
| * \brief Template functor to compute whether a scalar is NaN |
| * \sa class CwiseUnaryOp, ArrayBase::isnan() |
| */ |
| template <typename Scalar, bool UseTypedPredicate = false> |
| struct scalar_isnan_op { |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool operator()(const Scalar& a) const { |
| #if defined(SYCL_DEVICE_ONLY) |
| return numext::isnan(a); |
| #else |
| return numext::isnan EIGEN_NOT_A_MACRO(a); |
| #endif |
| } |
| }; |
| |
| template <typename Scalar> |
| struct scalar_isnan_op<Scalar, true> { |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar operator()(const Scalar& a) const { |
| #if defined(SYCL_DEVICE_ONLY) |
| return (numext::isnan(a) ? ptrue(a) : pzero(a)); |
| #else |
| return (numext::isnan EIGEN_NOT_A_MACRO(a) ? ptrue(a) : pzero(a)); |
| #endif |
| } |
| template <typename Packet> |
| EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { |
| return pisnan(a); |
| } |
| }; |
| |
| template <typename Scalar, bool UseTypedPredicate> |
| struct functor_traits<scalar_isnan_op<Scalar, UseTypedPredicate>> { |
| enum { Cost = NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasCmp && UseTypedPredicate }; |
| }; |
| |
| /** \internal |
| * \brief Template functor to check whether a scalar is +/-inf |
| * \sa class CwiseUnaryOp, ArrayBase::isinf() |
| */ |
| template <typename Scalar, bool UseTypedPredicate = false> |
| struct scalar_isinf_op { |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool operator()(const Scalar& a) const { |
| #if defined(SYCL_DEVICE_ONLY) |
| return numext::isinf(a); |
| #else |
| return (numext::isinf)(a); |
| #endif |
| } |
| }; |
| |
| template <typename Scalar> |
| struct scalar_isinf_op<Scalar, true> { |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar operator()(const Scalar& a) const { |
| #if defined(SYCL_DEVICE_ONLY) |
| return (numext::isinf(a) ? ptrue(a) : pzero(a)); |
| #else |
| return (numext::isinf EIGEN_NOT_A_MACRO(a) ? ptrue(a) : pzero(a)); |
| #endif |
| } |
| template <typename Packet> |
| EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { |
| return pisinf(a); |
| } |
| }; |
| template <typename Scalar, bool UseTypedPredicate> |
| struct functor_traits<scalar_isinf_op<Scalar, UseTypedPredicate>> { |
| enum { Cost = NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasCmp && UseTypedPredicate }; |
| }; |
| |
| /** \internal |
| * \brief Template functor to check whether a scalar has a finite value |
| * \sa class CwiseUnaryOp, ArrayBase::isfinite() |
| */ |
| template <typename Scalar, bool UseTypedPredicate = false> |
| struct scalar_isfinite_op { |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool operator()(const Scalar& a) const { |
| #if defined(SYCL_DEVICE_ONLY) |
| return numext::isfinite(a); |
| #else |
| return (numext::isfinite)(a); |
| #endif |
| } |
| }; |
| |
| template <typename Scalar> |
| struct scalar_isfinite_op<Scalar, true> { |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar operator()(const Scalar& a) const { |
| #if defined(SYCL_DEVICE_ONLY) |
| return (numext::isfinite(a) ? ptrue(a) : pzero(a)); |
| #else |
| return (numext::isfinite EIGEN_NOT_A_MACRO(a) ? ptrue(a) : pzero(a)); |
| #endif |
| } |
| template <typename Packet> |
| EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { |
| constexpr Scalar inf = NumTraits<Scalar>::infinity(); |
| return pcmp_lt(pabs(a), pset1<Packet>(inf)); |
| } |
| }; |
| template <typename Scalar, bool UseTypedPredicate> |
| struct functor_traits<scalar_isfinite_op<Scalar, UseTypedPredicate>> { |
| enum { Cost = NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasCmp && UseTypedPredicate }; |
| }; |
| |
| /** \internal |
| * \brief Template functor to compute the logical not of a scalar as if it were a boolean |
| * |
| * \sa class CwiseUnaryOp, ArrayBase::operator! |
| */ |
| template <typename Scalar> |
| struct scalar_boolean_not_op { |
| using result_type = Scalar; |
| // `false` any value `a` that satisfies `a == Scalar(0)` |
| // `true` is the complement of `false` |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar operator()(const Scalar& a) const { |
| return a == Scalar(0) ? Scalar(1) : Scalar(0); |
| } |
| template <typename Packet> |
| EIGEN_STRONG_INLINE Packet packetOp(const Packet& a) const { |
| const Packet cst_one = pset1<Packet>(Scalar(1)); |
| Packet not_a = pcmp_eq(a, pzero(a)); |
| return pand(not_a, cst_one); |
| } |
| }; |
| template <typename Scalar> |
| struct functor_traits<scalar_boolean_not_op<Scalar>> { |
| enum { Cost = NumTraits<Scalar>::AddCost, PacketAccess = packet_traits<Scalar>::HasCmp }; |
| }; |
| |
| template <typename Scalar, bool IsComplex = NumTraits<Scalar>::IsComplex> |
| struct bitwise_unary_impl { |
| static constexpr size_t Size = sizeof(Scalar); |
| using uint_t = typename numext::get_integer_by_size<Size>::unsigned_type; |
| static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar run_not(const Scalar& a) { |
| uint_t a_as_uint = numext::bit_cast<uint_t, Scalar>(a); |
| uint_t result = ~a_as_uint; |
| return numext::bit_cast<Scalar, uint_t>(result); |
| } |
| }; |
| |
| template <typename Scalar> |
| struct bitwise_unary_impl<Scalar, true> { |
| using Real = typename NumTraits<Scalar>::Real; |
| static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar run_not(const Scalar& a) { |
| Real real_result = bitwise_unary_impl<Real>::run_not(numext::real(a)); |
| Real imag_result = bitwise_unary_impl<Real>::run_not(numext::imag(a)); |
| return Scalar(real_result, imag_result); |
| } |
| }; |
| |
| /** \internal |
| * \brief Template functor to compute the bitwise not of a scalar |
| * |
| * \sa class CwiseUnaryOp, ArrayBase::operator~ |
| */ |
| template <typename Scalar> |
| struct scalar_bitwise_not_op { |
| EIGEN_STATIC_ASSERT(!NumTraits<Scalar>::RequireInitialization, |
| BITWISE OPERATIONS MAY ONLY BE PERFORMED ON PLAIN DATA TYPES) |
| EIGEN_STATIC_ASSERT((!internal::is_same<Scalar, bool>::value), DONT USE BITWISE OPS ON BOOLEAN TYPES) |
| using result_type = Scalar; |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar operator()(const Scalar& a) const { |
| return bitwise_unary_impl<Scalar>::run_not(a); |
| } |
| template <typename Packet> |
| EIGEN_STRONG_INLINE Packet packetOp(const Packet& a) const { |
| return pandnot(ptrue(a), a); |
| } |
| }; |
| template <typename Scalar> |
| struct functor_traits<scalar_bitwise_not_op<Scalar>> { |
| enum { Cost = NumTraits<Scalar>::AddCost, PacketAccess = true }; |
| }; |
| |
| /** \internal |
| * \brief Template functor to compute the signum of a scalar |
| * \sa class CwiseUnaryOp, Cwise::sign() |
| */ |
| template <typename Scalar> |
| struct scalar_sign_op { |
| EIGEN_DEVICE_FUNC inline const Scalar operator()(const Scalar& a) const { return numext::sign(a); } |
| |
| template <typename Packet> |
| EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { |
| return internal::psign(a); |
| } |
| }; |
| |
| template <typename Scalar> |
| struct functor_traits<scalar_sign_op<Scalar>> { |
| enum { |
| Cost = NumTraits<Scalar>::IsComplex ? (8 * NumTraits<Scalar>::MulCost) // roughly |
| : (3 * NumTraits<Scalar>::AddCost), |
| PacketAccess = packet_traits<Scalar>::HasSign && packet_traits<Scalar>::Vectorizable |
| }; |
| }; |
| |
| // Real-valued implementation. |
| template <typename T, typename EnableIf = void> |
| struct scalar_logistic_op_impl { |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T operator()(const T& x) const { return packetOp(x); } |
| |
| template <typename Packet> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet packetOp(const Packet& x) const { |
| const Packet one = pset1<Packet>(T(1)); |
| const Packet inf = pset1<Packet>(NumTraits<T>::infinity()); |
| const Packet e = pexp(x); |
| const Packet inf_mask = pcmp_eq(e, inf); |
| return pselect(inf_mask, one, pdiv(e, padd(one, e))); |
| } |
| }; |
| |
| // Complex-valud implementation. |
| template <typename T> |
| struct scalar_logistic_op_impl<T, std::enable_if_t<NumTraits<T>::IsComplex>> { |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T operator()(const T& x) const { |
| const T e = numext::exp(x); |
| return (numext::isinf)(numext::real(e)) ? T(1) : e / (e + T(1)); |
| } |
| }; |
| |
| /** \internal |
| * \brief Template functor to compute the logistic function of a scalar |
| * \sa class CwiseUnaryOp, ArrayBase::logistic() |
| */ |
| template <typename T> |
| struct scalar_logistic_op : scalar_logistic_op_impl<T> {}; |
| |
| // TODO(rmlarsen): Enable the following on host when integer_packet is defined |
| // for the relevant packet types. |
| #ifndef EIGEN_GPUCC |
| |
| /** \internal |
| * \brief Template specialization of the logistic function for float. |
| * Computes S(x) = exp(x) / (1 + exp(x)), where exp(x) is implemented |
| * using an algorithm partly adopted from the implementation of |
| * pexp_float. See the individual steps described in the code below. |
| * Note that compared to pexp, we use an additional outer multiplicative |
| * range reduction step using the identity exp(x) = exp(x/2)^2. |
| * This prevert us from having to call ldexp on values that could produce |
| * a denormal result, which allows us to call the faster implementation in |
| * pldexp_fast_impl<Packet>::run(p, m). |
| * The final squaring, however, doubles the error bound on the final |
| * approximation. Exhaustive testing shows that we have a worst case error |
| * of 4.5 ulps (compared to computing S(x) in double precision), which is |
| * acceptable. |
| */ |
| template <> |
| struct scalar_logistic_op<float> { |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE float operator()(const float& x) const { |
| // Truncate at the first point where the interpolant is exactly one. |
| const float cst_exp_hi = 16.6355324f; |
| const float e = numext::exp(numext::mini(x, cst_exp_hi)); |
| return e / (1.0f + e); |
| } |
| |
| template <typename Packet> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet packetOp(const Packet& _x) const { |
| const Packet cst_zero = pset1<Packet>(0.0f); |
| const Packet cst_one = pset1<Packet>(1.0f); |
| const Packet cst_half = pset1<Packet>(0.5f); |
| // Truncate at the first point where the interpolant is exactly one. |
| const Packet cst_exp_hi = pset1<Packet>(16.6355324f); |
| const Packet cst_exp_lo = pset1<Packet>(-104.f); |
| |
| // Clamp x to the non-trivial range where S(x). Outside this |
| // interval the correctly rounded value of S(x) is either zero |
| // or one. |
| Packet zero_mask = pcmp_lt(_x, cst_exp_lo); |
| Packet x = pmin(_x, cst_exp_hi); |
| |
| // 1. Multiplicative range reduction: |
| // Reduce the range of x by a factor of 2. This avoids having |
| // to compute exp(x) accurately where the result is a denormalized |
| // value. |
| x = pmul(x, cst_half); |
| |
| // 2. Subtractive range reduction: |
| // Express exp(x) as exp(m*ln(2) + r) = 2^m*exp(r), start by extracting |
| // m = floor(x/ln(2) + 0.5), such that x = m*ln(2) + r. |
| const Packet cst_cephes_LOG2EF = pset1<Packet>(1.44269504088896341f); |
| Packet m = pfloor(pmadd(x, cst_cephes_LOG2EF, cst_half)); |
| // Get r = x - m*ln(2). We use a trick from Cephes where the term |
| // m*ln(2) is subtracted out in two parts, m*C1+m*C2 = m*ln(2), |
| // to avoid accumulating truncation errors. |
| const Packet cst_cephes_exp_C1 = pset1<Packet>(-0.693359375f); |
| const Packet cst_cephes_exp_C2 = pset1<Packet>(2.12194440e-4f); |
| Packet r = pmadd(m, cst_cephes_exp_C1, x); |
| r = pmadd(m, cst_cephes_exp_C2, r); |
| |
| // 3. Compute an approximation to exp(r) using a degree 5 minimax polynomial. |
| // We compute even and odd terms separately to increase instruction level |
| // parallelism. |
| Packet r2 = pmul(r, r); |
| const Packet cst_p2 = pset1<Packet>(0.49999141693115234375f); |
| const Packet cst_p3 = pset1<Packet>(0.16666877269744873046875f); |
| const Packet cst_p4 = pset1<Packet>(4.1898667812347412109375e-2f); |
| const Packet cst_p5 = pset1<Packet>(8.33471305668354034423828125e-3f); |
| |
| const Packet p_even = pmadd(r2, cst_p4, cst_p2); |
| const Packet p_odd = pmadd(r2, cst_p5, cst_p3); |
| const Packet p_low = padd(r, cst_one); |
| Packet p = pmadd(r, p_odd, p_even); |
| p = pmadd(r2, p, p_low); |
| |
| // 4. Undo subtractive range reduction exp(m*ln(2) + r) = 2^m * exp(r). |
| Packet e = pldexp_fast(p, m); |
| |
| // 5. Undo multiplicative range reduction by using exp(r) = exp(r/2)^2. |
| e = pmul(e, e); |
| |
| // Return exp(x) / (1 + exp(x)) |
| return pselect(zero_mask, cst_zero, pdiv(e, padd(cst_one, e))); |
| } |
| }; |
| #endif // #ifndef EIGEN_GPU_COMPILE_PHASE |
| |
| template <typename T> |
| struct functor_traits<scalar_logistic_op<T>> { |
| enum { |
| // The cost estimate for float here here is for the common(?) case where |
| // all arguments are greater than -9. |
| Cost = scalar_div_cost<T, packet_traits<T>::HasDiv>::value + |
| (internal::is_same<T, float>::value ? NumTraits<T>::AddCost * 15 + NumTraits<T>::MulCost * 11 |
| : NumTraits<T>::AddCost * 2 + functor_traits<scalar_exp_op<T>>::Cost), |
| PacketAccess = !NumTraits<T>::IsComplex && packet_traits<T>::HasAdd && packet_traits<T>::HasDiv && |
| (internal::is_same<T, float>::value |
| ? packet_traits<T>::HasMul && packet_traits<T>::HasMax && packet_traits<T>::HasMin |
| : packet_traits<T>::HasNegate && packet_traits<T>::HasExp) |
| }; |
| }; |
| |
| template <typename Scalar, typename ExponentScalar, bool IsBaseInteger = NumTraits<Scalar>::IsInteger, |
| bool IsExponentInteger = NumTraits<ExponentScalar>::IsInteger, |
| bool IsBaseComplex = NumTraits<Scalar>::IsComplex, |
| bool IsExponentComplex = NumTraits<ExponentScalar>::IsComplex> |
| struct scalar_unary_pow_op { |
| typedef typename internal::promote_scalar_arg< |
| Scalar, ExponentScalar, |
| internal::has_ReturnType<ScalarBinaryOpTraits<Scalar, ExponentScalar, scalar_unary_pow_op>>::value>::type |
| PromotedExponent; |
| typedef typename ScalarBinaryOpTraits<Scalar, PromotedExponent, scalar_unary_pow_op>::ReturnType result_type; |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE scalar_unary_pow_op(const ExponentScalar& exponent) : m_exponent(exponent) {} |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE result_type operator()(const Scalar& a) const { |
| EIGEN_USING_STD(pow); |
| return static_cast<result_type>(pow(a, m_exponent)); |
| } |
| |
| private: |
| const ExponentScalar m_exponent; |
| scalar_unary_pow_op() {} |
| }; |
| |
| template <typename T> |
| constexpr int exponent_digits() { |
| return CHAR_BIT * sizeof(T) - NumTraits<T>::digits() - NumTraits<T>::IsSigned; |
| } |
| |
| template <typename From, typename To> |
| struct is_floating_exactly_representable { |
| // TODO(rmlarsen): Add radix to NumTraits and enable this check. |
| // (NumTraits<To>::radix == NumTraits<From>::radix) && |
| static constexpr bool value = |
| (exponent_digits<To>() >= exponent_digits<From>() && NumTraits<To>::digits() >= NumTraits<From>::digits()); |
| }; |
| |
| // Specialization for real, non-integer types, non-complex types. |
| template <typename Scalar, typename ExponentScalar> |
| struct scalar_unary_pow_op<Scalar, ExponentScalar, false, false, false, false> { |
| template <bool IsExactlyRepresentable = is_floating_exactly_representable<ExponentScalar, Scalar>::value> |
| std::enable_if_t<IsExactlyRepresentable, void> check_is_representable() const {} |
| |
| // Issue a deprecation warning if we do a narrowing conversion on the exponent. |
| template <bool IsExactlyRepresentable = is_floating_exactly_representable<ExponentScalar, Scalar>::value> |
| EIGEN_DEPRECATED std::enable_if_t<!IsExactlyRepresentable, void> check_is_representable() const {} |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE scalar_unary_pow_op(const ExponentScalar& exponent) |
| : m_exponent(static_cast<Scalar>(exponent)) { |
| check_is_representable(); |
| } |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar operator()(const Scalar& a) const { |
| EIGEN_USING_STD(pow); |
| return static_cast<Scalar>(pow(a, m_exponent)); |
| } |
| template <typename Packet> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet packetOp(const Packet& a) const { |
| return unary_pow_impl<Packet, Scalar>::run(a, m_exponent); |
| } |
| |
| private: |
| const Scalar m_exponent; |
| scalar_unary_pow_op() {} |
| }; |
| |
| template <typename Scalar, typename ExponentScalar, bool BaseIsInteger> |
| struct scalar_unary_pow_op<Scalar, ExponentScalar, BaseIsInteger, true, false, false> { |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE scalar_unary_pow_op(const ExponentScalar& exponent) : m_exponent(exponent) {} |
| // TODO: error handling logic for complex^real_integer |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar operator()(const Scalar& a) const { |
| return unary_pow_impl<Scalar, ExponentScalar>::run(a, m_exponent); |
| } |
| template <typename Packet> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet packetOp(const Packet& a) const { |
| return unary_pow_impl<Packet, ExponentScalar>::run(a, m_exponent); |
| } |
| |
| private: |
| const ExponentScalar m_exponent; |
| scalar_unary_pow_op() {} |
| }; |
| |
| template <typename Scalar, typename ExponentScalar> |
| struct functor_traits<scalar_unary_pow_op<Scalar, ExponentScalar>> { |
| enum { |
| GenPacketAccess = functor_traits<scalar_pow_op<Scalar, ExponentScalar>>::PacketAccess, |
| IntPacketAccess = !NumTraits<Scalar>::IsComplex && packet_traits<Scalar>::HasMul && |
| (packet_traits<Scalar>::HasDiv || NumTraits<Scalar>::IsInteger) && packet_traits<Scalar>::HasCmp, |
| PacketAccess = NumTraits<ExponentScalar>::IsInteger ? IntPacketAccess : (IntPacketAccess && GenPacketAccess), |
| Cost = functor_traits<scalar_pow_op<Scalar, ExponentScalar>>::Cost |
| }; |
| }; |
| |
| } // end namespace internal |
| |
| } // end namespace Eigen |
| |
| #endif // EIGEN_FUNCTORS_H |